# RADIATIVE NEUTRINO MASS GENERATION: Models, Flavour & the LHC

Ray Volkas School of Physics The University of Melbourne

ARC Centre of Excellence for Particle Physics at the Terascale

PACIFIC 2016, Moorea



- **1.** Intro: see-saw vs radiative  $\nu$  mass
- 2. Models: opening up d=7 operators
- 3. LHC: constraints from Run 1 (on a new model)
- 4. Flavour: bounds and prospects
- 5. Final remarks

## **1.** Intro: see-saw vs radiative $\nu$ mass

 $\Delta$  L=2 SM effective operators can be used to systematically study models of Majorana neutrino mass generation.

These have mass dimension d = 5, 7, 9, ...

At d = 5, there is only the Weinberg operator: LLHH

It gives neutrino mass directly, via the see-saw formula  $m_{\nu} \sim \langle H \rangle^2 / M$ 

Underlying renormalisable theories yielding LLHH are constructed by "opening up" the operator. The type-1,2,3 see-saw models are the minimal, tree-level ways to open up LLHH.

Other  $\triangle$  L=2 SM effective operators require external legs (quarks, additional leptons) to be closed off in loops to give neutrino mass: radiative neutrino mass generation.

The effective operator is still minimally opened up at tree-level.



diagram

The exotics (k, h in this case) can be searched for at the LHC.



# Mass limits on charge-2 scalar. Depends on BR assumption. Early Run 1 data.



**Table 1** Lower mass limits at 95% CL on  $H^{\pm\pm}$  bosons decaying to  $e^{\pm}e^{\pm}$ ,  $\mu^{\pm}\mu^{\pm}$ , or  $e^{\pm}\mu^{\pm}$  pairs. Mass limits are derived assuming branching ratios to a given decay mode of 100%, 33%, 22%, or 11%. Both expected and observed limits are given.

|                                                             | $  e^{\pm}e^{\pm}$                            |      | $\parallel \mu^{\pm}$ | $\mu^{\pm}$ | $  e^{\pm}$ | $e^\pm\mu^\pm$ |  |
|-------------------------------------------------------------|-----------------------------------------------|------|-----------------------|-------------|-------------|----------------|--|
|                                                             | exp.                                          | obs. | exp.                  | obs.        | exp.        | obs.           |  |
| 100%                                                        | 407                                           | 409  | 401                   | 398         | 392         | 375            |  |
| 33%                                                         | 318                                           | 317  | 317                   | 290         | 279         | 276            |  |
| 22%                                                         | 274                                           | 258  | 282                   | 282         | 250         | 253            |  |
| 11%                                                         | 228                                           | 212  | 234                   | 216         | 206         | 190            |  |
|                                                             |                                               |      |                       |             |             |                |  |
| $\mathbf{BR}(H_R^{\pm\pm} \to \ell^{\pm} \ell'^{\pm}) \mid$ | 95% CL lower limit on $m(H_R^{\pm\pm})$ [GeV] |      |                       |             |             |                |  |
|                                                             | $e^{\pm}e^{\pm}$                              |      | $\mid \mu^{\pm}$      | $\mu^{\pm}$ | $  e^{\pm}$ | $u^{\pm}$      |  |
|                                                             | exp.                                          | obs. | exp.                  | obs.        | exp.        | obs.           |  |
| 100%                                                        | 329                                           | 322  | 335                   | 306         | 303         | 310            |  |
| 33%                                                         | 241                                           | 214  | 247                   | 222         | 220         | 195            |  |
| 22%                                                         | 203                                           | 199  | 223                   | 212         | 194         | 187            |  |
| 11%                                                         | 160                                           | 151  | 184                   | 176         | 153         | 151            |  |

BR $(H_L^{\pm\pm} \to \ell^{\pm} \ell'^{\pm}) \parallel 95\%$  CL lower limit on  $m(H_L^{\pm\pm})$  [GeV]

## **ATLAS** mass limits as function of **BR**



 $m(H^{\pm\pm})$  [GeV]

### **Comment on naturalness of the type-1 see-saw model:**



Standard hierarchical, thermal leptogenesis:

Bound for N<sub>1</sub> leptogen  $m_N > 5 \times 10^8 - 2 \times 10^9 \text{ GeV}$ 

Davidson, Ibarra Giudice et al

What about in the full, three-flavour case, and for N1-, N2- and N3-leptogenesis?

Clarke, Foot, RV: PRD91 (2015) 073009 arXiv:1502.01352

$$\begin{split} \left| \delta \mu^2 \right| &\approx \frac{1}{4\pi^2} \frac{1}{\langle \phi \rangle^2} \mathrm{Tr} \begin{bmatrix} \mathcal{D}_m R \mathcal{D}_M^3 R^\dagger \end{bmatrix}. \\ & \text{Diag light nu} \\ & \text{mass matrix} \\ & \text{matrix} \\ & \text{matrix} \\ & \text{matrix} \\ & \text{mass matrix} \\ & \text{No dependence on PMNS matrix} \\ & \text{in the appropriate basis.} \\ \end{split}$$

**Naturalness** criterion:

$$\frac{1}{4\pi^2} \frac{1}{\langle \phi \rangle^2} M_j^3 \sum_i m_i |R_{ij}|^2 < 1 \text{ TeV}^2,$$
  
$$\Rightarrow M_j \lesssim 2.9 \times 10^7 \text{ GeV} \left(\frac{0.05 \text{ eV}}{\sum_i m_i |R_{ij}|^2}\right)^{\frac{1}{3}}$$
  
Vissani

**3-flavour effects** 



*Initial dominant* N<sub>1</sub> *abundance case is marginal.* 



#### One possible minimal modification: 2 Higgs doublets



# 2. Models: opening up d=7 operators

# Assumption: SM gauge group and multiplets

Babu & Leung, NPB619, 667 (2001) de Gouvêa & Jenkins, PRD77, 013008 (2008) W. Winter et al, recent papers

**Classification criteria:** 

- mass dimension = d
- number of fermion fields = f

Pre-2015 analyses

B=Babu J=Julio L=Leung Z=Zee d=detailed, b=brief

| d | f | operator(s)                          | scale from $m_v$ (TeV)   | model(s)?                                 | comments                            |
|---|---|--------------------------------------|--------------------------|-------------------------------------------|-------------------------------------|
| 7 | 4 | $O_2 = LLLe^c H$                     | <b>10</b> <sup>7</sup>   | Z (1980, <mark>d</mark> )                 | pure-leptonic,1-<br>loop, ruled out |
|   |   | $O_3 = LLQd^c H(2)$                  | <b>10</b> <sup>5,8</sup> | BJ (2012, <mark>d</mark> )<br>BL (2001,b) | 2012 = 2-loop<br>2001 = 1-loop      |
|   |   | $O_4 = LL\bar{Q}\bar{u}^c H(2)$      | <b>10</b> <sup>7,9</sup> | BL (2001,b)                               | 1-loop<br>vector leptoquarks        |
|   |   | $O_8 = L\bar{e}^c\bar{u}^cd^cH$      | <b>10</b> <sup>4</sup>   | BJ (2010, <mark>d</mark> )                | 2-loop                              |
| 9 | 4 | $O_5 = LLQd^c HH\bar{H}$             | <b>10</b> <sup>6</sup>   | BL (2001,b)                               | 1-loop                              |
|   |   | $O_6 = LL\bar{Q}\bar{u}^c HH\bar{H}$ | <b>10</b> <sup>7</sup>   |                                           |                                     |
|   |   | $O_7 = LQ\bar{e}^c\bar{Q}HHH$        | <b>10</b> <sup>2</sup>   |                                           |                                     |
|   |   | $O_{61} = (LLHH)(Le^c\bar{H})$       | <b>10</b> <sup>5</sup>   |                                           | purely leptonic                     |
|   |   | $O_{66} = (LLHH)(Qd^c\bar{H})$       | <b>10</b> <sup>6</sup>   |                                           |                                     |
|   |   | $O_{71} = (LLHH)(Qu^cH)$             | <b>10</b> <sup>7</sup>   | BL (2001,b)                               | 1-loop                              |

A=Angel et al dGJ=deGouvêa+Jenkins

| d | f | operator(s)                                            | scale from m∨<br>(TeV)            | model(s)?                                | comments                                |
|---|---|--------------------------------------------------------|-----------------------------------|------------------------------------------|-----------------------------------------|
| 9 | 6 | $O_9 = LLLe^cLe^c$                                     | <b>10</b> <sup>3</sup>            | BZ (1988, <mark>d</mark> )               | 2-loop, purely leptonic                 |
|   |   | $O_{10} = LLLe^cQd^c$                                  | <b>10</b> <sup>4</sup>            | BL (2001,b)                              | two 2-loop models                       |
|   |   | $O_{11} = LLQd^cQd^c(2)$                               | <mark>30</mark> , 10 <sup>4</sup> | BL (2001,b)<br>A (2013, <mark>d</mark> ) | three 2-loop models<br>one 2-loop model |
|   |   | $O_{12} = LL\bar{Q}\bar{u}^c\bar{Q}\bar{u}^c(2)$       | <b>10</b> <sup>4,7</sup>          | BL (2001,b)                              | 2-loop                                  |
|   |   | $O_{13} = LL\bar{Q}\bar{u}^c Le^c$                     | <b>10</b> <sup>4</sup>            |                                          |                                         |
|   |   | $O_{14} = LL\bar{Q}\bar{u}^c Q d^c(2)$                 | <b>10</b> <sup>3,6</sup>          |                                          |                                         |
|   |   | $O_{15} = LLLd^c \bar{L}\bar{u}^c$                     | <b>10</b> <sup>3</sup>            |                                          | 3-loop                                  |
|   |   | $O_{16} = LL\bar{e}^c d^c \bar{e}^c \bar{u}^c$         | 2                                 |                                          | 3-loop                                  |
|   |   | $O_{17} = LLd^c d^c \bar{d}^c \bar{u}^c$               | 2                                 |                                          | 3-loop                                  |
|   |   | $O_{18} = LLd^c u^c \bar{u}^c \bar{u}^c$               | 2                                 |                                          | 3-loop                                  |
|   |   | $O_{19} = LQd^c d^c \bar{e}^c \bar{u}^c$               | 1                                 | dGJ (2008,b)                             | 3-loop                                  |
|   |   | $O_{20} = L d^c \bar{Q} \bar{u}^c \bar{e}^c \bar{u}^c$ | 40                                |                                          | 3-loop                                  |

In Cai, Clarke, Schmidt, RV JHEP 1502 (2015) 161, arXiv:1410.0689 we constructed all minimal models from d = 7 operators:

$$\mathcal{O}_1' = LL\tilde{H}HHH$$

 $\mathcal{O}_2 = LLL\bar{e}H, \quad \mathcal{O}_3 = LLQ\bar{d}H, \quad \mathcal{O}_4 = LLQ^{\dagger}\bar{u}^{\dagger}H, \quad \mathcal{O}_8 = L\bar{d}\bar{e}^{\dagger}\bar{u}^{\dagger}H$ 

**Scalar-only extension:** 



| Scalar    | Scalar     | Operator                  |                    |
|-----------|------------|---------------------------|--------------------|
| (1,2,1/2) | (1,1,1)    | <b>O</b> <sub>2,3,4</sub> | Zee                |
| (3,2,1/6) | (3,1,-1/3) | <b>O</b> <sub>3,8</sub>   | Babu, Leung, Julio |
| (3,2,1/6) | (3,3,-1/3) | <b>O</b> <sub>3</sub>     |                    |

#### Scalar + fermion extension:



| Dirac fermion | Scalar     | Operator                |                          |
|---------------|------------|-------------------------|--------------------------|
| (1,2,-3/2)    | (1,1,1)    | 02                      |                          |
| (3,2,-5/6)    | (1,1,1)    | O <sub>3</sub>          |                          |
| (3,1,2/3)     | (1,1,1)    | <b>O</b> <sub>3</sub>   |                          |
| (3,1,2/3)     | (3,2,1/6)  | <b>O</b> <sub>3</sub>   | Babu, Julio              |
| (3,2,-5/6)    | (3,1,-1/3) | <b>O</b> <sub>3,8</sub> | Cai, Clarke, Schmidt, RV |
| (3,2,-5/6)    | (3,3,-1/3) | <b>O</b> <sub>3</sub>   | - this talk              |
| (3,3,2/3)     | (3,2,1/6)  | <b>O</b> <sub>3</sub>   |                          |
| (3,2,7/6)     | (1,1,1)    | <b>O</b> <sub>4</sub>   |                          |
| (3,1,-1/3)    | (1,1,1)    | <b>O</b> <sub>4</sub>   |                          |
| (3,2,7/6)     | (3,2,1/6)  | <b>O</b> <sub>8</sub>   |                          |
| (1,2,-1/2)    | (3,2,1/6)  | <b>O</b> <sub>8</sub>   |                          |



Scalar + fermion extension:

| Dirac fermion | Scalar    | Operator               |
|---------------|-----------|------------------------|
| (1,3,-1)      | (1,4,3/2) | <b>O'</b> <sub>1</sub> |

## 3. LHC: constraints from Run 1 (on a new model)

#### $O_3 = LLQd^{c}H \mod (subdominant O_8 \ contribution)$



Impose B-conservation to forbid proton-decay interactions allowed by the gauge symmetry:  $QQ\phi^{\dagger}$  and  $\bar{d}\bar{u}\phi$ 

#### **Neutrino mass generation:**



Prop to down quark masses

- dominated by b quark
- for simplicity, have zero mixing
- of  $\chi$  with 1<sup>st</sup>, 2<sup>nd</sup> gen quarks

$$(m_{\nu})_{ij} = \frac{3}{16\pi^2} \left( Y_{i3}^{LQ\phi} Y_j^{L\bar{\chi}\phi} + (i \leftrightarrow j) \right) m_{bB} \frac{m_b m_B}{m_{\phi}^2 - m_B^2} \ln \frac{m_B^2}{m_{\phi}^2}$$
$$m_{bB} = Y_3^{\bar{d}\chi H} v / \sqrt{2} \qquad (m_b \ll m_B, m_{\phi})$$



#### One almost massless nu, and two massive

$$m_{\nu} = a_{+}a_{-}^{T} + a_{-}a_{+}^{T}$$

outer product of vectors

$$a_{\pm}^{\rm NO} = \frac{\zeta^{\pm 1}}{\sqrt{2}} \left(\sqrt{m_2}u_2^* \pm i\sqrt{m_3}u_3^*\right),$$

$$a_{\pm}^{\rm IO} = \frac{\zeta^{\pm 1}}{\sqrt{2}} \left( \sqrt{m_1} u_1^* \pm i \sqrt{m_2} u_2^* \right)$$

$$U_{\rm PMNS} = (u_1, u_2, u_3)$$

Set lightest nu mass and all PMNS phases to zero.

 $\zeta$  is a Casas-Ibarra-like, complex parameter not determined by low-energy parameters CMS search for vector-like B quark (no Y search has been done):

 $B \to Zb, B \to Hb$  dominate



 $m_B \ge 620 \text{ GeV}$ 

#### Leptoquark searches:

#### Pair production: gg fusion and q q-bar annihilation. Colour charge only, so $\sigma(pp \rightarrow \phi \phi)$ depends on m<sub> $\phi$ </sub> only. $\sigma(pp \rightarrow \phi \phi) = 82$ (23.5) fb for m<sub> $\phi</sub> = 500$ (600) GeV.</sub>

**Decays**:

 $\begin{array}{ll} \phi \rightarrow Lt, & b\nu & L \equiv (e,\mu,\tau) \\ \text{Consider } \mathbf{m}_{\mathbf{Y},\mathbf{B}} \textit{>>} \mathbf{m}_{\phi} \text{ only, so LY, B} \cup \text{ final states not possible} \end{array}$ 

$$\Gamma(\phi \to Lt) = \frac{m_{\phi}}{8\pi} \left| Y_{L3}^{LQ\phi} \right|^2 f(m_{\phi}, m_L, m_t)$$

Also give nu mass

$$\Gamma(\phi \to \nu_L b) \simeq \frac{m_\phi}{8\pi} \left( \left| Y_{L3}^{LQ\phi} c_2 \right|^2 + \left| Y_L^{L\bar{\chi}\phi} s_1 \right|^2 \right) f(m_\phi, m_{\nu_L}, m_b)$$

BRs depend on  $|\zeta|$ . Because of connection to nu mass generation, they are quite constrained.

Next slide: region B (Br( $\phi \rightarrow b \cup$ )~100%) and region T (Br( $\phi \rightarrow b \cup$ )<100%)



### 4. Flavour: bounds and prospects

Same model, flavour violation constraints:  $\mu \to e \gamma, \ \mu \to e e e, \ \mu N \to e N$ 



Blue (B) allowed region has Br( $\phi \rightarrow b \cup$ )~100% Red (T) allowed region has Br( $\phi \rightarrow b \cup$ )<100%

 $BR(\mu \to e\gamma) < 5.7 \times 10^{-13}$ 

 $BR(\mu \to eee) < 10^{-12}$ 

 $BR(\mu Au \rightarrow eAu) < 7 \times 10^{-13}$ 

-----  ${
m BR}(\mu{
m Ti} 
ightarrow e{
m Ti}) \sim 10^{-16}$  reach of Mu2E, COMET

Scalar leptoquarks, which abound in radiative nu mass models, are of considerable interest for the following flavour anomalies:

$$R_K \equiv \frac{\Gamma(\bar{B} \to \bar{K}\mu^+\mu^-)}{\Gamma(\bar{B} \to \bar{K}e^+e^-)}$$

**b** → s transition 2.6 σ discrepancy

SM :  $1.0003 \pm 0.0001$  LHCb :  $0.745^{+0.090}_{-0.074} \pm 0.036$ 

$$R_{D^{(*)}} \equiv \frac{\Gamma(\bar{B} \to D^{(*)} \tau \bar{\nu})}{\Gamma(\bar{B} \to D^{(*)} \ell \bar{\nu})} \qquad \text{b} \twoheadrightarrow \text{c transition}$$

$$\begin{split} & \text{SM}: \ R_D \approx 0.30 \pm 0.01, \quad R_{D^*} = 0.252 \pm 0.003 \\ & \text{BaBar}: \ R_D = 0.440 \pm 0.058 \pm 0.042, \quad R_{D^*} = 0.332 \pm 0.024 \pm 0.018 \\ & \text{Belle: between BaBar \& SM; \ LHCb \ R_{D^*} \text{ similar to BaBar} \end{split}$$

For example, the leptoquark used earlier:  $\phi \sim (\bar{3}, 1, 1/3)$ has the couplings  $d_i \nu_j \phi$ ,  $u_i \ell_j \phi$ 

For nu mass, b-quark couplings dominate.

But we can switch on  $c au\phi$  involving 2<sup>nd</sup> family.

Needed to fit central value of  $R_{D(*)}$  (tree-level process)

Also:

$$s\nu_i\phi$$
  $\mu u_i\phi$ 

are of relevance to  $R_{K}$  at 1-loop level – work in progress

See, e.g. Bauer & Neubert, 1511.01900 Bečirević et al, 1608.07583

### More analysis is needed and underway!

# 5. Final remarks

- 1.  $\triangle$  L=2 effective operators are a useful organising principle for Majorana nu mass models
- 2. Exotic scalars and fermions are constrained by LHC searches.
- 3. There is interesting flavour-violation pheno in these models for both leptons and quarks.