Dark matter boson star collisions based on [arXiv:1608.00547]

E. Cotner¹

¹Department of Physics and Astronomy University of California, Los Angeles

PACIFIC 2016

Outline

What's a boson star?

Motivation for BS dark matter

- Matches observations
- Resolves outstanding problems with CDM
- Boson star properties
 - Radius
 - Maximum mass
- 4 Effective potential analysis
 - Motivation/derivation
 - Results/predictions
- 5 Numerical results
 - Effect of kinetic energy
 - Repulsive collisions
 - Tidal effects

What's a boson star?

 Classical scalar field (either real or complex) bound by gravity

What's a boson star?

- Classical scalar field (either real or complex) bound by gravity
- Scalar field is a Bose-Einstein condensate, needs to be sufficiently "cold":

$$kT < \frac{2\pi}{m} \left(\frac{n}{\zeta(3/2)}\right)^{2/3} \approx$$

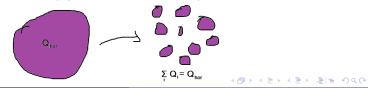
578 $\left(\frac{10^{-9} \text{ eV}}{m}\right)^{5/3} \left(\frac{\rho}{0.3 \text{ GeV/cm}^3}\right)^{2/3} \text{ GeV}$

What's a boson star?

- Subclassification based on form of scalar potential:
 - $V(\phi) = m^2 |\phi|^2 \rightarrow$ "mini boson star"
 - $V(\phi) = m^2 |\phi|^2 + \lambda |\phi|^4 \rightarrow$ "self-interacting boson star"
 - $V(\phi) \omega^2 |\phi|^2 < 0 | \exists \omega : 0 < \omega < m \rightarrow$ "soliton star" (Q-ball in absence of gravity)

What's a boson star?

- Subclassification based on form of scalar potential:
 - $V(\phi) = m^2 |\phi|^2 \rightarrow$ "mini boson star"
 - $V(\phi) = m^2 |\phi|^2 + \lambda |\phi|^4 \rightarrow$ "self-interacting boson star"
 - $V(\phi) \omega^2 |\phi|^2 < 0 | \exists \omega : 0 < \omega < m \rightarrow$ "soliton star" (Q-ball in absence of gravity)
- Could be formed from variety of processes such as fragmentation of a charged scalar condensate, standard growth of density perturbations in early universe



Equations of motion

Start with scalar field coupled to gravity

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa} R + \nabla_{\mu} \varphi^{\dagger} \nabla^{\mu} \varphi - m^2 |\varphi|^2 - \lambda |\varphi|^4 \right]$$

Equations of motion

Start with scalar field coupled to gravity

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa} R + \nabla_\mu \varphi^\dagger \nabla^\mu \varphi - m^2 |\varphi|^2 - \lambda |\varphi|^4 \right]$$

• Take non-relativistic limit and factor out harmonic time-dependence due to particle mass $\psi = \frac{1}{\sqrt{2m}}e^{-imt}\varphi$, results in equations of motion (Schrödinger-Poisson system):

$$egin{aligned} \dot{u} &= -rac{1}{2m}
abla^2\psi + rac{\lambda}{8m^2}|\psi|^2\psi + m\phi\psi\
abla^2\phi &= 4\pi Gm|\psi|^2 \end{aligned}$$

6

Matches observations

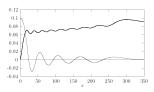
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Outline

Matches observations Resolves outstanding problems with CDM

Rotation curves

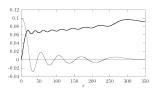
- Galactic-scale boson stars can provide rotation curves with correct long-distance behavior [Lee, Koh, arXiv:hep-ph/9507385]
 - Requires very small mass: $m \sim 10^{-23} \text{ eV}$

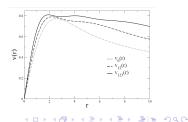


Matches observations Resolves outstanding problems with CDM

Rotation curves

- Galactic-scale boson stars can provide rotation curves with correct long-distance behavior [Lee, Koh, arXiv:hep-ph/9507385]
 - Requires very small mass: $m \sim 10^{-23} \text{ eV}$
- Superpositions of multiply-excited states can provide even better fits [Ureña-Lopez, Bernal, arXiv:1008.1231]

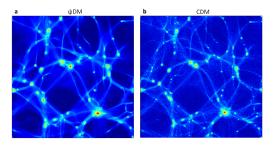




Matches observations Resolves outstanding problems with CDM

Structure formation

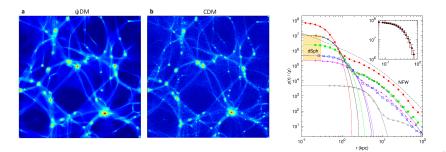
 Boson stars form same large-scale structure as ∧CDM [Schive, Chiueh, Broadhurst, arXiv:1406.6586]



Matches observations Resolves outstanding problems with CDM

Structure formation

- Boson stars form same large-scale structure as ACDM [Schive, Chiueh, Broadhurst, arXiv:1406.6586]
- Reproduces NFW-like density profile with cored center



Matches observations Resolves outstanding problems with CDM

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Outline

2 Motivation for BS dark matter Matches observations Resolves outstanding problems with CDM Radius Maximum mass Motivation/derivation Results/predictions Effect of kinetic energy Tidal effects Attractive instability

Matches observations Resolves outstanding problems with CDM

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Cusp-core problem: resolution by galactic-scale BS

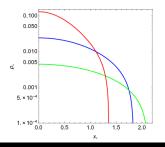
 Galactic scale boson stars naturally have non-singular density profiles due to uncertainty principle and wave function spreading

Matches observations Resolves outstanding problems with CDM

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ ■ 𝒴 𝒫 𝔅 𝔅

Cusp-core problem: resolution by galactic-scale BS

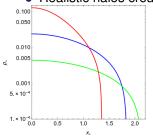
- Galactic scale boson stars naturally have non-singular density profiles due to uncertainty principle and wave function spreading
 - Single stars have core-like profile but sharp cutoff [Eby, Kouvaris, Nielsen, Wijewardhana, arXiv:1511.04474]

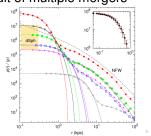


Matches observations Resolves outstanding problems with CDM

Cusp-core problem: resolution by galactic-scale BS

- Galactic scale boson stars naturally have non-singular density profiles due to uncertainty principle and wave function spreading
 - Single stars have core-like profile but sharp cutoff [Eby, Kouvaris, Nielsen, Wijewardhana, arXiv:1511.04474]
 Realistic halos created as result of multiple mergers

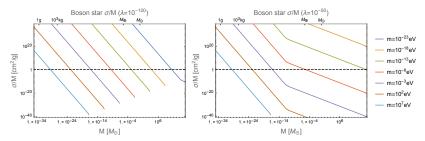




Matches observations Resolves outstanding problems with CDM

Cusp-core problem: resolution by SIDM-like BS

 Sub-galactic scale boson stars act like SIDM with a geometric cross section σ ~ πR² [EC, unpublished]

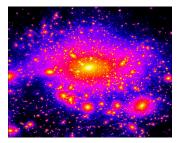


<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> のへの

Matches observations Resolves outstanding problems with CDM

Missing satellite problem

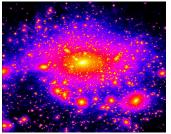
 Simulations of CDM vastly overpredict number of satellite galaxies

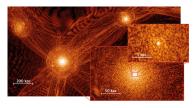


Matches observations Resolves outstanding problems with CDM

Missing satellite problem

- Simulations of CDM vastly overpredict number of satellite galaxies
- Simulations of scalar dark matter predict small number of satellites
 - Instead have large amount of small density fluctuations



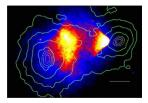


◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

Matches observations Resolves outstanding problems with CDM

Apparent cluster merger contradictions?

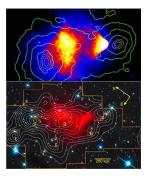
 Bullet cluster shows halos pass right through each other



Matches observations Resolves outstanding problems with CDM

Apparent cluster merger contradictions?

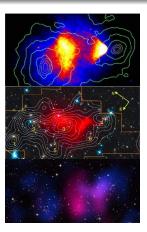
- Bullet cluster shows halos pass right through each other
- Abell 520 shows repulsive or drag force during infall



Matches observations Resolves outstanding problems with CDM

Apparent cluster merger contradictions?

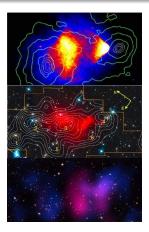
- Bullet cluster shows halos pass right through each other
- Abell 520 shows repulsive or drag force during infall
- Musket ball cluster shows slowing of halo wrt baryons after first passing



Matches observations Resolves outstanding problems with CDM

Apparent cluster merger contradictions?

- Bullet cluster shows halos pass right through each other
- Abell 520 shows repulsive or drag force during infall
- Musket ball cluster shows slowing of halo wrt baryons after first passing
- Boson star dark matter halos can pass through, merge, or scatter inelastically, depending on kinetic energy and relative velocity



Radius Maximum mass

Outline

Matches observations Resolves outstanding problems with CDM 3 Boson star properties Radius Maximum mass Motivation/derivation Results/predictions Effect of kinetic energy Repulsive collisions Tidal effects Attractive instability

Radius Maximum mass

Variational method and characteristic radius

 Use the Green's function for the Poisson equation to solve for φ, then calculate expectation value of Hamiltonian

$$\langle H \rangle = \frac{1}{2m} \int d^3 x \, |\nabla \psi|^2 + \frac{\lambda}{16m^2} \int d^3 x \, |\psi|^4$$
$$- \frac{Gm^2}{2} \int d^3 x \int d^3 x' \, \frac{|\psi(\mathbf{x})|^2 |\psi(\mathbf{x}')|^2}{|\mathbf{x} - \mathbf{x}'|}$$

Radius Maximum mass

Variational method and characteristic radius

 Use the Green's function for the Poisson equation to solve for φ, then calculate expectation value of Hamiltonian

$$\langle H \rangle = \frac{1}{2m} \int d^3 x \, |\nabla \psi|^2 + \frac{\lambda}{16m^2} \int d^3 x \, |\psi|^4$$
$$- \frac{Gm^2}{2} \int d^3 x \int d^3 x' \, \frac{|\psi(\mathbf{x})|^2 |\psi(\mathbf{x}')|^2}{|\mathbf{x} - \mathbf{x}'|}$$

• Use variational method with Gaussian variational state $\psi \sim e^{-(r/R)^2}$ to find approximate ground state radius R

$$R = \frac{3\sqrt{\pi}}{2Gm^3N} \left(1 + \sqrt{1+\xi}\right) \quad \xi \equiv \frac{1}{12\pi^2} \lambda Gm^2 N^2$$

• [Chavanis, arXiv:1103.2050],

Radius Maximum mass

Variational method and characteristic radius

 Use the Green's function for the Poisson equation to solve for φ, then calculate expectation value of Hamiltonian

$$\langle H \rangle = \frac{1}{2m} \int d^3 x \, |\nabla \psi|^2 + \frac{\lambda}{16m^2} \int d^3 x \, |\psi|^4$$
$$- \frac{Gm^2}{2} \int d^3 x \int d^3 x' \, \frac{|\psi(\mathbf{x})|^2 |\psi(\mathbf{x}')|^2}{|\mathbf{x} - \mathbf{x}'|}$$

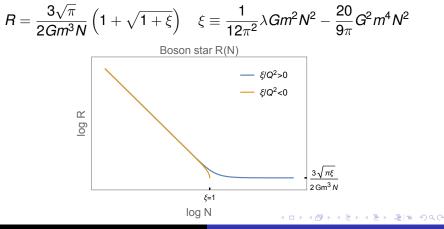
• Use variational method with Gaussian variational state $\psi \sim e^{-(r/R)^2}$ to find approximate ground state radius R

$$R = \frac{3\sqrt{\pi}}{2Gm^3N} \left(1 + \sqrt{1 + \xi}\right) \quad \xi \equiv \frac{1}{12\pi^2} \lambda Gm^2 N^2 - \frac{20}{9\pi} G^2 m^4 N^2$$

[Chavanis, arXiv:1103.2050], [EC, unpublished]

Radius Maximum mass

Boson star properties: radius



Radius Maximum mass

Boson star properties: radius

Results of variational method gives

$$R = \frac{3\sqrt{\pi}}{2Gm^3N} \left(1 + \sqrt{1+\xi}\right) \quad \xi \equiv \frac{\lambda Gm^2N^2}{12\pi^2}$$

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Radius Maximum mass

Boson star properties: radius

Results of variational method gives

$$R = \frac{3\sqrt{\pi}}{2Gm^3N} \left(1 + \sqrt{1 + \xi}\right) \quad \xi \equiv \frac{\lambda Gm^2N^2}{12\pi^2}$$

• Weak self-interaction limit ($|\xi| \ll 1$)

$$R \approx \frac{3\sqrt{\pi}}{Gm^2 M} = 0.88 \left(\frac{m}{10^{-9} \text{ eV}}\right)^{-2} \left(\frac{M}{1 \text{ M}_{\odot}}\right)^{-1} \text{ km}$$
$$= 120 \left(\frac{m}{2 \times 10^{-25} \text{ eV}}\right)^{-2} \left(\frac{M}{10^{12} \text{ M}_{\odot}}\right)^{-1} \text{ kpc}$$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

Radius Maximum mass

Boson star properties: radius

• Strong self-interaction limit ($\xi \gg 1$)

$$R \approx rac{1}{4m^2} \sqrt{rac{3\lambda}{G}} = 103 \left(rac{m}{10^{-9} \ {
m eV}}
ight)^{-2} \left(rac{\lambda}{10^{-35}}
ight)^{1/2} \ {
m kpc}$$

Radius Maximum mass

Boson star properties: radius

• Strong self-interaction limit ($\xi \gg 1$)

$$R pprox rac{1}{4m^2} \sqrt{rac{3\lambda}{G}} = 103 \left(rac{m}{10^{-9} \ {
m eV}}
ight)^{-2} \left(rac{\lambda}{10^{-35}}
ight)^{1/2} \ {
m kpc}$$

Can be strongly self-interacting even for extremely small values of the coupling

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

Radius Maximum mass

Boson star properties: radius

• Strong self-interaction limit ($\xi \gg 1$)

$$R pprox rac{1}{4m^2} \sqrt{rac{3\lambda}{G}} = 103 \left(rac{m}{10^{-9} \ {
m eV}}
ight)^{-2} \left(rac{\lambda}{10^{-35}}
ight)^{1/2} \ {
m kpc}$$

- Can be strongly self-interacting even for extremely small values of the coupling
- As $N \to \infty$, *R* approaches constant value

Radius Maximum mass

Outline

Matches observations Resolves outstanding problems with CDM 3 Boson star properties Radius Maximum mass Motivation/derivation Results/predictions Effect of kinetic energy Repulsive collisions Tidal effects Attractive instability

Radius Maximum mass

Boson star properties: maximum mass

• Maximum mass achieved when radius comparable to Schwarzschild radius: $R \approx 2GM$

Radius Maximum mass

Boson star properties: maximum mass

• Maximum mass achieved when radius comparable to Schwarzschild radius: $R \approx 2GM$

$$M_{
m max} \sim \sqrt{rac{3\pi^{1/2}}{2}} rac{M_{
ho}^2}{m} pprox 10^{-1} \left(rac{m}{10^{-9}\,{
m eV}}
ight)^{-1} \,\,{
m M}_\odot \qquad (|\xi|\ll 1)$$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

Radius Maximum mass

Boson star properties: maximum mass

• Maximum mass achieved when radius comparable to Schwarzschild radius: $R \approx 2GM$

$$M_{
m max} \sim \sqrt{rac{3\pi^{1/2}}{2}} rac{M_{
ho}^2}{m} pprox 10^{-1} \left(rac{m}{10^{-9} \ {
m eV}}
ight)^{-1} \ {
m M}_{\odot} \qquad (|\xi| \ll 1)$$

$$M_{
m max} \sim rac{M_{
m p}^3}{8m^2} \sqrt{rac{3\lambda}{\pi}} pprox 10^{32} \left(rac{\lambda}{10^{-6}}
ight)^{1/2} \left(rac{m}{10^{-9}~
m eV}
ight)^{-2} M_{\odot} ~~(\xi \gg 1)$$

Radius Maximum mass

Boson star properties: maximum mass

• Maximum mass achieved when radius comparable to Schwarzschild radius: $R \approx 2GM$

$$M_{
m max} \sim \sqrt{rac{3\pi^{1/2}}{2}} rac{M_{
ho}^2}{m} pprox 10^{-1} \left(rac{m}{10^{-9}\,{
m eV}}
ight)^{-1} \,\,{
m M}_{\odot} \qquad (|\xi| \ll 1)$$

$$M_{
m max} \sim rac{M_{
m p}^3}{8m^2} \sqrt{rac{3\lambda}{\pi}} pprox 10^{32} \left(rac{\lambda}{10^{-6}}
ight)^{1/2} \left(rac{m}{10^{-9}~
m eV}
ight)^{-2} M_{\odot} ~~(\xi \gg 1)$$

$$M_{ ext{max}}\sim rac{3\pi}{\sqrt{2G|\lambda|}}pprox 6.7 imes 10^3 \left(rac{|\lambda|}{10^{-6}}
ight)^{-1/2} M_p \qquad (\xi=-1)$$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

Motivation/derivation Results/predictions

Outline

Matches observations Resolves outstanding problems with CDM Radius Maximum mass Effective potential analysis Motivation/derivation Results/predictions Effect of kinetic energy Tidal effects Attractive instability

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Motivation/derivation Results/predictions

Motivation for effective potential

- Current method of resolving scattering outcome is to perform numerical simulation
 - Time-consuming and computationally expensive
 - Numerical instability makes simulation of strongly self-interacting boson stars intractable

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Motivation/derivation Results/predictions

Motivation for effective potential

- Current method of resolving scattering outcome is to perform numerical simulation
 - Time-consuming and computationally expensive
 - Numerical instability makes simulation of strongly self-interacting boson stars intractable
- Advantages of effective potential:
 - Much less computationally expensive; most of the effective potential can be computed analytically
 - Idea can be generalized to include angular momentum, "electronic" excitations, etc. as extra degrees of freedom

Motivation/derivation Results/predictions

Effective potential derivation

 Calculate expectation value of Hamiltonian in a state which is a superposition of two boson stars at rest, separated by vector d:

$$|\Psi(\mathbf{r})
angle = \mathcal{A}\left[|\psi(\mathbf{r}-\mathbf{d}/2)
angle + e^{ilpha} \left|\psi(\mathbf{r}+\mathbf{d}/2)
angle
ight]$$

• Individual wave functions ψ are variational ground states derived earlier

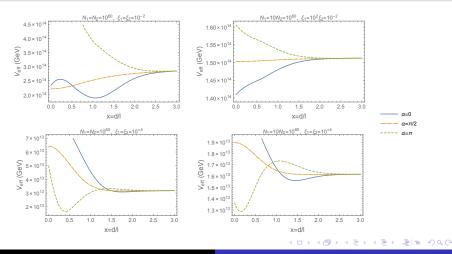
Motivation/derivation Results/predictions

Outline

Matches observations Resolves outstanding problems with CDM Radius Maximum mass Effective potential analysis Motivation/derivation Results/predictions Effect of kinetic energy Tidal effects Attractive instability ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Motivation/derivation Results/predictions

Effective potential results [EC, arXiv:1608.00547]



Motivation/derivation Results/predictions

Effective potential predictions I

- Weak-interaction regime:
 - Attractive/repulsive when in-phase/out-of-phase
 - Could pass through each other if kinetic energy is high enough, but difficult when $\alpha = \pi$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Motivation/derivation Results/predictions

Effective potential predictions I

- Weak-interaction regime:
 - Attractive/repulsive when in-phase/out-of-phase
 - Could pass through each other if kinetic energy is high enough, but difficult when $\alpha = \pi$
- Strong-interaction regime:
 - Repulsive when in phase, only mildly attractive when out of phase

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Motivation/derivation Results/predictions

Effective potential predictions II

- Since phase difference is dynamical variable itself, we expect it to evolve
 - Initially out-of-phase configurations will rotate to a mutual value, then merge

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

Motivation/derivation Results/predictions

Effective potential predictions II

- Since phase difference is dynamical variable itself, we expect it to evolve
 - Initially out-of-phase configurations will rotate to a mutual value, then merge
- Downsides: assumption that boson stars are rigid leads to mispredictions
 - Doesn't capture the effects of "friction" and excitation
 - Doesn't predict tidal effects in asymmetric-mass systems
 - Successful predictions are at best qualitative

Effect of kinetic energy Repulsive collisions Fidal effects Attractive instability

Numerical simulation

 To confirm predictions of effective potential, I ran a number of numerical simulations

28

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Effect of kinetic energy Repulsive collisions Tidal effects Attractive instability

Numerical simulation

- To confirm predictions of effective potential, I ran a number of numerical simulations
- Numerical recipe:
 - Discretized Schrödinger-Poisson equations on a $50 \times 50 \times 50$ grid
 - Transform coordinates to bring spatial infinity to the boundary of the grid and impose Dirichlet conditions
 - Used first-order time, second-order space grid method in transformed coordinates
 - Initial states were superpositions of two boson stars

Effect of kinetic energy Repulsive collisions Tidal effects Attractive instability

Outline

Matches observations Resolves outstanding problems with CDM Radius Maximum mass Motivation/derivation Results/predictions 5 Numerical results Effect of kinetic energy Tidal effects Attractive instability

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Effect of kinetic energy Repulsive collisions Tidal effects Attractive instability

Effect of kinetic energy: low kinetic energy

Effect of kinetic energy Repulsive collisions Tidal effects Attractive instability

Effect of kinetic energy: high kinetic energy

Effect of kinetic energy Repulsive collisions Tidal effects Attractive instability

Outline

Matches observations Resolves outstanding problems with CDM Radius Maximum mass Motivation/derivation Results/predictions 5 Numerical results Effect of kinetic energy Repulsive collisions Tidal effects Attractive instability < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Effect of kinetic energy Repulsive collisions Tidal effects Attractive instability

Repulsive collisions: Weak self-interaction ($\xi = 10^{-2}$), out of phase

<ロ><四><回><回><回><回><回><回><回><回><回><回><0<</p>

Effect of kinetic energy Repulsive collisions Tidal effects Attractive instability

Repulsive collisions: Intermediate-strength ($\xi = 10$) self-interaction, out of phase

Effect of kinetic energy Repulsive collisions Tidal effects Attractive instability

Outline

Matches observations Resolves outstanding problems with CDM Radius Maximum mass Motivation/derivation Results/predictions 5 Numerical results Effect of kinetic energy Tidal effects Attractive instability < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Effect of kinetic energy Repulsive collisions Tidal effects Attractive instability

Tidal effects: asymmetric mass ($N_1 = 10N_2$), in phase

(4 日) (四) (로) (로) (로) (로) (대)

Effect of kinetic energy Repulsive collisions Tidal effects Attractive instability

Tidal effects: asymmetric mass ($N_1 = 10N_2$), out of phase

Effect of kinetic energy Repulsive collisions Tidal effects Attractive instability

Outline

Matches observations Resolves outstanding problems with CDM Radius Maximum mass Motivation/derivation Results/predictions 5 Numerical results Effect of kinetic energy Tidal effects Attractive instability <ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

Effect of kinetic energy Repulsive collisions Tidal effects Attractive instability

Attractive instability ($\xi = -10$)

Summary

- Boson stars have a variety of interesting properties when it comes to collisions that make them interesting dark matter candidates
- The effective potential provides decent predictions for scattering of boson stars without resorting to computationally-expensive numerical simulations, can make predictions regarding the ξ >> 1 limit
- However, it fails to capture the tidal deformation present in asymmetric-mass collisions
- Outlook, possible future directions:
 - Look at gravitational waves generated by collisions and oscillations and possible detection
 - Further exploration of boson star dark matter

Thank you!

For Further Reading I

- R. Wyse, G. Gilmore, Dark Galaxies & Lost Baryons, Proceedings IAU Symposium No. 244, (2007)
- J. Bullock, arXiv:1009.4505 [astro-ph.CO] (2010).
- J-W. Lee, S. Lim, D. Choi, arXiv:0805.3827v1 [hep-ph] (2008).
- Y. Kobayashi, M. Kasai, T. Futamase, Phys. Rev. D 50, 15 Dec. (1994)
- P-H. Chavanis, Phys. Rev. D 84, 043531 (2011).
- D. J. Kaup, Phys. Rev. 172, 1331 (1968).
- R. Runi, S. Bonazzola, Phys. Rev. 187, 1767 (1969).
- M. Colpi, S. L. Shapiro, I. Wasserman, Phys. Rev. Lett. 57, 2485 (1986).

- J. Eby, C. Kouvaris, N. G. Nielsen, L.C.R. Wijewardhana, arXiv:1511.04474 [hep-ph]
- P. Jetzer, Physics Reports 220, #4 (1992). 163-227

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

Boson star properties: binding energy

Binding energy given by

$$E_0 = -\frac{8G^2m^5N^3(3+2\xi+3\sqrt{1+\xi})}{36\pi(1+\sqrt{1+\xi})^3}$$

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

Boson star properties: binding energy

Binding energy given by

$${f E}_0 = -rac{8G^2m^5N^3(3+2\xi+3\sqrt{1+\xi})}{36\pi(1+\sqrt{1+\xi})^3}$$

• Non-relativistic analysis breaks down once $mN \ge |E_0|$:

<ロ> <四> <四> <三> <三> <三> <三> <三> <三</p>

Boson star properties: binding energy

Binding energy given by

$$E_0 = -rac{8G^2m^5N^3(3+2\xi+3\sqrt{1+\xi})}{36\pi(1+\sqrt{1+\xi})^3}$$

• Non-relativistic analysis breaks down once $mN \ge |E_0|$:

•
$$m \lesssim 10^{-21}$$
 eV for $M \sim 10^{12}$ ${
m M}_{\odot}$

•
$$m \lesssim 10^{-9}$$
 eV for $M \sim 1 \ {
m M}_{\odot}$