Dark matter boson star collisions based on [arXiv:1608.00547]

E. Cotner ${ }^{1}$

${ }^{1}$ Department of Physics and Astronomy University of California, Los Angeles

PACIFIC 2016

Outline

(1) What's a boson star?
(2) Motivation for BS dark matter

- Matches observations
- Resolves outstanding problems with CDM
(3) Boson star properties
- Radius
- Maximum mass

4. Effective potential analysis

- Motivation/derivation
- Results/predictions
(5) Numerical results
- Effect of kinetic energy
- Repulsive collisions
- Tidal effects

What's a boson star?
Motivation for BS dark matter
Boson star properties

What's a boson star?

- Classical scalar field (either real or complex) bound by gravity

What's a boson star?

- Classical scalar field (either real or complex) bound by gravity
- Scalar field is a Bose-Einstein condensate, needs to be sufficiently "cold":
$k T<\frac{2 \pi}{m}\left(\frac{n}{\zeta(3 / 2)}\right)^{2 / 3} \approx$
$578\left(\frac{10^{-9} \mathrm{eV}}{m}\right)^{5 / 3}\left(\frac{\rho}{0.3 \mathrm{GeV} / \mathrm{cm}^{3}}\right)^{2 / 3}$

What's a boson star?

- Subclassification based on form of scalar potential:
- $V(\phi)=m^{2}|\phi|^{2} \rightarrow$ "mini boson star"
- $V(\phi)=m^{2}|\phi|^{2}+\lambda|\phi|^{4} \rightarrow$ "self-interacting boson star"
- $V(\phi)-\omega^{2}|\phi|^{2}<0 \mid \exists \omega: 0<\omega<m \rightarrow$ "soliton star" (Q-ball in absence of gravity)

What's a boson star?

- Subclassification based on form of scalar potential:
- $V(\phi)=m^{2}|\phi|^{2} \rightarrow$ "mini boson star"
- $V(\phi)=m^{2}|\phi|^{2}+\lambda|\phi|^{4} \rightarrow$ "self-interacting boson star"
- $V(\phi)-\omega^{2}|\phi|^{2}<0 \mid \exists \omega: 0<\omega<m \rightarrow$ "soliton star" (Q-ball in absence of gravity)
- Could be formed from variety of processes such as fragmentation of a charged scalar condensate, standard growth of density perturbations in early universe

Equations of motion

- Start with scalar field coupled to gravity

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{1}{2 \kappa} R+\nabla_{\mu} \varphi^{\dagger} \nabla^{\mu} \varphi-m^{2}|\varphi|^{2}-\lambda|\varphi|^{4}\right]
$$

Equations of motion

- Start with scalar field coupled to gravity

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{1}{2 \kappa} R+\nabla_{\mu} \varphi^{\dagger} \nabla^{\mu} \varphi-m^{2}|\varphi|^{2}-\lambda|\varphi|^{4}\right]
$$

- Take non-relativistic limit and factor out harmonic time-dependence due to particle mass $\psi=\frac{1}{\sqrt{2 m}} e^{-i m t} \varphi$, results in equations of motion (Schrödinger-Poisson system):

$$
\begin{gathered}
i \dot{\psi}=-\frac{1}{2 m} \nabla^{2} \psi+\frac{\lambda}{8 m^{2}}|\psi|^{2} \psi+m \phi \psi \\
\nabla^{2} \phi=4 \pi G m|\psi|^{2}
\end{gathered}
$$

Outline

What's a boson star?

(2) Motivation for BS dark matter

- Matches observations
- Resolves outstanding problems with CDM
(3) Boson star properties
- Radius
- Maximum mass

Effective potential analysis
- Motivation/derivation
- Results/predictions

Numerical results

- Effect of kinetic energy
- Repulsive collisions
- Tidal effects
- Attractive instability

Rotation curves

- Galactic-scale boson stars can provide rotation curves with correct long-distance behavior [Lee, Koh, arXiv:hep-ph/9507385]
- Requires very small mass:

$$
m \sim 10^{-23} \mathrm{eV}
$$

Rotation curves

- Galactic-scale boson stars can provide rotation curves with correct long-distance behavior [Lee, Koh, arXiv:hep-ph/9507385]
- Requires very small mass:

$$
m \sim 10^{-23} \mathrm{eV}
$$

- Superpositions of multiply-excited states can provide even better fits [Ureña-Lopez, Bernal, arXiv:1008.1231]

What's a boson star?
Motivation for BS dark matter
Boson star properties Effective potential analysis

Structure formation

- Boson stars form same large-scale structure as Λ CDM [Schive, Chiueh, Broadhurst, arXiv:1406.6586]

What's a boson star? Motivation for BS dark matter

Boson star properties Effective potential analysis Numerical results Summary

Structure formation

- Boson stars form same large-scale structure as Λ CDM [Schive, Chiueh, Broadhurst, arXiv:1406.6586]
- Reproduces NFW-like density profile with cored center

Outline

What's a boson star?

(2) Motivation for BS dark matter

- Matches observations
- Resolves outstanding problems with CDM

Boson star properties

- Radius
- Maximum mass

Effective potential analysis

- Motivation/derivation
- Results/predictions

Numerical results

- Effect of kinetic energy
- Repulsive collisions
- Tidal effects
- Attractive instability

Cusp-core problem: resolution by galactic-scale BS

- Galactic scale boson stars naturally have non-singular density profiles due to uncertainty principle and wave function spreading

Cusp-core problem: resolution by galactic-scale BS

- Galactic scale boson stars naturally have non-singular density profiles due to uncertainty principle and wave function spreading
- Single stars have core-like profile but sharp cutoff [Eby, Kouvaris, Nielsen, Wijewardhana, arXiv:1511.04474]

Cusp-core problem: resolution by galactic-scale BS

- Galactic scale boson stars naturally have non-singular density profiles due to uncertainty principle and wave function spreading
- Single stars have core-like profile but sharp cutoff [Eby, Kouvaris, Nielsen, Wijewardhana, arXiv:1511.04474]

Cusp-core problem: resolution by SIDM-like BS

- Sub-galactic scale boson stars act like SIDM with a geometric cross section $\sigma \sim \pi R^{2}$ [EC, unpublished]

Missing satellite problem

- Simulations of CDM vastly overpredict number of satellite galaxies

What's a boson star?

Missing satellite problem

- Simulations of CDM vastly overpredict number of satellite galaxies
- Simulations of scalar dark matter predict small number of satellites
- Instead have large amount of small density fluctuations

Apparent cluster merger contradictions?

- Bullet cluster shows halos pass right through each other

What's a boson star?
Motivation for BS dark matter
Boson star properties Effective potential analysis

Numerical results Summary

Apparent cluster merger contradictions?

- Bullet cluster shows halos pass right through each other
- Abell 520 shows repulsive or drag force during infall

What's a boson star?

Apparent cluster merger contradictions?

- Bullet cluster shows halos pass right through each other
- Abell 520 shows repulsive or drag force during infall
- Musket ball cluster shows slowing of halo wrt baryons after first passing

Apparent cluster merger contradictions?

- Bullet cluster shows halos pass right through each other
- Abell 520 shows repulsive or drag force during infall
- Musket ball cluster shows slowing of halo wrt baryons after first passing
- Boson star dark matter halos can pass through, merge, or scatter inelastically, depending on kinetic energy and relative
 velocity

What's a boson star?
Motivation for BS dark matter
Boson star properties Effective potential analysis Numerical results Summary

Radius

Maximum mass

Outline

```
What's a boson star?
Motivation for BS dark matter
- Matches observations
- Resolves outstanding problems with CDM
```

(3) Boson star properties

- Radius
- Maximum mass
(4) Effective potential analysis
- Motivation/derivation
- Results/predictions
(5) Numerical results
- Effect of kinetic energy
- Repulsive collisions
- Tidal effects
- Attractive instability

Variational method and characteristic radius

- Use the Green's function for the Poisson equation to solve for ϕ, then calculate expectation value of Hamiltonian

$$
\begin{aligned}
\langle H\rangle= & \frac{1}{2 m} \int d^{3} x|\nabla \psi|^{2}+\frac{\lambda}{16 m^{2}} \int d^{3} x|\psi|^{4} \\
& -\frac{G m^{2}}{2} \int d^{3} x \int d^{3} x^{\prime} \frac{|\psi(\boldsymbol{x})|^{2}\left|\psi\left(\boldsymbol{x}^{\prime}\right)\right|^{2}}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|}
\end{aligned}
$$

Variational method and characteristic radius

- Use the Green's function for the Poisson equation to solve for ϕ, then calculate expectation value of Hamiltonian

$$
\begin{aligned}
\langle H\rangle= & \frac{1}{2 m} \int d^{3} x|\nabla \psi|^{2}+\frac{\lambda}{16 m^{2}} \int d^{3} x|\psi|^{4} \\
& -\frac{G m^{2}}{2} \int d^{3} x \int d^{3} x^{\prime} \frac{|\psi(\boldsymbol{x})|^{2}\left|\psi\left(\boldsymbol{x}^{\prime}\right)\right|^{2}}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|}
\end{aligned}
$$

- Use variational method with Gaussian variational state $\psi \sim e^{-(r / R)^{2}}$ to find approximate ground state radius R

$$
R=\frac{3 \sqrt{\pi}}{2 G m^{3} N}(1+\sqrt{1+\xi}) \quad \xi \equiv \frac{1}{12 \pi^{2}} \lambda G m^{2} N^{2}
$$

- [Chavanis, arXiv:1103.2050],

Variational method and characteristic radius

- Use the Green's function for the Poisson equation to solve for ϕ, then calculate expectation value of Hamiltonian

$$
\begin{aligned}
\langle H\rangle= & \frac{1}{2 m} \int d^{3} x|\nabla \psi|^{2}+\frac{\lambda}{16 m^{2}} \int d^{3} x|\psi|^{4} \\
& -\frac{G m^{2}}{2} \int d^{3} x \int d^{3} x^{\prime} \frac{|\psi(\boldsymbol{x})|^{2}\left|\psi\left(\boldsymbol{x}^{\prime}\right)\right|^{2}}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|}
\end{aligned}
$$

- Use variational method with Gaussian variational state $\psi \sim e^{-(r / R)^{2}}$ to find approximate ground state radius R

$$
R=\frac{3 \sqrt{\pi}}{2 G m^{3} N}(1+\sqrt{1+\xi}) \quad \xi \equiv \frac{1}{12 \pi^{2}} \lambda G m^{2} N^{2}-\frac{20}{9 \pi} G^{2} m^{4} N^{2}
$$

- [Chavanis, arXiv:1103.2050], [EC, unpublished]

What's a boson star?
Motivation for BS dark matter
Boson star properties Effective potential analysis

Numerical results
Summary

Boson star properties: radius

$$
R=\frac{3 \sqrt{\pi}}{2 G m^{3} N}(1+\sqrt{1+\xi}) \quad \xi \equiv \frac{1}{12 \pi^{2}} \lambda G m^{2} N^{2}-\frac{20}{9 \pi} G^{2} m^{4} N^{2}
$$

Boson star R(N)

Boson star properties: radius

- Results of variational method gives

$$
R=\frac{3 \sqrt{\pi}}{2 G m^{3} N}(1+\sqrt{1+\xi}) \quad \xi \equiv \frac{\lambda G m^{2} N^{2}}{12 \pi^{2}}
$$

Boson star properties: radius

- Results of variational method gives

$$
R=\frac{3 \sqrt{\pi}}{2 G m^{3} N}(1+\sqrt{1+\xi}) \quad \xi \equiv \frac{\lambda G m^{2} N^{2}}{12 \pi^{2}}
$$

- Weak self-interaction limit $(|\xi| \ll 1)$

$$
\begin{aligned}
R & \approx \frac{3 \sqrt{\pi}}{G m^{2} M}=0.88\left(\frac{m}{10^{-9} \mathrm{eV}}\right)^{-2}\left(\frac{M}{1 \mathrm{M}_{\odot}}\right)^{-1} \mathrm{~km} \\
& =120\left(\frac{m}{2 \times 10^{-25} \mathrm{eV}}\right)^{-2}\left(\frac{M}{10^{12} \mathrm{M}_{\odot}}\right)^{-1} \mathrm{kpc}
\end{aligned}
$$

Boson star properties: radius

- Strong self-interaction limit $(\xi \gg 1)$

$$
R \approx \frac{1}{4 m^{2}} \sqrt{\frac{3 \lambda}{G}}=103\left(\frac{m}{10^{-9} \mathrm{eV}}\right)^{-2}\left(\frac{\lambda}{10^{-35}}\right)^{1 / 2} \mathrm{kpc}
$$

Boson star properties: radius

- Strong self-interaction limit $(\xi \gg 1)$

$$
R \approx \frac{1}{4 m^{2}} \sqrt{\frac{3 \lambda}{G}}=103\left(\frac{m}{10^{-9} \mathrm{eV}}\right)^{-2}\left(\frac{\lambda}{10^{-35}}\right)^{1 / 2} \mathrm{kpc}
$$

- Can be strongly self-interacting even for extremely small values of the coupling

Boson star properties: radius

- Strong self-interaction limit $(\xi \gg 1)$

$$
R \approx \frac{1}{4 m^{2}} \sqrt{\frac{3 \lambda}{G}}=103\left(\frac{m}{10^{-9} \mathrm{eV}}\right)^{-2}\left(\frac{\lambda}{10^{-35}}\right)^{1 / 2} \mathrm{kpc}
$$

- Can be strongly self-interacting even for extremely small values of the coupling
- As $N \rightarrow \infty, R$ approaches constant value

Outline

```
What's a boson star?
Motivation for BS dark matter
- Matches observations
- Resolves outstanding problems with CDM
```

(3) Boson star properties

- Radius
- Maximum mass
(4) Effective potential analysis
- Motivation/derivation
- Results/predictions
(5) Numerical results
- Effect of kinetic energy
- Repulsive collisions
- Tidal effects
- Attractive instability

Boson star properties: maximum mass

- Maximum mass achieved when radius comparable to Schwarzschild radius: $R \approx 2 G M$

Boson star properties: maximum mass

- Maximum mass achieved when radius comparable to Schwarzschild radius: $R \approx 2 G M$

$$
M_{\max } \sim \sqrt{\frac{3 \pi^{1 / 2}}{2}} \frac{M_{p}^{2}}{m} \approx 10^{-1}\left(\frac{m}{10^{-9} \mathrm{eV}}\right)^{-1} M_{\odot} \quad(|\xi| \ll 1)
$$

What's a boson star?
Motivation for BS dark matter
Boson star properties Effective potential analysis

Numerical results
Summary

Boson star properties: maximum mass

- Maximum mass achieved when radius comparable to Schwarzschild radius: $R \approx 2 G M$

$$
\begin{aligned}
& M_{\max } \sim \sqrt{\frac{3 \pi^{1 / 2}}{2}} \frac{M_{p}^{2}}{m} \approx 10^{-1}\left(\frac{m}{10^{-9} \mathrm{eV}}\right)^{-1} \mathrm{M}_{\odot} \quad(|\xi| \ll 1) \\
& M_{\max } \sim \frac{M_{p}^{3}}{8 m^{2}} \sqrt{\frac{3 \lambda}{\pi}} \approx 10^{32}\left(\frac{\lambda}{10^{-6}}\right)^{1 / 2}\left(\frac{m}{10^{-9} \mathrm{eV}}\right)^{-2} \mathrm{M}_{\odot} \quad(\xi \gg 1
\end{aligned}
$$

What's a boson star?

Boson star properties: maximum mass

- Maximum mass achieved when radius comparable to Schwarzschild radius: $R \approx 2 G M$

$$
M_{\max } \sim \sqrt{\frac{3 \pi^{1 / 2}}{2}} \frac{M_{p}^{2}}{m} \approx 10^{-1}\left(\frac{m}{10^{-9} \mathrm{eV}}\right)^{-1} M_{\odot} \quad(|\xi| \ll 1)
$$

$$
M_{\max } \sim \frac{M_{p}^{3}}{8 m^{2}} \sqrt{\frac{3 \lambda}{\pi}} \approx 10^{32}\left(\frac{\lambda}{10^{-6}}\right)^{1 / 2}\left(\frac{m}{10^{-9} \mathrm{eV}}\right)^{-2} \mathrm{M}_{\odot} \quad(\xi \gg 1
$$

$$
M_{\max } \sim \frac{3 \pi}{\sqrt{2 G|\lambda|}} \approx 6.7 \times 10^{3}\left(\frac{|\lambda|}{10^{-6}}\right)^{-1 / 2} M_{p} \quad(\xi=-1)
$$

Outline

```
What's a boson star?
Motivation for BS dark matter
- Matches observations
- Resolves outstanding problems with CDM
```


Boson star properties

```
- Radius
- Maximum mass
```


(4) Effective potential analysis

- Motivation/derivation
- Results/predictions

Numerical results

- Effect of kinetic energy
- Repulsive collisions
- Tidal effects
- Attractive instability

Motivation for effective potential

- Current method of resolving scattering outcome is to perform numerical simulation
- Time-consuming and computationally expensive
- Numerical instability makes simulation of strongly self-interacting boson stars intractable

Motivation for effective potential

- Current method of resolving scattering outcome is to perform numerical simulation
- Time-consuming and computationally expensive
- Numerical instability makes simulation of strongly self-interacting boson stars intractable
- Advantages of effective potential:
- Much less computationally expensive; most of the effective potential can be computed analytically
- Idea can be generalized to include angular momentum, "electronic" excitations, etc. as extra degrees of freedom

Effective potential derivation

- Calculate expectation value of Hamiltonian in a state which is a superposition of two boson stars at rest, separated by vector \boldsymbol{d} :

$$
|\Psi(\boldsymbol{r})\rangle=A\left[|\psi(\boldsymbol{r}-\boldsymbol{d} / 2)\rangle+e^{i \alpha}|\psi(\boldsymbol{r}+\boldsymbol{d} / 2)\rangle\right]
$$

- Individual wave functions ψ are variational ground states derived earlier

Outline

```
What's a boson star?
Motivation for BS dark matter
- Matches observations
- Resolves outstanding problems with CDM
(3)Boson star properties
- Radius
- Maximum mass
```

(4) Effective potential analysis

- Motivation/derivation
- Results/predictions

Numerical results

- Effect of kinetic energy
- Repulsive collisions
- Tidal effects
- Attractive instability

What's a boson star?
Motivation for BS dark matter
Boson star properties Effective potential analysis

Numerical results
Summary

Effective potential results [EC, arXiv:1608.00547]

$\alpha=0$
——— $\alpha=\pi / 2$
----- $\alpha=\pi$

Effective potential predictions I

- Weak-interaction regime:
- Attractive/repulsive when in-phase/out-of-phase
- Could pass through each other if kinetic energy is high enough, but difficult when $\alpha=\pi$

Effective potential predictions I

- Weak-interaction regime:
- Attractive/repulsive when in-phase/out-of-phase
- Could pass through each other if kinetic energy is high enough, but difficult when $\alpha=\pi$
- Strong-interaction regime:
- Repulsive when in phase, only mildly attractive when out of phase

Effective potential predictions II

- Since phase difference is dynamical variable itself, we expect it to evolve
- Initially out-of-phase configurations will rotate to a mutual value, then merge

Effective potential predictions II

- Since phase difference is dynamical variable itself, we expect it to evolve
- Initially out-of-phase configurations will rotate to a mutual value, then merge
- Downsides: assumption that boson stars are rigid leads to mispredictions
- Doesn't capture the effects of "friction" and excitation
- Doesn't predict tidal effects in asymmetric-mass systems
- Successful predictions are at best qualitative

Numerical simulation

- To confirm predictions of effective potential, I ran a number of numerical simulations

What's a boson star?
Motivation for BS dark matter
Boson star properties Effective potential analysis

Numerical simulation

- To confirm predictions of effective potential, I ran a number of numerical simulations
- Numerical recipe:
- Discretized Schrödinger-Poisson equations on a $50 \times 50 \times 50$ grid
- Transform coordinates to bring spatial infinity to the boundary of the grid and impose Dirichlet conditions
- Used first-order time, second-order space grid method in transformed coordinates
- Initial states were superpositions of two boson stars

What's a boson star?

Boson star properties Effective potential analysis Numerical results Summary

Effect of kinetic energy
Repulsive collisions
Tidal effects
Attractive instability

Outline

(1) What's a boson star?
(2) Motivation for BS dark matter

- Matches observations
- Resolves outstanding problems with CDM

Boson star properties

- Radius
- Maximum mass

(4)

Effective potential analysis

- Motivation/derivation
- Results/predictions
(5) Numerical results
- Effect of kinetic energy
- Repulsive collisions
- Tidal effects
- Attractive instability

What's a boson star?
Motivation for BS dark matter
Boson star properties Effective potential analysis Numerical results Summary

Effect of kinetic energy
Repulsive collisions
Tidal effects
Attractive instability

Effect of kinetic energy: low kinetic energy

What's a boson star?
Motivation for BS dark matter
Boson star properties Effective potential analysis Numerical results Summary

Effect of kinetic energy
Repulsive collisions
Tidal effects
Attractive instability

Effect of kinetic energy: high kinetic energy

What's a boson star? Motivation for BS dark matter

Boson star properties Effective potential analysis Numerical results Summary

Effect of kinetic energy
Repulsive collisions
Tidal effects
Attractive instability

Outline

```
What's a boson star?
Motivation for BS dark matter
- Matches observations
- Resolves outstanding problems with CDM
```


Boson star properties

```
- Radius
- Maximum mass
```


Effective potential analysis

- Motivation/derivation
- Results/predictions
(5) Numerical results
- Effect of kinetic energy
- Repulsive collisions
- Tidal effects
- Attractive instability

What's a boson star?

Repulsive collisions: Weak self-interaction $\left(\xi=10^{-2}\right)$, out of phase

Repulsive collisions: Intermediate-strength $(\xi=10)$ self-interaction, out of phase

What's a boson star?
Motivation for BS dark matter
Boson star properties Effective potential analysis Numerical results Summary

Effect of kinetic energy
Repulsive collisions
Tidal effects
Attractive instability

Outline

(1) What's a boson star?
(2) Motivation for BS dark matter

- Matches observations
- Resolves outstanding problems with CDM

Boson star properties

- Radius
- Maximum mass

©

Effective potential analysis

- Motivation/derivation
- Results/predictions
(5) Numerical results
- Effect of kinetic energy
- Repulsive collisions

- Tidal effects

- Attractive instability

What's a boson star?
Motivation for BS dark matter
Boson star properties Effective potential analysis

Numerical results
Summary

Tidal effects: asymmetric mass $\left(N_{1}=10 N_{2}\right)$, in phase

What's a boson star?
Motivation for BS dark matter
Boson star properties Effective potential analysis Numerical results Summary

Tidal effects: asymmetric mass $\left(N_{1}=10 N_{2}\right)$, out of phase

What's a boson star?

Boson star properties Effective potential analysis Numerical results Summary

Effect of kinetic energy
Repulsive collisions
Tidal effects
Attractive instability

Outline

(1) What's a boson star?
(2) Motivation for BS dark matter

- Matches observations
- Resolves outstanding problems with CDM

Boson star properties

- Radius
- Maximum mass

Effective potential analysis

- Motivation/derivation
- Results/predictions
(5) Numerical results
- Effect of kinetic energy
- Repulsive collisions
- Tidal effects
- Attractive instability

What's a boson star?
Motivation for BS dark matter
Boson star properties Effective potential analysis Numerical results

Summary

Effect of kinetic energy
Repulsive collisions
Tidal effects
Attractive instability

Attractive instability $(\xi=-10)$

Summary

- Boson stars have a variety of interesting properties when it comes to collisions that make them interesting dark matter candidates
- The effective potential provides decent predictions for scattering of boson stars without resorting to computationally-expensive numerical simulations, can make predictions regarding the $\xi \gg 1$ limit
- However, it fails to capture the tidal deformation present in asymmetric-mass collisions
- Outlook, possible future directions:
- Look at gravitational waves generated by collisions and oscillations and possible detection
- Further exploration of boson star dark matter

Thank you!

For Further Reading I

- R. Wyse, G. Gilmore, Dark Galaxies \& Lost Baryons, Proceedings IAU Symposium No. 244, (2007)
- J. Bullock, arXiv:1009.4505 [astro-ph.CO] (2010).
- J-W. Lee, S. Lim, D. Choi, arXiv:0805.3827v1 [hep-ph] (2008).
- Y. Kobayashi, M. Kasai, T. Futamase, Phys. Rev. D 50, 15 Dec. (1994)
- P-H. Chavanis, Phys. Rev. D 84, 043531 (2011).
- D. J. Kaup, Phys. Rev. 172, 1331 (1968).
- R. Runi, S. Bonazzola, Phys. Rev. 187, 1767 (1969).
- M. Colpi, S. L. Shapiro, I. Wasserman, Phys. Rev. Lett. 57, 2485 (1986).

For Further Reading II

- J. Eby, C. Kouvaris, N. G. Nielsen, L.C.R. Wijewardhana, arXiv:1511.04474 [hep-ph]
- P. Jetzer, Physics Reports 220, \# 4 (1992). 163-227

Boson star properties: binding energy

- Binding energy given by

$$
E_{0}=-\frac{8 G^{2} m^{5} N^{3}(3+2 \xi+3 \sqrt{1+\xi})}{36 \pi(1+\sqrt{1+\xi})^{3}}
$$

Boson star properties: binding energy

- Binding energy given by

$$
E_{0}=-\frac{8 G^{2} m^{5} N^{3}(3+2 \xi+3 \sqrt{1+\xi})}{36 \pi(1+\sqrt{1+\xi})^{3}}
$$

- Non-relativistic analysis breaks down once $m N \gtrsim\left|E_{0}\right|$:

Boson star properties: binding energy

- Binding energy given by

$$
E_{0}=-\frac{8 G^{2} m^{5} N^{3}(3+2 \xi+3 \sqrt{1+\xi})}{36 \pi(1+\sqrt{1+\xi})^{3}}
$$

- Non-relativistic analysis breaks down once $m N \gtrsim\left|E_{0}\right|$:
- $m \lesssim 10^{-21} \mathrm{eV}$ for $M \sim 10^{12} \mathrm{M}_{\odot}$
- $m \lesssim 10^{-9} \mathrm{eV}$ for $M \sim 1 \mathrm{M}_{\odot}$

