Leptogenesis via the Relaxation of Higgs and other Scalar Fields

Louis Yang

Department of Physics and Astronomy University of California, Los Angeles

> PACIFIC 2016 September 13th, 2016

Collaborators: Alex Kusenko and Lauren Pearce

Leptogenesis via the Relaxation of Higgs and other Scalar Fields (slide 1)

PACIFIC 2016

< □ > < □ > < □ > < □ > < □ > < □ >

1 Leptogenesis via scalar field relaxation

2 Isocurvature perturbations

3 Cosmic Infrared Background fluctuation excess

Leptogenesis via the Relaxation of Higgs and other Scalar Fields (slide 2)

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Leptogenesis via scalar field relaxation

Leptogenesis via the Relaxation of Higgs and other Scalar Fields (slide 3)

PACIFIC 2016

Matter-antimatter asymmetry

Our universe contains most baryon but no anti-baryon

 $\eta_B = n_B/n_\gamma \cong 6 \times 10^{-10} \qquad \Omega_B h^2 = 0.022$

from both CMB observation and BBN.

- Sakharov's conditions for **Baryogenesis**
 - 1 *B* violation
 - 2 *C* and *CP* violations
 - 3 Deviation from thermal equilibrium
- Standard Model do satisfy all the conditions but the *CP* phase is too small to generate enough asymmetry. (And, the Higgs mass is too heavy)
- Leptogenesis:
 - Make *L* first. Then, **Sphaleron** process turns *L* into *B*

Standard Thermal Leptogenesis

Fukugita and Yanagida (1986)

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

■ SM + Right Handed Majorana neutrino N_R

- **RH** Majorana neutrino \rightarrow Violates *L*
- CP-violating phases in the neutrino Yukawa couplings
- Out of equilibrium decay of RH neutrino
- Requirements:
 - The heavy RH neutrino have to be in thermal bath: $T > M_R$
 - Neutrino mass $m_{\nu} < 0.2 \, \mathrm{eV}$
- We will look at an interesting alternative which works for $T < M_R$.

Higgs potential

$$V\left(\Phi\right) = m^{2}\Phi^{\dagger}\Phi + \lambda\left(\Phi^{\dagger}\Phi\right)^{2}$$

LHC has discovered the standard model Higgs boson with $m_h = 125.09 \pm 0.21 \pm 0.11 \text{ GeV}.$

 $\Rightarrow \lambda$ is smaller than was expected.

- Due to quantum correction, the λ can be very small or even be negative at scale \$\phi\$ ≥ 10¹² GeV.
- With such small \u03c6, Higgs field can obtain large VEV during inflation.
- The relaxation of such large VEV after inflation can lead to interesting consequence in cosmology.
 - ⇒ Leptogenesis

Leptogenesis via Scalar Field Relaxation

Basic Ingredients:

- **1** Large initial VEV of a scalar field $\phi_0 = \sqrt{\langle \phi^2 \rangle}$
- 2 Relaxation of the scalar field
- **3** Coupling between L current and derivative of ϕ

 $\mathcal{O} \propto \left(\partial_t \phi^2\right) j_L^0$

4 L-violating process

During inflation, scalar fields can obtain vacuum expectation values (VEVs) through quantum fluctuation.

The field can also roll down classically toward its equilibrium minimum

with relaxation time scale

 $au_{\mathrm{roll}} \sim \left[rac{d^2 V\left(\phi
ight)}{d\phi^2}
ight]^{-1/2} = rac{1}{r}$

If $m_{\rm eff} \ll H_I$, there is insufficient time for the field to roll down.

 \Rightarrow A large field value $\phi_0=\sqrt{\langle \phi^2
angle}$

- Quantum fluctuation makes perturbation for all the wavelengths within the horizon: $p = k/a > H_I$.
- Once those fluctuations are pushed outside the horizon, they become classical and are frozen.

イロト イポト イヨト イヨト

- During inflation, scalar fields can obtain vacuum expectation values (VEVs) through quantum fluctuation.
- The field can also roll down classically toward its equilibrium minimum

If $m_{\rm eff} \ll H_I$, there is insufficient time for the field to roll down.

 \Rightarrow A large field value $\phi_0=\sqrt{\langle \phi^2
angle}$

- Quantum fluctuation makes perturbation for all the wavelengths within the horizon: $p = k/a > H_I$.
- Once those fluctuations are pushed outside the horizon, they become classical and are frozen.

・ロト ・ 四ト ・ ヨト ・ ヨト

- During inflation, scalar fields can obtain vacuum expectation values (VEVs) through quantum fluctuation.
- The field can also roll down classically toward its equilibrium minimum

 \Rightarrow A large field value $\phi_0=\sqrt{\langle \phi^2
angle}$

- Quantum fluctuation makes perturbation for all the wavelengths within the horizon: p = k/a > H_I.
- Once those fluctuations are pushed outside the horizon, they become classical and are frozen.

イロト イ理ト イヨト イヨト

- During inflation, scalar fields can obtain vacuum expectation values (VEVs) through quantum fluctuation.
- The field can also roll down classically toward its equilibrium minimum

 $\ddot{\phi} + 3H\dot{\phi} = -\frac{dV\left(\phi\right)}{d\phi}$

with relaxation time scale

$$\tau_{\rm roll} \sim \left[\frac{d^2 V\left(\phi\right)}{d\phi^2}\right]^{-1/2} = \frac{1}{m_{\rm eff}}$$

If $m_{\text{eff}} \ll H_I$, there is insufficient time for the field to roll down.

 $\Rightarrow \mathrm{A}$ large field value $\phi_0 = \sqrt{\langle \phi^2
angle}$

- Quantum fluctuation makes perturbation for all the wavelengths within the horizon: p = k/a > H_I.
- Once those fluctuations are pushed outside the horizon, they become classical and are frozen.

・ロト ・ 四ト ・ ヨト ・ ヨト

- During inflation, scalar fields can obtain vacuum expectation values (VEVs) through quantum fluctuation.
- The field can also roll down classically toward its equilibrium minimum

 $\ddot{\phi} + 3H\dot{\phi} = -\frac{dV\left(\phi\right)}{d\phi}$

with relaxation time scale

$$\tau_{\rm roll} \sim \left[\frac{d^2 V\left(\phi\right)}{d\phi^2}\right]^{-1/2} = \frac{1}{m_{\rm eff}}$$

If $m_{\text{eff}} \ll H_I$, there is insufficient time for the field to roll down.

 \Rightarrow A large field value $\phi_0 = \sqrt{\langle \phi^2 \rangle}$.

- Quantum fluctuation makes perturbation for all the wavelengths within the horizon: p = k/a > H_I.
- Once those fluctuations are pushed outside the horizon, they become classical and are frozen.

・ロト ・ 四ト ・ ヨト ・ ヨト

- During inflation, scalar fields can obtain vacuum expectation values (VEVs) through quantum fluctuation.
- The field can also roll down classically toward its equilibrium minimum

 $\ddot{\phi} + 3H\dot{\phi} = -\frac{dV\left(\phi\right)}{d\phi}$

with relaxation time scale

$$\tau_{\rm roll} \sim \left[\frac{d^2 V\left(\phi\right)}{d\phi^2}\right]^{-1/2} = \frac{1}{m_{\rm eff}}$$

If $m_{\text{eff}} \ll H_I$, there is insufficient time for the field to roll down.

 \Rightarrow A large field value $\phi_0 = \sqrt{\langle \phi^2 \rangle}$.

- Quantum fluctuation makes perturbation for all the wavelengths within the horizon: p = k/a > H_I.
- Once those fluctuations are pushed outside the horizon, they become classical and are frozen.

イロト イポト イヨト イヨト

- During inflation, scalar fields can obtain vacuum expectation values (VEVs) through quantum fluctuation.
- The field can also roll down classically toward its equilibrium minimum

 $\ddot{\phi} + 3H\dot{\phi} = -\frac{dV\left(\phi\right)}{d\phi}$

with relaxation time scale

$$\tau_{\rm roll} \sim \left[\frac{d^2 V\left(\phi\right)}{d\phi^2}\right]^{-1/2} = \frac{1}{m_{\rm eff}}$$

If $m_{\text{eff}} \ll H_I$, there is insufficient time for the field to roll down.

 \Rightarrow A large field value $\phi_0 = \sqrt{\langle \phi^2 \rangle}$.

- Quantum fluctuation makes perturbation for all the wavelengths within the horizon: $p = k/a > H_I$.
- Once those fluctuations are pushed outside the horizon, they become classical and are frozen.

・ロト ・ 四ト ・ ヨト ・ ヨト

1. Large Initial VEV for Scalar Fields

• The average equilibrium VEV $\phi_0 = \sqrt{\langle \phi^2 \rangle}$ is such that

 $V\left(\phi_0\right) \sim H_I^4$

This is

$$\phi_0 \simeq 0.19 H_I^2/m \qquad \text{for } V \sim m^2 \phi^2/2$$

$$\phi_0 \simeq 0.36 \lambda^{-1/4} H_I \qquad \text{for } V \sim \lambda \phi^4/4$$

For inflation scale $\Lambda_I \sim 10^{16} \text{ GeV}$, $H_I = \Lambda_I^2 / \sqrt{3} M_{pl} \sim 10^{13} \text{ GeV}$, with $\lambda \sim 0.01$, the VEV is $\phi_0 \sim 10^{13} \text{ GeV}$.

• For such a large VEV, the scalar field can be sensitive to higher dimensional operators.

< □ > < □ > < □ > < □ > < □ > < □ >

2. Scalar Field Relaxation after Inflation

- After inflation, *H* decreases. When $H < m_{\phi}$, the scalar field can relax.
- ϕ rolls down and oscillate with decreasing amplitude due to the Hubble friction *H*.
- For $\lambda \phi^4$ potential, the typical relaxation time is $t_{\rm rlx} \approx 7 \lambda^{-1/2} \phi_0^{-1}$.

3. Effective Chemical Potential

Dine et. al. (1991) Cohen, Kaplan, Nelson (1991)

- During the relaxation, the scalar field can be sensitive to higher dimensional operators.
- We consider the couplings between the ${\rm derivative}$ of ϕ and j^{μ}_{B+L} like

$$\mathcal{L}_{6} = -\frac{1}{M_{n}^{2}} \left(\partial_{\mu} \left| \phi \right|^{2} \right) j_{B+L}^{\mu} \quad \text{or} \quad \mathcal{L}_{5} = -\frac{1}{M_{n}} \left(\partial_{\mu} \phi \right) j_{B+L}^{\mu}$$

 j_{B+L}^{μ} : the B + L ferimion current

 M_n : new energy scale when the operator is relevant.

- These operators are similar to those used in spontaneous baryogenesis scenarios.
- **Break** *CPT* spontaneouslly!
- So the Sakharov's conditions doesn't has to be satisfied exactly.

PACIFIC 2016

3. Effective Chemical Potential

$$\mathcal{L}_6 = -rac{1}{M_n^2} \left(\partial_\mu \left| \phi \right|^2
ight) j^\mu_{B+L} \quad ext{or} \quad \mathcal{L}_5 = -rac{1}{M_n} \left(\partial_\mu \phi
ight) j^\mu_{B+L}$$

These give effective chemical potentials to baryons and leptons

$$\mu_6 = \frac{1}{M_n^2} \partial_t |\phi|^2$$
 or $\mu_5 = \frac{1}{M_n} \partial_t \phi$

When φ rolls down, this shifts the energy levels between fermions and anti-fermions.

Leptogenesis via the Relaxation of Higgs and other Scalar Fields (slide 12)

3. Derivative coupling?

M. E. Shaposhnikov (1987), M. E. Shaposhnikov (1988)

Integration by part

$$\mathcal{L}_6 = -\frac{1}{M_n^2} \left(\partial_\mu \left| \phi \right|^2 \right) j_{B+L}^\mu \to \frac{1}{M_n^2} \left| \phi \right|^2 \partial_\mu j_{B+L}^\mu$$

The operator is equivalent to

$${\cal L}_6 \propto {1 \over M_n^2} \, |\phi|^2 \left(g^2 W ilde W - {1 \over 2} g'^2 B ilde B
ight)$$

through the **electroweak anomaly equation**, where *W* and *B* are $SU(2)_L$ and $U(1)_Y$ gauge fields.

- For the case that *ϕ* is the Higgs field, this can be generated by
 - 1 Heavy fermion in the loops: $M_n = M_f$
 - 2 Thermal loops: $M_n = T$

Leptogenesis via the Relaxation of Higgs and other Scalar Fields (slide 13)

3. More derivative couplings

- **\mathcal{L}_6** operators
 - Higgs fields h [A. Kusenko, L. Pearce, LY, arXiv:1410.0722]
 - Elementary Goldstone boson Higgs [H. Gertov, F. Sannino, L. Pearce, LY, arXiv:1601.07753.]
- \mathcal{L}_5 operators

• Axion a(t) [A. Kusenko, K. Schmitz, T.T. Yanagida, arXiv:1412.2043.]

$$\mathcal{L}_{\text{eff}} \supset \frac{g_2^2}{32\pi^2} \frac{a\left(t\right)}{f_a} F\tilde{F} = -\frac{a\left(t\right)}{N_f f_a} \partial_\mu \left(\overline{\psi} \gamma^\mu \psi\right)$$

Majoron $\chi\left(t
ight)$ [M. Ibe, and K. Kaneta, arXiv:1504.04125.]

$$\mathcal{L}_{\mathrm{eff}} \supset -rac{\partial_{\mu}\chi}{\sqrt{2}M_{R}}j_{L}^{\mu}$$

750 GeV pseudoscalar S [A. Kusenko, L. Pearce, LY, arXiv:1604.02382.]

$$\mathcal{L} \supset \tilde{\lambda}_g \frac{\alpha_s}{12\pi v_{\rm EW}} SG^a_{\mu\nu} \tilde{G}^{\mu\nu}_a + \tilde{\lambda}_\gamma \frac{\alpha}{\pi v_{\rm EW}} SF_{\mu\nu} \tilde{F}^{\mu\nu}$$

< □ > < □ > < □ > < □ > < □ > < □ >

4. Right-handed Majorana neutrino

- Even though the energy levels for leptons and anti-leptons are different, we still need a lepton-number-violating process to produce net lepton asymmetry.
- Last ingredient: **Right-handed neutrino** N_R with Majorana mass term M_R .
- The processes for $\Delta L = 2$ are

For $m_{\nu} \sim 0.1 \text{ eV}$, $\sigma_R \sim m_{\nu}^2 / 16 \pi v_{\text{EW}}^4 \sim 10^{-31} \text{ GeV}^{-2}$.

< □ > < □ > < □ > < □ > < □ > < □ >

■ Different from thermal leptogenesis: N_R don't need to be in thermal bath. $T < M_R$

The Boltzmann transport equation

• If the system was in equilibrium, the lepton asymmetry would reach a value

$$n_{L,eq} = \frac{-2}{\pi^2} \mu_{\text{eff}} T^2.$$

- However, the interactions are not fast enough for the system to reach the equilibrium because T < M_R.
- The system still make some *L* asymmetry. Describes by the Boltzmann transport equation

$$\frac{d}{dt}n_L + 3Hn_L \approx -\frac{2}{\pi^2}T^3\sigma_R\left(n_L + \frac{2}{\pi^2}\mu_{\rm eff}T^2\right)$$

where n_L is the lepton number density.

• Washout: To suppressed the washout, the lepton-number-violating interaction $T^3\sigma_R$ turns off before the scalar field stop oscillating!

Sample plots of lepton asymmetry evolution

Λ_I = 1.5 × 10¹⁶ GeV, Γ_I = 10⁸ GeV, and T_{RH} = 5 × 10¹² GeV.
 For μ_{eff} ∝ M_n⁻² case, choose M_n = 5 × 10¹² GeV.

Leptogenesis via the Relaxation of Higgs and other Scalar Fields (slide 17)

PACIFIC 2016

 t_{RH}

Resulting asymmetry

 Approximate analytical formula for final lepton asymmetry (lepton to entropy density ratio)

$$Y \approx \frac{90\sigma_R}{\pi^6 g_{*S}} \left(\frac{\phi_0}{M_n}\right)^n T_{\text{rlx}}^2 \begin{cases} \frac{T_{\text{rlx}}^3 t_{\text{rlx}}^2}{T_{RH}^3 t_{RH}^2} \exp\left(-\frac{8+\sqrt{15}}{\pi^2} \frac{\sigma_R T_{RH}^3}{\Gamma_I}\right) & \text{for } t_{\text{rlx}} < \\ \exp\left(-\frac{\sqrt{15}}{\pi^2} \frac{\sigma_R T_{RH}^2 T_{\text{rlx}}}{\Gamma_I}\right) & \text{for } t_{\text{rlx}} > \end{cases}$$

where n = 2 for $\mu_{\text{eff}} \propto \partial_t |\phi|^2 / M_n^2$, and n = 1 for $\mu_{\text{eff}} \propto \partial_t |\phi| / M_n$. Accurate to within an order of magnitude.

< □ > < □ > < □ > < □ > < □ > < □ >

Leptogenesis via the Relaxation of Higgs and other Scalar Fields (slide 19)

PACIFIC 2016

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

One issue with the CMB observations

- $\phi_0 = \sqrt{\langle \phi^2 \rangle}$ is the **average** over several Hubble volumes.
- Different patch of the universe has different initial VEV due to fluctuation $\delta \phi_0$.
- The fluctuation for massless field is $\delta \phi_0/\phi_0 \simeq 1/\sqrt{N}$ where *N* is the number of e-folds of inflation.
- Since the final asymmetry

 $Y \propto \phi_0^n$ with $n \sim 1, 2$ \Rightarrow Different baryon asymmetry in each Hubble volume $\delta Y_B/Y_B \simeq n/\sqrt{N}$.

- One issue with the CMB observations
- $\phi_0 = \sqrt{\langle \phi^2 \rangle}$ is the **average** over several Hubble volumes.
- Different patch of the universe has different initial VEV due to fluctuation $\delta \phi_0$.
- The fluctuation for massless field is $\delta \phi_0/\phi_0 \simeq 1/\sqrt{N}$ where *N* is the number of e-folds of inflation.
- Since the final asymmetry

 $Y \propto \phi_0^n$ with $n \sim 1, 2$ \Rightarrow Different baryon asymmetry in each Hubble volume $\delta Y_B/Y_B \simeq n/\sqrt{N}$.

- One issue with the CMB observations
- $\phi_0 = \sqrt{\langle \phi^2 \rangle}$ is the **average** over several Hubble volumes.
- Different patch of the universe has different initial VEV due to fluctuation $\delta \phi_0$.
- The fluctuation for massless field is $\delta \phi_0/\phi_0 \simeq 1/\sqrt{N}$ where *N* is the number of e-folds of inflation.
- Since the final asymmetry

 $Y \propto \phi_0^n$ with $n \sim 1, 2$ \Rightarrow Different baryon asymmetry in each Hubble volume $\delta Y_B/Y_B \simeq n/\sqrt{N}$.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

- One issue with the CMB observations
- $\phi_0 = \sqrt{\langle \phi^2 \rangle}$ is the **average** over several Hubble volumes.
- Different patch of the universe has different initial VEV due to fluctuation $\delta \phi_0$.
- The fluctuation for massless field is $\delta \phi_0/\phi_0 \simeq 1/\sqrt{N}$ where *N* is the number of e-folds of inflation.
- Since the final asymmetry $Y \propto \phi_0^n$ with $n \sim 1, 2$ \Rightarrow Different baryon asymmetry in each Hubble volume $\delta Y_B / Y_B \simeq n / \sqrt{N}$.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

- One issue with the CMB observations
- $\phi_0 = \sqrt{\langle \phi^2 \rangle}$ is the **average** over several Hubble volumes.
- Different patch of the universe has different initial VEV due to fluctuation $\delta \phi_0$.
- The fluctuation for massless field is $\delta \phi_0 / \phi_0 \simeq 1 / \sqrt{N}$ where *N* is the number of e-folds of inflation.
- Since the final asymmetry

 $Y \propto \phi_0^n$ with $n \sim 1, 2$ \Rightarrow Different baryon asymmetry in each Hubble volume $\delta Y_B / Y_B \simeq n / \sqrt{N}$.

< □ > < □ > < □ > < □ > < □ > < □ >

- Since ϕ is not inflaton, the fluctuation in Y_B is independent from the curvature perturbation coming from inflation.
- For *N*_{last} ~ 50, this produces **large isocurvature perturbations**

$$\frac{\delta Y_B}{Y_B} \approx \frac{n}{\sqrt{N_{\text{last}}}} \sim 0.1 - 0.3 \quad \text{ with } n = 1, \text{ or } 2$$

• This is constrainted by CMB observations.

< □ > < □ > < □ > < □ > < □ > < □ >

Isocurvature perturbations: Constraints from Planck

 CMB observation by Planck satellite (2015) constrains the isocurvature perturbation by

$$\beta_{\text{iso}}\left(k_{*}\right) = \frac{\mathcal{P}_{II}\left(k_{*}\right)}{\mathcal{P}_{RR}\left(k_{*}\right) + \mathcal{P}_{II}\left(k_{*}\right)} < 0.033 \text{ and } 0.038,$$

at comoving wavenumbers $k_* = 0.002 \,\mathrm{Mpc}^{-1}$ and $0.1 \,\mathrm{Mpc}^{-1}$.

These can be translated into a limit on baryonic isocurvature perturbations

$$\left|\frac{\delta Y_B}{Y_B}\right|_{k_*} \lesssim 5 \times 10^{-5}.$$

However, the constraint is only for large scales $l \gtrsim 60 \,\mathrm{Mpc}$ ($k \leq 0.1 \,\mathrm{Mpc}^{-1}$).

Isocurvature perturbations only in small scales

- For small scales (k ≥ 0.1 Mpc⁻¹), CMB is limited by Silk damping (photon diffusion damping).
- Isocurvature perturbation in small scales ($k \ge 0.1 \, \text{Mpc}^{-1}$) is allowed.
- If the scalar field ϕ is massive $(m_{\phi} \gg H_I)$ at the beginning of the inflation, but becomes light $(m_{\phi} < H_I)$ later, then the quantum fluctuation can only grow in the late time.
- And, the produced perturbation will only be in small scales

$$k \gtrsim e^{-N_{\text{last}}} H_I \left(\frac{T_{RH}}{\Lambda_I}\right)^{4/3} \frac{g_{*S}^{1/3}(T_{\text{CMB}})}{g_{*S}^{1/3}(T_{RH})} \frac{T_{\text{CMB}}}{T_{RH}}$$

where N_{last} is the number of e-folds of inflation that the fluctuation of ϕ has grow.

Leptogenesis via the Relaxation of Higgs and other Scalar Fields (slide 23)

Isocurvature perturbations only in small scales

- The wavenumber of the produced perturbation vs. the number of *e*-folds that the fluctuation has grow at different inflation energy scales Λ_I and reheat termperatures T_{RH} .
- For $\Lambda_I = 10^{16}$ GeV, $T_{RH} = 10^{12}$ GeV, the fluctuation for $N_{\text{last}} \leq 50$ only appear in scale smaller than 0.1 Mpc^{-1} .
- This affect the structure formation and help on resolving the excess found in CIB fluctuation.

Leptogenesis via the Relaxation of Higgs and other Scalar Fields (slide 24)

Cosmic Infrared Background fluctuation excess

Leptogenesis via the Relaxation of Higgs and other Scalar Fields (slide 25)

PACIFIC 2016

< □ > < □ > < □ > < □ > < □ > < □ >

Cosmic Infrared Background (CIB) anisotropies

- CIB is the infrared part of extragalactic backgound, which contains radiation from galaxies at all redshifts through out the entire cosmic history.
- The absolute intensity of CIB is difficult to be determined due to the large uncertainty associated with the foreground signal, Galactic components, and zodiacal light.
- Therefore, recent measurements focus on the anisotropies (spatial fluctuation) of CIB.

Excess in CIB fluctuation

A. Kashlinsky, astro-ph/0412235 A. Cooray et. al., 1205.2316 K. Helgason et. al., 1505.07226

Akari and Spitzer: Excess in fluctuation at few arcmin scale in the near-IR (2-5 μ m).

 $\delta F_{2-5\mu m}(5') \simeq 0.09 \,\mathrm{nWm^{-2} sr^{-1}}$ Not from known galaxy populations.

- Might come from first star forming at $z \ge 10$, but have difficulty with pure adiabatic spectrum from inflation.
- Due to the insufficient perturbation in the small scale at high redshift ($z \ge 8$) for structure to form. [Helgason et. al. (2016) and Kashlinsky (2016)]

Large perturbations in small scales

A possible solution from Leptogenesis via scalar field relaxation:

- Produces **large** baryon perturbation ($\delta_B = \delta \rho_B / \rho_B \sim 0.1$) in **small** scales at the early universe if the fluctuation in ϕ only grows in the late time of inflation.
- 2 The large fluctuation in baryon density induces the corresponding perturbation in CDM δ_{CDM} after recombination.
- 3 Total matter perturbations δ_m in small scale are much larger than that from standard adiabatic perturbation from inflation.
- 4 Small structures ($M_{\rm halo} \sim 10^6 M_{\odot}$) form eariler
- 5 Produce more CIB fluctuation at z > 10.

Growth of the perturbation

from inflation with $\mathcal{R} = 5 \times 10^{-5}$

With isocurvature perturbation from leptogenesis with $\delta_B = 0.14$

- For $N_{\text{last}} = 45.7$, $\Lambda_I = 10^{16}$ GeV, $T_{RH} = 6 \times 10^{11}$ GeV, the isocurvature starts at $k_s = 100 \text{ Mpc}^{-1}$.
- The matter density perturbation exceed linear regime before z = 10 for the isocurvature perturbation ⇒Structures form earlier.

Halo collapses before

- The rms density constrast $\sigma_M = \left[\int \delta_M^2(k, z) W_{TH}(kr_M) dk/k\right]^{1/2}$ over the halo mass M at various z assuming isocurvature perturbation for scale $k > 100 \,\mathrm{Mpc}^{-1}$.
- Solid line: With isocurvature perturbation. Dashed line: With only adiabatic perturbation from inflation.
- Halo collapses by *z* when $\sigma_M(z) > \delta_c = 1.68$.
- For $k_s = 100 \text{ Mpc}^{-1}$ ($N_{\text{last}} = 45.7$), $M_{\text{halo}} \sim 10^6 M_{\odot}$ collapses by $z \sim 20$, which won't happen if without isocurvature perturbation.

Leptogenesis via the Relaxation of Higgs and other Scalar Fields (slide 30)

Summary

- During inflation, scalar fields can obtain large VEVs through quantum fluctuation.
- Relaxation of the large VEV generally happens during the reheating after inflation.
- Through the derivative coupling between the scalar field and lepton current, leptogenesis can be possible, explaining the matter-antimatter asymmetry in the universe.
- This can generate additional baryonic isocurvature perturbations, which is not constrainted in the small angular scale by CMB observation.
- Isocurvature perturbation in small scale can then lead to first star forming earlier than what is expected from ΛCDM.
- This can be the origin of the excess in CIB fluctuations.

Thank you for your attention!

イロト イポト イヨト イヨト

Backup slide: parameter space for pseudoscalar case

Leptogenesis via the Relaxation of Higgs and other Scalar Fields (slide 32)

PACIFIC 2016