

The Fermi Surface of High-T_c Superconductors

Sudipfest 2019

Brad Ramshaw

Laboratory for Atomic and Solid State Physics

Cornell University

Collaborators

Barisic, N *et al.,* PNAS (2013), I.S. Elfimov *et al.* PRB 060504(R) 2008

Barisic, N *et al.,* PNAS (2013), I.S. Elfimov *et al.* PRB 060504(R) 2008

Barisic, N *et al.*, PNAS (2013), I.S. Elfimov *et al.* PRB 060504(R) 2008

Barisic, N et al., PNAS (2013),

Barisic, N *et al.*, PNAS (2013), M. Platé *et al.*, PRL (2005); B. Vignolle *et al.*, Nature (2008); N.E. Hussey *et al.*, Nature (2003) Ramshaw *et al.*, Nature Physics (2011); M. A. Hossain *et al.*, Nature (2008)

Hall effect indicates *p* holes at low doping

Barisic, N *et al.*, PNAS (2013), M. Platé *et al.*, PRL (2005); B. Vignolle *et al.*, Nature (2008); N.E. Hussey *et al.*, Nature (2003) Ramshaw *et al.*, Nature Physics (2011); M. A. Hossain *et al.*, Nature (2008)

Barisic, N *et al.*, PNAS (2013), M. Platé *et al.*, PRL (2005); B. Vignolle *et al.*, Nature (2008); N.E. Hussey *et al.*, Nature (2003) Ramshaw *et al.*, Nature Physics (2011); M. A. Hossain *et al.*, Nature (2008)

Broken Symmetry in the Phase Diagram

K. Fujita et al., Science (2014)

Broken Symmetry and Unconventional Superconductivity

Small Fermi Surface in YBa₂Cu₃O_{6.52}

N. Doiron-Leyraud et al., Nature (2007)

Small Fermi Surface in YBa₂Cu₃O_{6.52}

N. Doiron-Leyraud et al., Nature (2007)

Electron Pocket in YBa₂Cu₃O_{6.52}

Quantum Oscillations in YBa₂Cu₃O_{6.59}

Fermi Surface Reconstruction, and the g Factor

B.J. Ramshaw et al. (2011), D. Garcia-Aldea et. al. (2010)

Fermi Surface Reconstruction, and the g Factor

B.J. Ramshaw et al. (2011), D. Garcia-Aldea et. al. (2010), J. Eun et. al., PNAS (2012)

Charge Density Wave Order

T. Wu *et al.,* Nature 2011, G. Ghiringhelli *et al.,* Nature 2012

Charge Density Wave Reconstruction (?)

S. E. Sebastian, et al. Nature, (2014)

Small Electron Pocket Ubiquitous to the CDW Region

B.J. Ramshaw et al. Science 438 (2015), T. Wu et al., Nature 2011

Diverging Effective Mass

Thermodynamic evidence for a Quantum Critical Point

B.J. Ramshaw et al. Science 438 (2015), Shishido et al., JPSJ. (2005), Tuson Park et al., Nature. (2006)

End of the Line for YBCO

B.J. Ramshaw et al. Science 438 (2015)

Angle-Dependent Magnetoresistance (ADMR)

Angle-Dependent Magnetoresistance (ADMR)

Angle-Dependent Magnetoresistance (ADMR)

TI-2201

Data

17 π 12

<u>3π</u> 2 19 π 12

Conclusions

- 'New' technique to measure the Fermi surface for p < p*.
- Doesn't look like arcs or charge order.
- ADMR may give us access to the normal-state fermi surface across the phase diagram.
- Doesn't need a Fermi liquid, just Fermi surface.
- Can extract the k-dependent lifetime.
- High T in YBCO? Low doping "metal"?

S. Badoux et al., Nature (2017)