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Two-dimensional quantum Heisenberg antiferromagnet at low temperatures
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It is argued that the long-wavelength, low-temperature behavior of a two-dimensional quantum
Heisenberg antiferromagnet can be described by a quantum nonlinear o model in two space plus

one time dimension, at least in the range of parameters where the model has long-range order at
zero temperature. The properties of the quantum nonlinear cr model are analyzed approximately
using the one-loop renormalization-group method. When the model has long-range order at
T=. O, the long-wavelength behavior at finite temperatures can be described by a purely classical
model, with parameters renormalized by the quantum Auctuations. The low-temperature behavior
of the correlation length and the static and dynamic staggered-spin-correlation functions for the
quantum antiferromagnet can be predicted, in principle, with no adjustable parameters, from the
results of simulations of the classical model on a lattice, combined with a two-loop renormal-
ization-group analysis of the classical nonlinear o model, a calculation of the zero-temperature
spin-wave stiffness constant and uniform susceptibility of the quantum antiferromagnet, and a
one-loop analysis of the conversion from a lattice cutoff to the wave-vector cutoff introduced by
quantum mechanics when the spin-wave frequency exceeds T/h Applyin. g this approach to the
spin- 2 Heisenberg model on a square lattice, with nearest-neighbor interactions only, we obtain a
result for the correlation length which is in good agreement with the data of Endoh

equal.

on
La2Cu04, if the spin-wave velocity is assumed to be 0.67 eV A/h. We also argue that the data
on La2Cu04 cannot be easily explained by any model in which an isolated Cu02 layer would not
have long-range antiferromagnetic order at T=0. Our theory also predicts a quasielastic peak of
a few meV width at 300 K when kg«1 (where k is wave-vector transfer and g is the correlation
length). The extent to which this dynamical prediction agrees with experiments remains to be
seen. In an appendix, we discuss the effect of introducing a frustrating second-nearest-neighbor
coupling for the antiferromagnet on the square lattice.

I. INTRODUCTION

The discovery of high-temperature superconductors has
led to renewed efforts, both theoretical and experimental,
to understand quantum antiferromagnets. Much of this
interest stems from Anderson's original suggestion' that
novel quantum-spin Auctuations in Cu02 layers may be
responsible for superconductivity in doped materials such
as La2 —„Sr Cu04 and YBa2Cu306+ . Since then a num-
ber of possible mechanisms have been suggested in which
the quantum nature of the Cu spins plays an -important
role in producing high-temperature superconductivity.
The aim of the present investigation, however, is to obtain
a better understanding of the stoichiometric insulating
quantum antiferromagnet, in light of recent neutron
scattering measurements ' in La2Cu04. Although the
subject of quantum antiferromagnets is rather old, there
are a number of unresolved issues which are particularly
pressing in the present context. Some of the results re-
ported here were brieAy presented in a recent letter.
Our analysis of the experiments leads us to believe that

the undoped La2Cu04 can be modeled rather well by a
nearest-neighbor 5 = —,

' antiferromagnetic (AF) Heisen-
berg Hamiltonian on a square lattice with a large ex-
change constant J of order 1200 K; in particular, the

interplanar coupling and the spin anisotropies are both
very small. The present estimate for the interplanar cou-
pling J' is 10 J. Such a small J' has very little eA'ect on
the two-dimensional spin fluctuations seen above the
three-dimensional Neel temperature Tg', the critical re-
gion in which J' is expected to have a major effect is ex-
tremely narrow. One can also show that such a small J'
has very little eA'ect on the zero-temperature properties
calculated assuming that the system consists of isolated
Cu02 layers (see Appendix F). However, the interplanar
coupling is believed responsible for the fact that there is
long-range order at finite temperatures, below T~, as even
a tiny interplanar coupling can induce long-range order
when the in-plane correlation length becomes sufticiently
large.
In principle, weak Ising-like anisotropies can lead to

qualitative changes from Heisenberg behavior for an iso-
lated layer. However, experimental estimates of the spin
anisotropy in La2Cu04 suggest that this anisotropy is less
important than the interlayer coupling in this system.
In the present paper, we shall focus attention on the

pure two-dimensional (2D) Heisenberg model and the
properties of La2Cu04 that can be understood using it.
We assume that the dominant interaction in La2Cu04 is
the nearest-neighbor antiferromagnetic exchange, though
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Interactions and scaling in a disordered two-dimensional metal
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We show that a non-Fermi-liquid state of interacting electrons in two dimensions is stable in the presence of
disorder and is a perfect conductor, provided the interactions are sufficiently strong. Otherwise, the disorder
leads to localization as in the case of noninteracting electrons. This conclusion is established by examining the
replica field theory in the weak-disorder limit, but in the presence of arbitrary electron-electron interaction.
Thus, a disordered two-dimensional metal is a perfect metal, but not a Fermi liquid. @S0163-1829~98!51226-X#

A number of recent experiments1 on the two-dimensional
electron system in semiconductor devices have revealed the
existence of a low-temperature metal-insulator transition as
the electron density is varied. In the 1980s, similar experi-
ments appeared to confirm the prediction that the two-
dimensional disordered electron system would have no me-
tallic states.2 What distinguishes the new samples from those
studied earlier is that the electron density is extremely low,
so that the Coulomb interaction energy is larger than the
Fermi energy.
The combined effects of disorder and electron-electron

interaction were studied by renormalization group ~RG!
methods3,4 and there were indications that one effect of the
interaction might be to stabilize a metallic state in two di-
mensions. However, the nature of the metallic state was un-
known, and, in any case, the conclusion was not very definite
since the RG flows went to a strong coupling regime beyond
the range of validity of the RG equations. Therefore, the
possibility of a two-dimensional metallic state remained an
open issue from the theoretical point of view.
A scaling analysis of the recent experiments has been

made,5 and, based on it, it was argued that any disordered
two-dimensional metal is a perfect metal but not likely to be
a Fermi liquid. The reason is that if the interaction is turned
off, the electrons will localize,6 and the localized state has no
resemblance to a Fermi gas. This motivated us to consider a
two-dimensional non-Fermi liquid state and to study the ef-
fects of impurities.
As a minimal specification of a non-Fermi liquid, the re-

tarded single particle Green’s function must not contain a
quasiparticle pole when analytically continued to the lower
half plane, but a branch point. This leads to a spectral func-
tion satisfying the homogeneity relation7,8

A~Ly1k ,Ly2v!5LyAA~k ,v!, ~1!

in the asymptotically low-energy limit, where y1 , y2 , and
yA are the exponents defining the universality class of the
non-Fermi liquid. Only the set of exponents y151, y251,
and yA521 represents a Fermi liquid for which the branch
points collapse into simple poles. Here the momentum is

measured with respect to kF and the frequency is measured
with respect to the Fermi energy.
The above spectral function will be assumed to contain a

kinematic form factor of zero scale dimension, which is
u(v22vF

2 k2). The rationale is as follows: if dissipation is
due to the decay of an electron coupled to particle-hole pairs,
then, for v.0, v has to be greater than vFuku. Similarly,
because in the ground state of a non-Fermi liquid, particles
are present both above and below the Fermi sea, v must be
less than 2vFuku for negative frequencies. The presence of
the u function leads to a density of states that vanishes at the
Fermi energy. In Ref. 7, another choice was made for which
the density of states remains finite at the Fermi surface.
A spectral function with nontrivial exponents is neces-

sary, but it does not fully specify a non-Fermi liquid. For
example, it does not contain spin-charge separation, which
requires separate singularities for spin and charge excita-
tions. Moreover, new exponents may have to be introduced
for the scaling of composite operators. It is, however, our
intention to see what can be learned from this minimal speci-
fication of a non-Fermi liquid.
For explicit calculations we use the simple model:

A~v ,k !}
1

vc
auv2vFku12a u~v22vF

2 k2!, ~2!

where vc is a microscopic high-frequency scale proportional
to the inverse of the noninteracting density of states n. The
exponent a has to be positive to satisfy the analyticity prop-
erties required of the single-particle Green’s function. It is
also worth noting that the singular part of the spectral func-
tion alone will not satisfy any sum rules.
The Grassmannian field theory for the localization prob-

lem was set up by Efetov, Larkin, and Khmel’nitskii9 and
extended by Finkel’stein3 to the interacting case. We follow
Ref. 3. The random impurity potential is spatially uncorre-
lated and has a white-noise distribution with zero mean so
that ^V(r)V(r8)&5(1/2pnt)d (d)(r2r8). The disorder aver-
age is carried out on the replicated partition function ZN ,
where N is the number of replicas. It leads to the action
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Fig. 1. p,, and p,, vs. B taken from a lower mobility GaAs/Al,Ga,_xAs sample (from H.P. Wei, unpublished). 
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Fig. 2. p,, and p,, vs. B taken from a high mobility sample. T = 85 mK, nS = 3 x lO”/cm*, and p = 1.3 X lo6 cm*/V,. The low field 
region inside a), taken at T=25mK, is shown in fig. 4 (from ref. [23]). 
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Disorder of interest

R

n̄ = n1/2

V (r) = 0

V (r)V (r0) = ge�(x�x

0)2/R2

R � `B

Long-wavelength disorder:



Composite fermions

Lel =  ̄
⇣
K̂A + µ

⌘
 + · · ·

K̂A = iDt
A +

1

2m
~D2
A

D

µ
A = @µ � iAµ, µ 2 {t, x, y}

Lcf = f̄
⇣
K̂A+a + µ

⌘
f +

1

2

1

4⇡
ada+ · · ·

ada = ✏µ⌫�aµ@⌫a�

Critical point vs stable phase

As one tunes disorder...

Theory:

Strong Disorder Weak/No Disorder

IQHE ⌫ = 0 ! 1 Composite Fermions at Be↵ = 0

How does one description turn into the other?

Electrons

Composite fermions

at eq. of motion : hf̄fi+ 1

4⇡
b = 0

Chern-Simons term

Flux-attachment
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� @
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Lopez, Fradkin; Jain; Halperin,Lee,Read; Kalmeyer, Zhang.
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Particle-hole symmetry at half-filling

�
xy

=
1

4⇡
ph symmetry constraint at half-filling:

This constraint holds even with disorder V(r) if

V

n(r) = 0, n = odd

In this case, each disorder realization breaks ph, but disorder 
averaged quantities are ph symmetric.  



Particle-hole symmetry at half-filling

�
xy

=
1

4⇡

The virtue of the fermion Chern-Simons description is
that it suggests a novel mean-field theory. In this mean-
field theory one lets the averaged b (b̄ = 2φ0ρ̄) cancel
B. (Here ρ̄ is the average electron/composite fermion
density.) After the cancellation the composite fermions
see zero magnetic field hence form a Fermi liquid. This
mean-field theory is the basis of Ref. [1].

In reality b is space-time dependent, hence can not can-
cel B exactly. Attempts to go beyond mean-field theory
have not lead to a conclusive result. On this account HLR
made a bold conjecture. They assert that the cancella-
tion between b and B is not spoiled by the fluctuations
beyond mean-field theory. Moreover they assert that the
sole effect of the fluctuations is to renormalize the Fermi
liquid parameters of composite fermions.

An consequence of HLR’s assertion is that the com-
posite fermion Hall conductance vanish:

σCF
xy (ω = 0,q = 0) = 0. (1)

Eq. (1) lies at the heart of the issue we shall discuss.
At this point it is useful to contrast the mean-field

theory for ν = 1/2 with that for incompressible filling
factors. [14,15] The difference lies in the fact that for in-
compressible filling factors the mean-field theory predicts
integer quantum Hall states, while for ν = 1/2 it predicts
a Fermi liquid. Since the former is incompressible (hence
does not have low energy b fluctuations), the statement
that b cancels part of B is asymptotically exact. The
same can not be said about ν = 1/2, because the mean-
field composite fermion state is compressible.

II. The composite fermion Hall conductance

Now let’s come to the main issue - the validity of
Eq. (1). First let’s recall the following exact relation
between the electron and composite fermion resistivity
tensors (ραβ and ρCF

αβ ):

ραβ = ρCF
αβ + ϵαβ

2h

e2
. (2)

In the above ρCF
αβ is defined so that σCF

αβ ≡ (ρCF
αβ )−1

αβ
is the conductivity deduced from the statistical-gauge-
propagator-irreducible current-current correlation func-
tion of composite fermions. [1,16] As usual, in the pres-
ence of long-range interaction, the irreducible current-
current correlation describes the particle response to the
total (i.e. external+internal) field.

The physics of Eq. (2) is the fact that the Hall voltage
seen by the composite fermions differs from that seen by
the electrons by an amount equals to 2 h

e2 ×I. This differ-
ence comes from the fact that in the composite fermion
representation (Fig.2) there is a flux current Iφ = 2hc

e
I
e

in addition to the charge current I. This flux current gen-
erates an extra transverse voltage equals to 1

c Iφ = 2 h
e2 I.

I

FIG. 2. Hall conduction from the composite fermion point
of view

As a result the longitudinal (VL, V CF
L ) and Hall

(VH , V CF
H ) voltages seen by the electron and the com-

posite fermion are related by

VL = V CF
L

VH = V CF
H + 2

h

e2
I. (3)

After dividing both sides of Eq. (3) by I one obtains
Eq. (2).

Next, we discuss another argument that is important
for setting up the issue concerning Eq. (1) - the particle-
hole symmetry. [2] In the absence of disorder, particle-
hole symmetry emerges at ν = 1/2 after the projection
onto the lowest Landau level. The presence of such sym-
metry implies that

σxy =
e2

2h
. (4)

A caricature of the proof [2] goes as follows. Upon the
particle-hole conjugation the electron conductivity tensor
transforms as

σxx(ν) = σh
xx(1 − ν)

σxy(ν) =
e2

h
− σh

xy(1 − ν). (5)

In the above σh
αβ is the conductivity tensor of holes. The

physical meaning of Eq.(5) is clear - after particle-hole
conjugation the new vacuum is a full Landau level and
the total current is the sum of the Hall current carried
by the full Landau level and the current carried by the
holes. At ν = 1/2 we have ν = 1− ν = 1/2 and particle-
hole symmetry. As the result σh

αβ(1 − ν) = σαβ(ν), and
hence Eq. (4) holds.

In the presence of disorder particle-hole symmetry can
at most hold on average. If the probability distribution
of the disorder potential satisfies P [V (x)] = P [−V (x)]
we say that the disorder is particle-hole symmetric. It
is important to note that while Eq. (2) holds for general
disorder, Eq. (4) is only true when the disorder is particle-
hole symmetric. In either case when there is disorder we
need to interpret σαβ and σCF

αβ as the disorder-averaged
conductivities. [2]

Putting Eqs.(2) and (4) together we obtain

e2

2h
=

ρxy

ρ2
xx + ρ2

xy
=

ρCF
xy + 2 h

e2

(ρCF
xx )2 + (ρCF

xy + 2 h
e2 )2

. (6)

2

⇢cfab = ⇢ab + 4⇡✏ab

ph constraint at half-filling:

ph constraint at half-filling: �cf

xy

= � 1

4⇡

How to get this from CFs in zero net field? 

Disorder is crucial here.  

S. Kivelson, D.-H. Lee, Y. Krotov, J. Gan, PRB 1997.  
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Introduction and broader implications

I The half-filled Landau level is one of the best known examples of a non-Fermi liquid metal. Is it a stable
phase of matter or a critical point in the presence of disorder?

I In the framework of composite fermions, at a mean-field level, we find that the half-filled LLL always
corresponds to a critical point when disorder is present.

I DC electrical resistivity tensor can be universal at this critical point. It leads to �xy = e2

2h suggesting
emergent particle-hole symmetry in the HLR theory.

HLR theory with weak quenched disorder

HLR theory postulates that the composite fermions, formed by attaching two flux quanta to electrons, are
the emergent degrees of freedom.

LHLR =f†
✓
i@t + µ + at + At � 1

2m

�
i@j + aj + Aj

�2
◆
f

+
1

8⇡
ada

Chern-Simons constraint equation leads to:

4⇡f†f (r) = �r⇥ a(r)

The e↵ective magnetic field felt by composite fermions is zero. Thus, naively:

�
(cf)
xy = 0

However, the e↵ective theories must be consistent with observed symmetries. An important constraint comes
from particle-hole (PH) symmetry:

�xy =
e2

2h
=) �

(cf)
xy = �e2

2h

So, how can the HLR theory satisfy constraints of particle-hole symmetry?

Disorder: The spatial modulation in the density of CFs leads to a proportional spatially varying
e↵ective magnetic field. For long-wavelength and weak disorder:

be↵(r) = �4⇡�n(r) = �2mV (r)

PH-symmetric Hall response

Intuitive Argument: Regions of negative e↵ective magnetic field have higher density of composite-
fermions than the regions of positive e↵ective magnetic field.

The average Hall conductivity is:

h�(cf)xy i = �n

�b
⇥ e2

~ = �e2

2h

Numerical calculation �!

Susy QM: The mean-field Hamiltonian of composite-fermions is analogous to a spin-1/2 in a random
magnetic-field with a Zeeman term at g = 2:

H" =
1

2m

h
⇧2
x + ⇧2

y �
g

2
b(r)

i

Hcf = H# =
1

2m

h
⇧2
x + ⇧2

y +
g

2
b(r)

i

We find that the following two Hall-conductivity sum-rules are satisfied:

�
#
xy + �

"
xy = 0, Statistical time-reversal symmetry,

�
#
xy � �

"
xy = � 1

2⇡
, Supersymmetric quantum-mechanics.

Numerical verification of the second
sum rule.

Agreement improves on increasing
L or hV 2i.

�1.4
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�0.6
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�
#
x
y

�
�
"
x
y

[e
2
/h

]

µ

Consequently, �̄
#
xy = �

(cf)
xy = � e2

2h.

HLR theory as a critical point

Upon deviation from ⌫ = 1/2, the composite fermions feel a non-zero e↵ective magnetic field.
Separate b(r) = b̃(r) + b0, where hb̃(r)i = 0.

DoS for (a) b0 < 0 (b) b0 > 0.

Assuming that all extended states levitate up, at any given Fermi energy:

�
(cf)
xy =

⇢� 1
2⇡, b0 < 0
0, b0 > 0

So, b0 = 0 or ⌫ = 1/2 corresponds to the integer quantum Hall transition of composite-fermions. This
corresponds to the ⌫ = 1 to ⌫ = 0 transition for electrons.

Low energy e↵ective-field theory

The electromagnetic response Lagrangian of composite-fermions at ⌫ = 1/2 is:

Lresponse,avg = � 1

8⇡
ada =) �xy = �e2

2h

However, this is not gauge-invariant. This problem has a well-known resolution:

Le↵ = i ̄�µD
µ
a � 1

8⇡
ada + Lcs

= i ̄�µD
µ
a � 1

4⇡
Ada +

1

8⇡
AdA,

This is same as the conjectured particle-hole symmetric theory of a Dirac composite fermion by Son[4].

Equivalent electrical response in HLR and Dirac theories

The electromagnetic response of the HLR theory at g = 2 and the Dirac theory turn out to be identical.

A. Cheung, SR, M. Mulligan, 2017,
arXiv:1611.08910

Weiss oscillations in the resistivity calculated in
the HLR and Dirac theories coincide.

At constant chemical potential, “p” Landau levels
are filled for b0 > 0, and “p + 1” Landau levels are

filled for b0 < 0.

They correspond to PH-symmetric filling fractions
⌫ = p

2p+1 and ⌫ = p+1
2p+1.

If electromagnetic charge density is kept constant then “p” number of Landau levels are filled for either sign
of b0. This corresponds to the filling fractions ⌫ = p

2p+1 and ⌫ = p�1
2p�1.

These behaviors are identical in the Dirac theory.

Conclusions and Future directions

I Particle-hole symmetry in the HLR theory is a subtle emergent property that is only unearthed after a
careful analysis of the problem.

I Within a mean-field approximation, the HLR theory is tuned to a topological quantum critical point
at which the change in the composite fermion Hall conductivity ��

xy(cf)
= �e2/h.

I Strong interaction e↵ects are needed to describe a putative metallic phase.

I If both HLR and Dirac composite fermion descriptions are equivalent at long wavelengths, are their
instabilities identical too?
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CFs with disorder
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Disorder problem: random potential slaved to random flux.
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Numerical calculation
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Particle-hole symmetry occurs in the long wavelength limit.  



We can treat the disorder problem non-perturbatively.

Analytic theory

Hcf =
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h
(p+ a)2 � b

i
, b = r⇥ a



We can treat the disorder problem non-perturbatively.

Analogy: spin-1/2 system in a magnetic field with g=2:

Analytic theory

Hcf =
1

2m

h
(p+ a)2 � b

i
, b = r⇥ a

E

hw
2hw
3hw
4hw

w x
0

Figure 7: The Landau levels with spin and g = 2. Each level is degenerate
between the spin up and down states, while the ground state has precisely
zero energy with only the spin up state.

precisely the Hamiltonian with g = 2. One can further rewrite this operator
as a matrix

Q =

s
1

2m

 
0 ⇧x � i⇧y
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s
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2m

s
2eh̄B
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a 0
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h̄!

 
0 a†

a 0

!
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Therefore, Q takes the state to a higher Landau level and raises the spin, or
to a lower Landau level and lowers the spin. Because Q commutes with the
Hamiltonian, Q does not change the energy. This way, we can see why each
Landau level is degenerate between the two spin states. Namely, each state
comes in degenerate pairs, |ii and Q|ii. However, the ground state, namely
the lowest Landau level with spin up 

 
0

0

!
, (5.5)

is annihilated by Q, and is not degenerate with the opposite spin state.
Moreover, it has precisely zero energy H = Q2 = 0.

This operator Q is called supercharge, and the symmetry generated by it
supersymmetry . In general, when there is a set operators that anti-commute

23
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We can treat the disorder problem non-perturbatively.

Analogy: spin-1/2 system in a magnetic field with g=2:

unpaired zero energy mode occurs for 
arbitrary disorder strength provided g=2.  
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Why g=2:

H" =
1

2m

⇥
⇧2 + b(r)

⇤
= QQ†

H# = Hcf =
1

2m

⇥
⇧2 � b(r)

⇤
= Q†Q

Q =
⇧

x

+ i⇧
yp

2m

⇧µ = pµ + aµ

Critical point vs stable phase

As one tunes disorder...

Theory:

Strong Disorder Weak/No Disorder

IQHE ⌫ = 0 ! 1 Composite Fermions at Be↵ = 0

How does one description turn into the other?

1) Flux attachment 2) Mean-field/
linear response:

�n = ��µ

� =
m
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g=2 realizes SUSY quantum mechanics
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For any disorder strength at g=2:
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Berry Curvature on the Fermi Surface: Anomalous Hall Effect
as a Topological Fermi-Liquid Property

F. D. M. Haldane
Department of Physics, Princeton University, Princeton New Jersey 08544-0708, USA

(Received 28 June 2004; revised manuscript received 20 October 2004; published 11 November 2004)

The intrinsic anomalous Hall effect in metallic ferromagnets is shown to be controlled by Berry
phases accumulated by adiabatic motion of quasiparticles on the Fermi surface, and is purely a Fermi-
liquid property, not a bulk Fermi sea property like Landau diamagnetism, as has been previously
supposed. Berry phases are a new topological ingredient that must be added to Landau Fermi-liquid
theory in the presence of broken inversion or time-reversal symmetry.

DOI: 10.1103/PhysRevLett.93.206602 PACS numbers: 72.15.–v, 73.43.–f

Renewed interest in the anomalous Hall effect (AHE)
in metallic ferromagnets has lead to a reinterpretation
of the classic Karplus-Luttinger formula [1] for the
‘‘anomalous velocity’’ in terms of the Berry curvature
of occupied electronic Bloch states [2,3]. This gives an
intrinsic contribution to the Hall conductivity in the low-
temperature clean limit of metallic ferromagnets when
the quasiparticle lifetimes become long, and now appears
to be the dominant contribution to the AHE [4,5].

The expression [1–3] for the intrinsic Hall conductiv-
ity of metals with broken time-reversal symmetry has the
all the appearance of a ‘‘bulk’’ band structure property
that depends on all the filled electronic states, not just the
ones at the Fermi level. However, this seems at odds with
the spirit of Landau’s Fermi-liquid theory, which holds
that charge transport in metals involves only quasipar-
ticles with energies within kBT of the Fermi level.

In this Letter, I show that, despite appearances, the
nonquantized part of the intrinsic Hall conductivity is
completely expressible in terms of Berry phases [6] of
quasiparticles moving on the Fermi surface, and thus
fully consistent with Fermi-liquid theory. This exposes
a new topological ingredient that must be added to Fermi-
liquid theory unless both inversion and time-reversal
symmetry are present: quasiparticle Berry phases.

The ‘‘anomalous velocity’’ is an extra term [7,8] in the
semiclassical equations of motion of a Bloch electron in
weak electric and magnetic fields; ignoring Zeeman cou-
plings, these are

!h
dka
dt

! eEa"x# $ eFab"x#
dxb

dt
; (1)

dxa

dt
! 1

!h
ra
k"n"k# $F ab

n "k# dkb
dt

; (2)

where Fab ! raAb %rbAa ! !abcBc is the magnetic
flux density written as an antisymmetric tensor, ra &
@=@xa, "n"k# is the energy of a Bloch electron in band n,
ra
k & @=@ka and F ab

n is the antisymmetric ‘‘Berry cur-
vature’’ tensor in k space, described below. The anoma-

lous velocity in (2) is the k-space dual of the Lorentz
force.

If one writes the electron occupations hnkni as
n0n"k;"# $ #nkn, where n0n"k;"# is the ground-state oc-
cupation function at chemical potential ", the linear
current response to a uniform electric field E (with
B ! 0) is

Jae ! e
!h

1

"N

X

kn

ra
k"n"k##nkn $ $ab0 ""#Eb; (3)

where N is the number of primitive unit cells, which have
volume ". Here $ab0 ""# is an intrinsic ground-state prop-
erty describing a dissipationless Hall conductivity

$ab0 ""# ! e2

!h
1

"N

X

kn

F ab
n n0n"k;"#: (4)

This also controls the low-temperature limit of the ther-
mal Hall conductivity %ab (Righi-Leduc effect) and the
Peltier coefficient &ab; their ‘‘intrinsic’’ parts are

%ab0 ""# !'2

3

k2BT
e2

$ab0 ""#; &ab0 ""# ! e
@%ab0 ""#
@"

: (5)

A heat current JaQ ! T&ab0 Eb flows with the Hall current.
If time-reversal symmetry is present, the electronic

bands have the property

"n"%k# ! "n"k#; F ab
n "%k# ! %F ab

n "%k#; (6)

the sum (4) cancels, and the intrinsic Hall conductivity
vanishes. If inversion symmetry is also unbroken,
F ab

n "%k# ! F ab
n "k#, and the Berry curvature vanishes.

The Berry curvature is obtained from a ‘‘vector poten-
tial’’ derived from the 1-particle Bloch states j n"k#i:

A a
n"k# ! %ih n"k#jra

k n"k#i; (7)

F ab
n "k# ! ra

kAb
n"k# %rb

kAa
n"k#; (8)

!abcra
kF bc

n "k# !
X

i
qni#3"k%kni#; qni !'2': (9)
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Summary (so far)

PH symmetric dc transport from composite fermions  

CF mean-field theory with disorder: slaved potential and flux.  

Zero modes of CF mean-field 
theory lead to proper dc transport.

Next: QCP at stronger disorder.  
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Part 2: quantum criticality, “self-duality”.

⌫ = 1

⌫ = 0

Magnetic field

⌫ = 1/2

P. Kumar et al., unpublished.  
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FIG. 3. Numerical calculation of σ ↓
xy − σ ↑

xy for various Fermi
energies for Hamiltonians in Eqs. (22) and (23) for b0 = 0. We have
taken m = 1. The energy and length scales are set by taking kF = 1
for the datapoint with highest Fermi energy. The cutoff in momentum
space is ! = 3.3 and system dimensions are 160 × 160. In addition,
the disorder strength and range defined in Eq. (9) are σV = 0.034
and R = 6. We have taken an average over 25 disorder realizations
and calculated standard deviation to quantify the agreement between
numerics and Eq. (29) at b0 = 0. It is shown as the error bars in the
figure which can be seen to be negligible. The horizontal green line
represents σ ↓

xy − σ ↑
xy = −1/2π .

effective magnetic field b0 corresponds to an experimental
tuning parameter that tunes the electronic system to ν = 1/2.
Strictly speaking, a nonzero average magnetic field changes
the compressibility of the system. However, we assume that
b0 is small so that the density of states (which is equal to
the compressibility) gets smoothed out due to disorder and
equals its value at b0 = 0. A schematic DoS is shown in Fig. 4

FIG. 4. A schematic for density of states of Hf in Eq. (14) for (a)
b0 < 0 and (b) b0 > 0 when spatial variations of magnetic field are
large compared to b0. Only (a) has zero-energy states that are shown
as a Dirac delta function. The disorder washes out any quantum
fluctuations in the DoS due to presence of a nonzero b0 so that
ρ = m/2π at the Fermi-energy µ. We assume that all extended states
corresponding to higher Landau levels have levitated up [33] and thus
all positive energy states below the Fermi energy are localized.

for b0 < 0 and b0 > 0. As discussed in detail in the previous
subsection, when b0 < 0, the Hamiltonian Hf in Eq. (14) has
zero modes which contribute −1/2π to the Hall conductivity.
We assume that b0 is small enough so that all other extended
states corresponding to quantum Hall transitions in higher
Landau levels have levitated up [33] in energy and all positive
energy states are localized. Thus, the Hall conductivity at any
Fermi energy is σ (cf)

xy = −1/2π . For the case b0 > 0, there are
no normalizable zero-energy modes. Again, assuming that all
positive energy states are localized, we find σ (cf)

xy = 0 for all
Fermi energies. In summary,

σ (cf)
xy =

{
− 1

2π
, b0 < 0,

0, b0 > 0.
(40)

Thus, b0 = 0 corresponds to the critical point of this integer
quantum Hall transition of composite fermions.

The tuning of effective magnetic field across b0 = 0 can
be understood as follows. When b0 < 0, the number of zero-
energy modes is given by |b0|L2/2π . Now, as we decrease
|b0|, the zero-energy states levitate up one by one while
keeping the Hall conductivity constant. For b0 > 0, they have
all levitated upward and the Hall conductivity is zero. This
phase transition happens for all Fermi energies at exactly b0 =
0 with σ (cf)

xy = −1/4π . Interestingly, this means that states at
all Fermi energies become critical. This is consistent with the
fact that changing the Fermi energy µ while keeping b0 = 0
corresponds to changing the density of composite fermions
and the external magnetic field B in proportion to each other
such that the electronic filling fraction ν = 1/2.

In terms of electrons, the dictionary between Hall con-
ductivities of composite fermions and electrons implies that
the state of electrons transitions from an integer quantum
Hall state with σxy = 1 to an insulator with σxy = 0 as b0 is
tuned from negative to positive values. As a consequence, it is
natural to identify the HLR theory as a critical theory for the
ν = 1 to ν = 0 integer quantum Hall transition of electrons.

IV. TOWARDS A LOW-ENERGY EFFECTIVE THEORY

In the previous section we argued that the HLR mean-field
theory exhibits particle-hole symmetric Hall conductivity in
the presence of weak, long-wavelength disorder. To conclude,
we present a natural guess for a low-energy effective theory
that produces such a response, upon disorder averaging. Pro-
vided that the range of the disorder R is large compared to the
localization length, the simplest way to proceed is to spatially
average Eq. (19):

Lresponse,avg = − 1
8π

ada. (41)

The N dependence drops out after spatial averaging. (This
term in the effective Lagrangian is also implied by the more
detailed analysis of the previous section.) The nonzero contri-
bution arises from the “unpaired” zero modes.

However, as written, there is a problem with the La-
grangian in Eq. (41): it violates gauge invariance [37–40].
The problem has a well-known resolution: in a simple-minded
approach in which gauge fluctuations are neglected, one views
the above Lagrangian as the result of integrating out a massive
two-component Dirac fermion (for consistency, we require

115105-7
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b0 < 0 and (b) b0 > 0 when spatial variations of magnetic field are
large compared to b0. Only (a) has zero-energy states that are shown
as a Dirac delta function. The disorder washes out any quantum
fluctuations in the DoS due to presence of a nonzero b0 so that
ρ = m/2π at the Fermi-energy µ. We assume that all extended states
corresponding to higher Landau levels have levitated up [33] and thus
all positive energy states below the Fermi energy are localized.

for b0 < 0 and b0 > 0. As discussed in detail in the previous
subsection, when b0 < 0, the Hamiltonian Hf in Eq. (14) has
zero modes which contribute −1/2π to the Hall conductivity.
We assume that b0 is small enough so that all other extended
states corresponding to quantum Hall transitions in higher
Landau levels have levitated up [33] in energy and all positive
energy states are localized. Thus, the Hall conductivity at any
Fermi energy is σ (cf)

xy = −1/2π . For the case b0 > 0, there are
no normalizable zero-energy modes. Again, assuming that all
positive energy states are localized, we find σ (cf)

xy = 0 for all
Fermi energies. In summary,

σ (cf)
xy =

{
− 1

2π
, b0 < 0,

0, b0 > 0.
(40)

Thus, b0 = 0 corresponds to the critical point of this integer
quantum Hall transition of composite fermions.

The tuning of effective magnetic field across b0 = 0 can
be understood as follows. When b0 < 0, the number of zero-
energy modes is given by |b0|L2/2π . Now, as we decrease
|b0|, the zero-energy states levitate up one by one while
keeping the Hall conductivity constant. For b0 > 0, they have
all levitated upward and the Hall conductivity is zero. This
phase transition happens for all Fermi energies at exactly b0 =
0 with σ (cf)

xy = −1/4π . Interestingly, this means that states at
all Fermi energies become critical. This is consistent with the
fact that changing the Fermi energy µ while keeping b0 = 0
corresponds to changing the density of composite fermions
and the external magnetic field B in proportion to each other
such that the electronic filling fraction ν = 1/2.

In terms of electrons, the dictionary between Hall con-
ductivities of composite fermions and electrons implies that
the state of electrons transitions from an integer quantum
Hall state with σxy = 1 to an insulator with σxy = 0 as b0 is
tuned from negative to positive values. As a consequence, it is
natural to identify the HLR theory as a critical theory for the
ν = 1 to ν = 0 integer quantum Hall transition of electrons.

IV. TOWARDS A LOW-ENERGY EFFECTIVE THEORY

In the previous section we argued that the HLR mean-field
theory exhibits particle-hole symmetric Hall conductivity in
the presence of weak, long-wavelength disorder. To conclude,
we present a natural guess for a low-energy effective theory
that produces such a response, upon disorder averaging. Pro-
vided that the range of the disorder R is large compared to the
localization length, the simplest way to proceed is to spatially
average Eq. (19):

Lresponse,avg = − 1
8π

ada. (41)

The N dependence drops out after spatial averaging. (This
term in the effective Lagrangian is also implied by the more
detailed analysis of the previous section.) The nonzero contri-
bution arises from the “unpaired” zero modes.

However, as written, there is a problem with the La-
grangian in Eq. (41): it violates gauge invariance [37–40].
The problem has a well-known resolution: in a simple-minded
approach in which gauge fluctuations are neglected, one views
the above Lagrangian as the result of integrating out a massive
two-component Dirac fermion (for consistency, we require
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The virtue of the fermion Chern-Simons description is
that it suggests a novel mean-field theory. In this mean-
field theory one lets the averaged b (b̄ = 2φ0ρ̄) cancel
B. (Here ρ̄ is the average electron/composite fermion
density.) After the cancellation the composite fermions
see zero magnetic field hence form a Fermi liquid. This
mean-field theory is the basis of Ref. [1].

In reality b is space-time dependent, hence can not can-
cel B exactly. Attempts to go beyond mean-field theory
have not lead to a conclusive result. On this account HLR
made a bold conjecture. They assert that the cancella-
tion between b and B is not spoiled by the fluctuations
beyond mean-field theory. Moreover they assert that the
sole effect of the fluctuations is to renormalize the Fermi
liquid parameters of composite fermions.

An consequence of HLR’s assertion is that the com-
posite fermion Hall conductance vanish:

σCF
xy (ω = 0,q = 0) = 0. (1)

Eq. (1) lies at the heart of the issue we shall discuss.
At this point it is useful to contrast the mean-field

theory for ν = 1/2 with that for incompressible filling
factors. [14,15] The difference lies in the fact that for in-
compressible filling factors the mean-field theory predicts
integer quantum Hall states, while for ν = 1/2 it predicts
a Fermi liquid. Since the former is incompressible (hence
does not have low energy b fluctuations), the statement
that b cancels part of B is asymptotically exact. The
same can not be said about ν = 1/2, because the mean-
field composite fermion state is compressible.

II. The composite fermion Hall conductance

Now let’s come to the main issue - the validity of
Eq. (1). First let’s recall the following exact relation
between the electron and composite fermion resistivity
tensors (ραβ and ρCF

αβ ):

ραβ = ρCF
αβ + ϵαβ

2h

e2
. (2)

In the above ρCF
αβ is defined so that σCF

αβ ≡ (ρCF
αβ )−1

αβ
is the conductivity deduced from the statistical-gauge-
propagator-irreducible current-current correlation func-
tion of composite fermions. [1,16] As usual, in the pres-
ence of long-range interaction, the irreducible current-
current correlation describes the particle response to the
total (i.e. external+internal) field.

The physics of Eq. (2) is the fact that the Hall voltage
seen by the composite fermions differs from that seen by
the electrons by an amount equals to 2 h

e2 ×I. This differ-
ence comes from the fact that in the composite fermion
representation (Fig.2) there is a flux current Iφ = 2hc

e
I
e

in addition to the charge current I. This flux current gen-
erates an extra transverse voltage equals to 1

c Iφ = 2 h
e2 I.

I

FIG. 2. Hall conduction from the composite fermion point
of view

As a result the longitudinal (VL, V CF
L ) and Hall

(VH , V CF
H ) voltages seen by the electron and the com-

posite fermion are related by

VL = V CF
L

VH = V CF
H + 2

h

e2
I. (3)

After dividing both sides of Eq. (3) by I one obtains
Eq. (2).

Next, we discuss another argument that is important
for setting up the issue concerning Eq. (1) - the particle-
hole symmetry. [2] In the absence of disorder, particle-
hole symmetry emerges at ν = 1/2 after the projection
onto the lowest Landau level. The presence of such sym-
metry implies that

σxy =
e2

2h
. (4)

A caricature of the proof [2] goes as follows. Upon the
particle-hole conjugation the electron conductivity tensor
transforms as

σxx(ν) = σh
xx(1 − ν)

σxy(ν) =
e2

h
− σh

xy(1 − ν). (5)

In the above σh
αβ is the conductivity tensor of holes. The

physical meaning of Eq.(5) is clear - after particle-hole
conjugation the new vacuum is a full Landau level and
the total current is the sum of the Hall current carried
by the full Landau level and the current carried by the
holes. At ν = 1/2 we have ν = 1− ν = 1/2 and particle-
hole symmetry. As the result σh

αβ(1 − ν) = σαβ(ν), and
hence Eq. (4) holds.

In the presence of disorder particle-hole symmetry can
at most hold on average. If the probability distribution
of the disorder potential satisfies P [V (x)] = P [−V (x)]
we say that the disorder is particle-hole symmetric. It
is important to note that while Eq. (2) holds for general
disorder, Eq. (4) is only true when the disorder is particle-
hole symmetric. In either case when there is disorder we
need to interpret σαβ and σCF

αβ as the disorder-averaged
conductivities. [2]

Putting Eqs.(2) and (4) together we obtain

e2

2h
=

ρxy

ρ2
xx + ρ2

xy
=

ρCF
xy + 2 h

e2

(ρCF
xx )2 + (ρCF

xy + 2 h
e2 )2

. (6)

2

⇢cfab = ⇢ab + 4⇡✏ab

self-duality: ⇢cfab = ⇢ba

using �cf

xy

= � 1

4⇡
, (⇢

xx

, ⇢
xy

) = 2⇡ (1, 1)

At the critical point.  
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r
xx

and r
xy

for the 2-1 transition using a Hall-bar shaped
sample etched in a high-density (n ≠ 2.27 3 1011 cm22),
low-mobility (m ≠ 10.8 3 103 cm2yVsec), MBE grown
GaAsyAlGaAs wafer. These resistivity traces, taken at
several T ’s, are plotted in Fig. 1(a). The transition is typi-
fied by a r

xx

peak that widens with T and by the accompa-
nying step in r

xy

. Next, we convert the r’s to s’s using
the standard matrix conversion,

s
xxsxyd ≠

r
xxsyxd

r2
xx

1 r2
xy

, (1)

and plot the s traces in Fig. 1(b). We then obtain the
conductivity of the topmost LL by subtracting from the
conductivity data the contribution of the lowest, full LL,

st

xx

≠ s
xx

, (2)
st

xy

≠ s
xy

2 e

2yh , (3)
assuming, as mentioned, that the only contribution of the
lowest LL is e

2yh to the Hall conductivity (throughout this
paper, the index t refers to the contribution of the topmost
LL to the transport coefficients). Next we convert st

xx

and st

xy

to new resistivities, rt

xx

and rt

xy

, which are the
resistivities of the topmost LL. This allows comparison
with the data obtained from the 1-0 transition in the same
sample.
The comparison is made in Fig. 2, where we plot rt

xx

(solid lines) and rt

xy

(short-dashed lines) as a function of

FIG. 1. (a) r
xx

(lower curves) and r
xy

vs n taken in the
vicinity of the n ≠ 2 to 1 transition, at T ≠ 42, 70, 101, and
137 mK. Note the narrowing of the transitions as T is lowered.
(b) s

xx

and s
xy

vs n, calculated from (a). The dashed lines in
both (a) and (b) indicate n

c

, inferred from the data in Fig. 2(a)
(see text).

n for the 2-1 transition [Fig. 2(a)], and traces of r
xx

and
r

xy

vs n obtained from the same sample near the 1-0
transition terminating the QH series, in Fig. 2(b) (here,
of course, rt ≠ r). While for the r

xx

traces in both
graphs of Fig. 2 we present data at our lowest T range
(T , 150 mK), the r

xy

traces shown were taken at an
elevated T (¯320 mK) for which reliable data can be
obtained. The difficulties with the Hall component data
at lower T ’s will be discussed below.
A central point that can be observed in Fig. 2 is the

clear similarity of the overall appearance of the traces in
the two graphs. In particular, both sets of r

xx

traces are
characterized by a T -independent crossing point of the
traces taken at different T ’s which, for the 1-0 transition,
has been identified as the QHE-to-insulator transition point
[10,11]. It is thus natural to associate the 2-1 transition
n, n

c

, with the crossing point of the rt

xx

traces observed
in Fig. 2(a). Adopting this identification of n

c

, we now
proceed to explore its consequences in the r and s traces
of Fig. 1.
It is immediately obvious that n

c

(dashed line in Fig. 1)
is not at the r

xx

peak. In fact, the position of the r
xx

FIG. 2. (a) rt

xx

(solid lines) and rt

xy

(long-dashed line) for
the 2-1 transition, calculated from the data in Fig. 1(a). The
T for the rt

xx

data are 42, 70, 101, and 137 mK, and for the
rt

xy

trace T ≠ 330 mK. (b) Measured r
xx

(solid lines) and
r

xy

(long-dashed line) for the 1-0 transition. The T for the
r

xx

data are 42, 84, 106, and 145 mK, and for the r
xy

trace
T ≠ 323 mK. Dashed line in both (a) and (b) indicates the
transition n inferred from the common crossing point of the
rt

xx

(or r
xx

) traces.
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Network model = worldline of a SU(2n) spin chain.  

J1 J2 J1 J2

QCP = “spin Pierels” transition of spin chain.  

Heuristic: network models
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J1, J2: Antiferromagnetic exchange couplings.  
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Heuristic: network models

SU(2n) Spin ladder with 2N+1 legs

Network model for Composite fermions:

V > 0

V < 0

V > 0

Leff =
N

4⇡
ada

Leff = �N + 1

4⇡
ada

2N+1  
edge modes

J1 J2 · · ·

x

K

··
·

}2N + 1

K: FM coupling



Summary

1) weak-disorder: particle-hole symmetric dc transport.

2) stronger disorder: qh-to-insulator qcp.  System does not 
localize due to a topological term in the NLSM.  



Summary

1) weak-disorder: particle-hole symmetric dc transport.

2) stronger disorder: qh-to-insulator qcp.  System does not 
localize due to a topological term in the NLSM.  

3) For the experts: Fermion zero modes of HLR mean-field theory 
suggest an equivalence with Dirac composite fermion theory (i.e. both 
theories flow to the same IR fixed pt).     
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Sudip’s 80th Birthday: partial wish-list

⌫ = 0 ⌫ = 0

⌫ = 1
⌫ = 1

⌫ = 1/2

⌫
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nu=1/2: critical point 
between two qh states.  

critical point and 
nu=1/2 phase distinct.

vs

Magnetic field Magnetic field
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Two-dimensional quantum Heisenberg antiferromagnet at low temperatures
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It is argued that the long-wavelength, low-temperature behavior of a two-dimensional quantum
Heisenberg antiferromagnet can be described by a quantum nonlinear o model in two space plus

one time dimension, at least in the range of parameters where the model has long-range order at
zero temperature. The properties of the quantum nonlinear cr model are analyzed approximately
using the one-loop renormalization-group method. When the model has long-range order at
T=. O, the long-wavelength behavior at finite temperatures can be described by a purely classical
model, with parameters renormalized by the quantum Auctuations. The low-temperature behavior
of the correlation length and the static and dynamic staggered-spin-correlation functions for the
quantum antiferromagnet can be predicted, in principle, with no adjustable parameters, from the
results of simulations of the classical model on a lattice, combined with a two-loop renormal-
ization-group analysis of the classical nonlinear o model, a calculation of the zero-temperature
spin-wave stiffness constant and uniform susceptibility of the quantum antiferromagnet, and a
one-loop analysis of the conversion from a lattice cutoff to the wave-vector cutoff introduced by
quantum mechanics when the spin-wave frequency exceeds T/h Applyin. g this approach to the
spin- 2 Heisenberg model on a square lattice, with nearest-neighbor interactions only, we obtain a
result for the correlation length which is in good agreement with the data of Endoh

equal.

on
La2Cu04, if the spin-wave velocity is assumed to be 0.67 eV A/h. We also argue that the data
on La2Cu04 cannot be easily explained by any model in which an isolated Cu02 layer would not
have long-range antiferromagnetic order at T=0. Our theory also predicts a quasielastic peak of
a few meV width at 300 K when kg«1 (where k is wave-vector transfer and g is the correlation
length). The extent to which this dynamical prediction agrees with experiments remains to be
seen. In an appendix, we discuss the effect of introducing a frustrating second-nearest-neighbor
coupling for the antiferromagnet on the square lattice.

I. INTRODUCTION

The discovery of high-temperature superconductors has
led to renewed efforts, both theoretical and experimental,
to understand quantum antiferromagnets. Much of this
interest stems from Anderson's original suggestion' that
novel quantum-spin Auctuations in Cu02 layers may be
responsible for superconductivity in doped materials such
as La2 —„Sr Cu04 and YBa2Cu306+ . Since then a num-
ber of possible mechanisms have been suggested in which
the quantum nature of the Cu spins plays an -important
role in producing high-temperature superconductivity.
The aim of the present investigation, however, is to obtain
a better understanding of the stoichiometric insulating
quantum antiferromagnet, in light of recent neutron
scattering measurements ' in La2Cu04. Although the
subject of quantum antiferromagnets is rather old, there
are a number of unresolved issues which are particularly
pressing in the present context. Some of the results re-
ported here were brieAy presented in a recent letter.
Our analysis of the experiments leads us to believe that

the undoped La2Cu04 can be modeled rather well by a
nearest-neighbor 5 = —,

' antiferromagnetic (AF) Heisen-
berg Hamiltonian on a square lattice with a large ex-
change constant J of order 1200 K; in particular, the

interplanar coupling and the spin anisotropies are both
very small. The present estimate for the interplanar cou-
pling J' is 10 J. Such a small J' has very little eA'ect on
the two-dimensional spin fluctuations seen above the
three-dimensional Neel temperature Tg', the critical re-
gion in which J' is expected to have a major effect is ex-
tremely narrow. One can also show that such a small J'
has very little eA'ect on the zero-temperature properties
calculated assuming that the system consists of isolated
Cu02 layers (see Appendix F). However, the interplanar
coupling is believed responsible for the fact that there is
long-range order at finite temperatures, below T~, as even
a tiny interplanar coupling can induce long-range order
when the in-plane correlation length becomes sufticiently
large.
In principle, weak Ising-like anisotropies can lead to

qualitative changes from Heisenberg behavior for an iso-
lated layer. However, experimental estimates of the spin
anisotropy in La2Cu04 suggest that this anisotropy is less
important than the interlayer coupling in this system.
In the present paper, we shall focus attention on the

pure two-dimensional (2D) Heisenberg model and the
properties of La2Cu04 that can be understood using it.
We assume that the dominant interaction in La2Cu04 is
the nearest-neighbor antiferromagnetic exchange, though

39 2344 1989 The American Physical Society

Interactions and scaling in a disordered two-dimensional metal
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We show that a non-Fermi-liquid state of interacting electrons in two dimensions is stable in the presence of
disorder and is a perfect conductor, provided the interactions are sufficiently strong. Otherwise, the disorder
leads to localization as in the case of noninteracting electrons. This conclusion is established by examining the
replica field theory in the weak-disorder limit, but in the presence of arbitrary electron-electron interaction.
Thus, a disordered two-dimensional metal is a perfect metal, but not a Fermi liquid. @S0163-1829~98!51226-X#

A number of recent experiments1 on the two-dimensional
electron system in semiconductor devices have revealed the
existence of a low-temperature metal-insulator transition as
the electron density is varied. In the 1980s, similar experi-
ments appeared to confirm the prediction that the two-
dimensional disordered electron system would have no me-
tallic states.2 What distinguishes the new samples from those
studied earlier is that the electron density is extremely low,
so that the Coulomb interaction energy is larger than the
Fermi energy.
The combined effects of disorder and electron-electron

interaction were studied by renormalization group ~RG!
methods3,4 and there were indications that one effect of the
interaction might be to stabilize a metallic state in two di-
mensions. However, the nature of the metallic state was un-
known, and, in any case, the conclusion was not very definite
since the RG flows went to a strong coupling regime beyond
the range of validity of the RG equations. Therefore, the
possibility of a two-dimensional metallic state remained an
open issue from the theoretical point of view.
A scaling analysis of the recent experiments has been

made,5 and, based on it, it was argued that any disordered
two-dimensional metal is a perfect metal but not likely to be
a Fermi liquid. The reason is that if the interaction is turned
off, the electrons will localize,6 and the localized state has no
resemblance to a Fermi gas. This motivated us to consider a
two-dimensional non-Fermi liquid state and to study the ef-
fects of impurities.
As a minimal specification of a non-Fermi liquid, the re-

tarded single particle Green’s function must not contain a
quasiparticle pole when analytically continued to the lower
half plane, but a branch point. This leads to a spectral func-
tion satisfying the homogeneity relation7,8

A~Ly1k ,Ly2v!5LyAA~k ,v!, ~1!

in the asymptotically low-energy limit, where y1 , y2 , and
yA are the exponents defining the universality class of the
non-Fermi liquid. Only the set of exponents y151, y251,
and yA521 represents a Fermi liquid for which the branch
points collapse into simple poles. Here the momentum is

measured with respect to kF and the frequency is measured
with respect to the Fermi energy.
The above spectral function will be assumed to contain a

kinematic form factor of zero scale dimension, which is
u(v22vF

2 k2). The rationale is as follows: if dissipation is
due to the decay of an electron coupled to particle-hole pairs,
then, for v.0, v has to be greater than vFuku. Similarly,
because in the ground state of a non-Fermi liquid, particles
are present both above and below the Fermi sea, v must be
less than 2vFuku for negative frequencies. The presence of
the u function leads to a density of states that vanishes at the
Fermi energy. In Ref. 7, another choice was made for which
the density of states remains finite at the Fermi surface.
A spectral function with nontrivial exponents is neces-

sary, but it does not fully specify a non-Fermi liquid. For
example, it does not contain spin-charge separation, which
requires separate singularities for spin and charge excita-
tions. Moreover, new exponents may have to be introduced
for the scaling of composite operators. It is, however, our
intention to see what can be learned from this minimal speci-
fication of a non-Fermi liquid.
For explicit calculations we use the simple model:

A~v ,k !}
1

vc
auv2vFku12a u~v22vF

2 k2!, ~2!

where vc is a microscopic high-frequency scale proportional
to the inverse of the noninteracting density of states n. The
exponent a has to be positive to satisfy the analyticity prop-
erties required of the single-particle Green’s function. It is
also worth noting that the singular part of the spectral func-
tion alone will not satisfy any sum rules.
The Grassmannian field theory for the localization prob-

lem was set up by Efetov, Larkin, and Khmel’nitskii9 and
extended by Finkel’stein3 to the interacting case. We follow
Ref. 3. The random impurity potential is spatially uncorre-
lated and has a white-noise distribution with zero mean so
that ^V(r)V(r8)&5(1/2pnt)d (d)(r2r8). The disorder aver-
age is carried out on the replicated partition function ZN ,
where N is the number of replicas. It leads to the action
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