Modeling the circumstellar interaction in the gamma-ray binary LS I +61 303

Atsuo T. Okazaki (Hokkai-Gakuen University, Japan)

In collaboration with Itumeleng Monageng (U. Cape Town, South Africa), Yuki Moritani (IPMU, Japan), and Vanessa McBride (U. Cape Town, South Africa)

Talk Outline

- 1. Gamma-ray binaries
- 2. Be stars
- 3. Gamma-ray binary LS I +61 303 and superorbital activity
- 4. Long-term variation in Be-disk geometry in LS I +61 303
- 5. Dynamic modeling of LS I +61 303
- 6. Concluding remarks

1. VHE gamma-ray binaries

Ground-based VHE gamma-ray astronomy

Imaging Atmospheric Cherenkov Telescopes (H.E.S.S., VERITAS, and MAGIC)

VHE (TeV) gamma-ray sources

(VHE) gamma-ray binaries

- Binaries with spectral energy distribution (SED) dominated by gamma-ray emission
- Only 6 systems, all of which consist of an OB star and a compact object
 - > 3 systems with a Be (B-type emission) star
 - > 3 systems with an O star
- Nature of compact object established only for one system (PSR B1259-63 with a non-accreting pulsar)
- Two competing scenarios for other systems:
 Pulsar wind scenario vs. Microquasar scenario

High energy emission in PW scenario

Collision shocks between a relativistic pulsar wind and a stellar wind (and/or a Be disk)

High energy emission in MQ (accretion/ejection) scenario

Accretion Relativistic jet Leptonic model: IC by relativistic electrons) gamma-rays Hadronic model: pp interactions in neutral pions gamma-rays

System	Scenario	Optical star	P _{orb} (d)	е
PSR B1259-63	PW	Be	1237	0.87
LS I +61 303	?	Be	26.5	0.54
HESS J0632+057	?	Be	315	0.83
LS 5039	?	Ο	3.9	0.35
1FGL J1018.6- 5856	?	0	16.6	low
CXOUJ053600.0- 673507	?	0	10.3	?

2. Be stars

Be star: schematic diagram

Viscous decretion disk model for Be stars (Lee, Saio & Osaki 1991)

Observations support an idea that Be disks are formed by the effect of viscosity

Ejection of gas from the stellar equatorial region, at the Keplerian rotation velocity

- Outward drift by viscosity

Formation of a geometrically thin, Keplerian disk, where radial flow is very subsonic

Emission line profiles

Line profiles depend on:

- viewing angle,
- disk size
- disk density
- disk eccentricity
- whether disk is planar or warped

(Rivinius+ 2013)

Gamma-ray binaries with Be stars

 Gas pressure in Be disk >> ram pressure of Be wind
 High-energy emission arises via the interaction between Be disk and compact object

Density distribution on orbital plane of PSR B1259-63 (Porb=1237d, e=0.87). Disk misaligned by 45 deg. (Takata+ 2012)

3. Gamma-ray binary LS I +61 303 and superorbital activity

Observed features

- Be star + compact object of unknown nature (P_{orb}=26.5 d, e=0.54)
- TeV emission detected only around apastron previously, while it peaks before periastron recently
- HE (>100MeV) gamma-ray flux peaked after periastron before Mar. 2009, while it is ~const. after Mar. 2009
- radio maps is jets vs. PW shocks
- Weak X-rays (<10³⁴ erg/s) Arg Radiatively inefficient accretion flow vs. no accretion

Superorbital modulation in LS I +61 303

- Radio and X-ray flares modulates on a superorbital 1667 d (>> P_{orb}) timescale
- Optical brightness and disk emission also modulates on same timescale

Superorbital modulation in X-ray flare phase

(Chernyakova+ 2012)

Superorbital modulation in radio flare phase

(Chernyakova+ 2012)

140

Superorbital modulation in gamma-rays?

Orbital modulation in optical light curve (left) and EW(Halpha) (right) modulates in superorbital timescale

Superorbital modulation in LS I +61 303

- Radio and X-ray flares modulates on a superorbital 1667 d (>> P_{orb}) timescale
- Optical brightness and disk emission also modulates on same timescale

What causes the superorbital modulation? What is/are regularly changing? Disk size? Disk eccentricity? Other disk quantities?

4. Long-term variation in Be-disk geometry in LS I +61 303

Particle model for the Halpha emitting region

Basic equations

orbit:
$$r_{\rm p} = \frac{a_{\rm p} \left(1 - e_{\rm p}^2\right)}{1 + e_{\rm p} \cos f}$$
 true anomaly
 \Rightarrow radial velocity: argument of pericenter
 $v_{\rm rad} = \sqrt{\frac{GM_1}{a_{\rm p}(1 - e_{\rm p}^2)}} \sin i \left[\cos(\omega + f) + e_{\rm p} \cos \omega\right]$
 \Rightarrow Blue- and red- peak velocities of a line profile:
 $v_{\rm blue, red} = \sqrt{\frac{GM_1}{a_{\rm p}(1 - e_{\rm p}^2)}} (\mp 1 + e_{\rm p} \cos \omega) \sin i$

$$\Rightarrow \quad \text{eccentricity:} \ e_{\rm p} = \frac{v_{\rm red} + v_{\rm blue}}{v_{\rm red} - v_{\rm blue}} \sec \omega$$

Variations in observed peak velocities in 2007-2015

Blue: mid-dispersion spectra Red: high-dispersion spectra

Eccentricity vs. argument of pericenter

Disk size ~ constant

Fit with e=const disk (precessing disk) is poor

Disk eccentricity varies at ~superorbital period!

This suggests that the Be-disk eccentricity and pericenter argument vary simultaneously.

5. Dynamic modeling of LS I +61 303

What is/are responsible for the long-term change in the disk eccentricity and argument of pericenter?

- Variation in the argument of disk pericenter
 Tidal precession?
- Variation in the disk eccentricity
 - Kozai-Lidov mechanism (exchange between inclination and eccentricity) for a highly misaligned disk?

Ideally, simulations with PW should be done to study both the PW and tidal effects on Be disk

But, running sims with PW for >100 P_{orb} is impractical

PACIFIC 2016 (Moorea, 14 September 2016)

SPH simulation of the tidal interaction between the compact object and the Be disk in LS I +61 303

Disk eccentricity varies, but no precession occurs

6. Concluding remarks

Superorbital modulation in LS I +61 303 is a ~30 years old puzzle, but now

- A simple model to analyze the Be-disk geometry shows that the superorbital modulation in LS I +61 303 is likely due to the variation in the disk eccentricity coupled with the disk precession.
- Unfortunately, however, 3D SPH simulations failed to confirm this conclusion.
- This failure may be the lack of resolution of the simulations. Simulations with much more particles are needed.
- Including the effect of PW is also a next step.