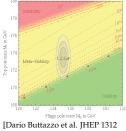
Evolution of Scalar Fields in the Early Universe

Louis Yang

Department of Physics and Astronomy University of California, Los Angeles

> PACIFIC 2015 September 17th, 2015

Advisor: Alexander Kusenko Collaborator: Lauren Pearce


・ 何 ト ・ ヨ ト ・ ヨ ト

The Motivation

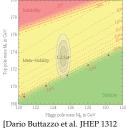
The recent discovery of the Higgs boson with mass

 $M_h = 125.7 \pm 0.4 \, \text{GeV}$

[Particle Data Group 2014]

(2013) 089]

イロト イポト イヨト イヨト


The Motivation

The recent discovery of the Higgs boson with mass

 $M_h = 125.7 \pm 0.4 \, \text{GeV}$

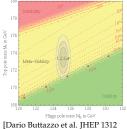
[Particle Data Group 2014]

• $V(\phi) \approx \frac{1}{4}\lambda_{\text{eff}}(\phi) \phi^4 \text{ for } \phi \gg 100 \text{ GeV}$

(2013) 089]

イロト イポト イヨト イヨト

Evolution of Scalar Fields in the Early Universe (slide 2)


The Motivation

The recent discovery of the Higgs boson with mass

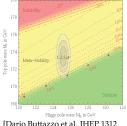
 $M_h = 125.7 \pm 0.4 \, \text{GeV}$

[Particle Data Group 2014]

- $V(\phi) \approx \frac{1}{4}\lambda_{\text{eff}}(\phi) \phi^4 \text{ for } \phi \gg 100 \text{ GeV}$
- Very small or negative λ_{eff} at high scale from RGE

[Dario Buttazzo et al. JHEP (2013) 089]

The Motivation


The recent discovery of the Higgs boson with mass

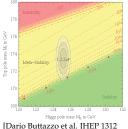
 $M_h = 125.7 \pm 0.4 \, \text{GeV}$

[Particle Data Group 2014]

- $V(\phi) \approx \frac{1}{4} \lambda_{\text{eff}}(\phi) \phi^4 \text{ for } \phi \gg 100 \text{ GeV}$
- Very small or negative λ_{eff} at high scale from RGE

 \Rightarrow a meta-stable electroweak vacuum

[Dario Buttazzo et al. JHEP 1312 (2013) 089]


The Motivation

The recent discovery of the Higgs boson with mass

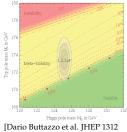
 $M_h = 125.7 \pm 0.4 \, \text{GeV}$

[Particle Data Group 2014]

- $V(\phi) \approx \frac{1}{4}\lambda_{\text{eff}}(\phi) \phi^4 \text{ for } \phi \gg 100 \text{ GeV}$
- Very small or negative λ_{eff} at high scale from RGE
 - \Rightarrow a meta-stable electroweak vacuum
 - \Rightarrow a shallow potential at high scale

[Dario Buttazzo et al. JHEP 13] (2013) 089]

(E)


The Motivation

 The recent discovery of the Higgs boson with mass

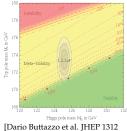
 $M_h = 125.7 \pm 0.4 \, \text{GeV}$

[Particle Data Group 2014]

- $V(\phi) \approx \frac{1}{4} \lambda_{\text{eff}}(\phi) \phi^4 \text{ for } \phi \gg 100 \text{ GeV}$
- Very small or negative λ_{eff} at high scale from RGE
 - ⇒a meta-stable electroweak vacuum
 - \Rightarrow a shallow potential at high scale
- During inflation, the scalar field with a shallow potential can obtain a large vacuum expectation value (VEV).

(2013) 089]

(E)


The Motivation

The recent discovery of the Higgs boson with mass

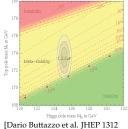
 $M_h = 125.7 \pm 0.4 \, \text{GeV}$

[Particle Data Group 2014]

- $V(\phi) \approx \frac{1}{4} \lambda_{\text{eff}}(\phi) \phi^4 \text{ for } \phi \gg 100 \text{ GeV}$
- Very small or negative $\lambda_{\rm eff}$ at high scale from RGE
 - ⇒a meta-stable electroweak vacuum
 - \Rightarrow a shallow potential at high scale
- During inflation, the scalar field with a shallow potential can obtain a large vacuum expectation value (VEV).
- Post-inflationary Higgs field relaxation

[Dario Buttazzo et al (2013) 089]

The Motivation


The recent discovery of the Higgs boson with mass

 $M_h = 125.7 \pm 0.4 \, \text{GeV}$

[Particle Data Group 2014]

- $V(\phi) \approx \frac{1}{4}\lambda_{\text{eff}}(\phi) \phi^4 \text{ for } \phi \gg 100 \text{ GeV}$
- Very small or negative λ_{eff} at high scale from RGE
 - \Rightarrow a meta-stable electroweak vacuum
 - \Rightarrow a shallow potential at high scale
- During inflation, the scalar field with a shallow potential can obtain a large vacuum expectation value (VEV).
- Post-inflationary Higgs field relaxation

 \Rightarrow possibility for **Leptogenesis**

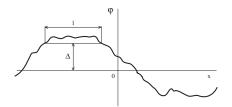
(2013) 089]

A D M A A A M M

Outline

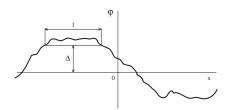
1 Quantum Fluctuations in the Inflationary Universe

2 Classical Motion of Scalar Fields

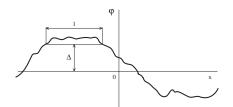

- 3 Possible New Physics
- 4 Issue with Isocurvature Perturbations

Evolution of Scalar Fields in the Early Universe (slide 4)

PACIFIC 2015

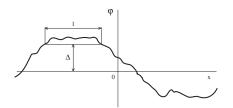

・ 何 ト ・ ヨ ト ・ ヨ ト

 During inflation, scalar fields can obtain a large VEV through quantum fluctuations.

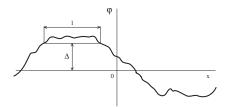

[Figure from A. Linde - arXiv: 0503203]

- During inflation, scalar fields can obtain a large VEV through quantum fluctuations.
- In de Sitter space, the quantum fluctuations of scalar fields are constantly pulled to above the horizon size.

[Figure from A. Linde - arXiv: 0503203]

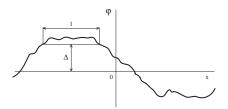

- During inflation, scalar fields can obtain a large VEV through quantum fluctuations.
- In de Sitter space, the quantum fluctuations of scalar fields are constantly pulled to above the horizon size.
- Long-wave quantum fluctuations are characterized by

[Figure from A. Linde - arXiv: 0503203]


- During inflation, scalar fields can obtain a large VEV through quantum fluctuations.
- In de Sitter space, the quantum fluctuations of scalar fields are constantly pulled to above the horizon size.
- Long-wave quantum fluctuations are characterized by

1 long correlation length *l*

[Figure from A. Linde - arXiv: 0503203]


- During inflation, scalar fields can obtain a large VEV through quantum fluctuations.
- In de Sitter space, the quantum fluctuations of scalar fields are constantly pulled to above the horizon size.
- Long-wave quantum fluctuations are characterized by
 - 1 long correlation length *l*
 - **2** large occupation number n_k for low k

[Figure from A. Linde - arXiv: 0503203]

- During inflation, scalar fields can obtain a large VEV through quantum fluctuations.
- In de Sitter space, the quantum fluctuations of scalar fields are constantly pulled to above the horizon size.
- Long-wave quantum fluctuations are characterized by
 - **1** long correlation length l
 - **2** large occupation number n_k for low k

=> behave like (quasi) classical field.

[Figure from A. Linde - arXiv: 0503203]

• The VEV of the field can be computed through the dispersion of the fluctuation $\phi_0 = \Delta = \sqrt{\langle \phi^2 \rangle}$

Evolution of Scalar Fields in the Early Universe (slide 6)

PACIFIC 2015

- The VEV of the field can be computed through the dispersion of the fluctuation $\phi_0 = \Delta = \sqrt{\langle \phi^2 \rangle}$
- In a pure de Sitter spacetime, a scalar field with mass m can obtain a large VEV

$$\left\langle \phi^2 \right\rangle = rac{3H^4}{8\pi^2m^2} \quad {\rm for} \; m^2 \ll H^2.$$

[T. Bunch and P. Davies, Proc. Roy. Soc. Lond. A360, 117 (1978)]

E SQA

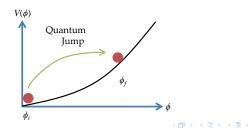
• • = • • = •

- The VEV of the field can be computed through the dispersion of the fluctuation $\phi_0 = \Delta = \sqrt{\langle \phi^2 \rangle}$
- In a pure de Sitter spacetime, a scalar field with mass m can obtain a large VEV

$$\left\langle \phi^2 \right\rangle = rac{3H^4}{8\pi^2m^2} \quad {\rm for} \; m^2 \ll H^2.$$

[T. Bunch and P. Davies, Proc. Roy. Soc. Lond. A360, 117 (1978)]

In the inflationary universe, the exponential expansion period exists for a finite time t

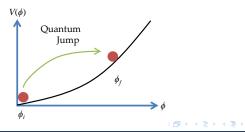

$$\left\langle \phi^2 \right\rangle \approx \frac{H^2}{2\left(2\pi\right)^3} \int_{He^{-Ht}}^H \frac{d^3k}{k} = \frac{H^3}{4\pi^2} t \simeq \frac{H^2}{4\pi^2} N$$

for $m^2 = 0$ or $m^2 \ll H^2$ with $t \lesssim 3H/m^2$. $N \simeq Ht$ is the number of e-folds. [A. Linde, Phys. Lett. B116, 335 (1982)]

Hawking-Moss tunneling

Hawking & Moss (1982)

One can also understand the fluctuation as both the scalar field $\phi(x)$ and the metric $g_{\mu\nu}(x)$ experience quantum jumps.

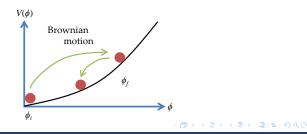


Hawking-Moss tunneling

- Hawking & Moss (1982)
- One can also understand the fluctuation as both the scalar field $\phi(x)$ and the metric $g_{\mu\nu}(x)$ experience quantum jumps.
- The Hawking-Moss instanton

$$\frac{\Gamma\left(\phi_{i} \to \phi_{f}\right)}{\mathcal{V}} = Ae^{S_{E}(\phi_{i}) - S_{E}\left(\phi_{f}\right)}, \quad \text{where} \quad S_{E}(\phi) = -\frac{3m_{pl}^{4}}{8V\left(\phi\right)}$$

is the Euclidean action and A is some $\mathcal{O}(m^4)$ prefactor.

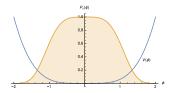

Hawking-Moss tunneling

- Hawking & Moss (1982)
- One can also understand the fluctuation as both the scalar field $\phi(x)$ and the metric $g_{\mu\nu}(x)$ experience quantum jumps.
- The Hawking-Moss instanton

$$\frac{\Gamma\left(\phi_{i} \to \phi_{f}\right)}{\mathcal{V}} = Ae^{S_{E}(\phi_{i}) - S_{E}\left(\phi_{f}\right)}, \quad \text{where} \quad S_{E}(\phi) = -\frac{3m_{pl}^{4}}{8V\left(\phi\right)}$$

is the Euclidean action and A is some $\mathcal{O}(m^4)$ prefactor.

The entire process can then be viewed as the fields are underdoing Brownian motion and can be described by diffusion equation.



Stochastic approach & Hawking-Moss tunneling

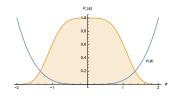
P_c (*φ*, *t*): the probability distribution of finding *φ* at time *t* Diffussion equation

$$\frac{\partial P_c}{\partial t} = -\frac{\partial j_c}{\partial \phi} \quad \text{where} \quad -j_c = \frac{\partial}{\partial \phi} \left(\frac{H^3 P_c}{8\pi^2} \right) + \frac{P_c}{3H} \frac{dV}{d\phi}$$

[A. A. Starobinsky (1982); A. Vilenkin (1982)]

ICs

Stochastic approach & Hawking-Moss tunneling


- $\blacksquare \ P_{c}\left(\phi,t\right)$: the probability distribution of finding ϕ at time t
- Diffussion equation

$$\frac{\partial P_c}{\partial t} = -\frac{\partial j_c}{\partial \phi} \quad \text{where} \quad -j_c = \frac{\partial}{\partial \phi} \left(\frac{H^3 P_c}{8\pi^2}\right) + \frac{P_c}{3H} \frac{dV}{d\phi}$$

[A. A. Starobinsky (1982); A. Vilenkin (1982)]
In equilibrium ∂P_c/∂t = 0, j_c = 0. One obtain the distribution

$$P_{c}(\phi) = e^{S_{E}(\phi_{\min}) - S_{E}(\phi)}$$
$$\approx \exp\left[\frac{-3m_{pl}^{4}}{8}\frac{\Delta V(\phi)}{V(\phi_{\min})^{2}}\right]$$

for $\Delta V = V(\phi) - V(\phi_{\min}) \ll V(\phi_{\min})$.

A B > A B >

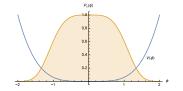
A D M A A A M M

ICs

Stochastic approach & Hawking-Moss tunneling

- $\blacksquare \ P_c \ (\phi, t)$: the probability distribution of finding ϕ at time t
- Diffussion equation

$$\frac{\partial P_c}{\partial t} = -\frac{\partial j_c}{\partial \phi} \quad \text{where} \quad -j_c = \frac{\partial}{\partial \phi} \left(\frac{H^3 P_c}{8\pi^2}\right) + \frac{P_c}{3H} \frac{dV}{d\phi}$$


[A. A. Starobinsky (1982); A. Vilenkin (1982)]
In equilibrium ∂P_c/∂t = 0, j_c = 0. One obtain the distribution

$$P_{c}(\phi) = e^{S_{E}(\phi_{\min}) - S_{E}(\phi)}$$
$$\approx \exp\left[\frac{-3m_{pl}^{4}}{8}\frac{\Delta V(\phi)}{V(\phi_{\min})^{2}}\right]$$

for $\Delta V = V(\phi) - V(\phi_{\min}) \ll V(\phi_{\min})$.

The fluctuation is not suppressed if

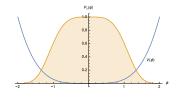
$$\Delta V\left(\phi\right) < \frac{8V\left(\phi_{\min}\right)^2}{3m_{pl}^4}$$

★ E → < E →</p>

Stochastic approach & Hawking-Moss tunneling

- **P**_c (ϕ , t): the probability distribution of finding ϕ at time t
- Diffussion equation

$$\frac{\partial P_c}{\partial t} = -\frac{\partial j_c}{\partial \phi} \quad \text{where} \quad -j_c = \frac{\partial}{\partial \phi} \left(\frac{H^3 P_c}{8\pi^2}\right) + \frac{P_c}{3H} \frac{dV}{d\phi}$$


[A. A. Starobinsky (1982); A. Vilenkin (1982)] In equilibrium $\partial P_c/\partial t = 0$, $j_c = 0$. One obtain the distribution

$$P_{c}(\phi) = e^{S_{E}(\phi_{\min}) - S_{E}(\phi)}$$
$$\approx \exp\left[\frac{-3m_{pl}^{4}}{8}\frac{\Delta V(\phi)}{V(\phi_{\min})^{2}}\right]$$

for $\Delta V = V(\phi) - V(\phi_{\min}) \ll V(\phi_{\min})$.

The fluctuation is not suppressed if

$$\Delta V\left(\phi\right) < \frac{8V\left(\phi_{\min}\right)^2}{3m_{pl}^4}$$

The variance of the fluctuation is

$$\left\langle \phi^2 \right\rangle = \frac{\int \phi^2 P_c(\phi) d\phi}{\int P_c(\phi) d\phi}$$

ICs

Quantum fluctuation of the Higgs field

Example: the Higgs field ϕ on the inflationary background (inflaton I).

 $V\left(\phi,I\right) = V_{H}\left(\phi\right) + V_{I}\left(I\right) + \ldots \approx \frac{1}{4}\lambda_{\mathrm{eff}}\phi^{4} + \Lambda_{I}^{4} + \ldots$

Evolution of Scalar Fields in the Early Universe (slide 9)

PACIFIC 2015

Quantum fluctuation of the Higgs field

Example: the Higgs field ϕ on the inflationary background (inflaton *I*).

 $V\left(\phi,I\right) = V_{H}\left(\phi\right) + V_{I}\left(I\right) + \ldots \approx \frac{1}{4}\lambda_{\mathrm{eff}}\phi^{4} + \Lambda_{I}^{4} + \ldots$

■ The quantum transition of the Higgs field from 0 to *φ* is not suppressed if

$$\frac{1}{4}\lambda_{\rm eff}\phi^4 < \frac{8}{3}\left(\frac{\Lambda_I^2}{m_{pl}}\right)^4 \sim H_I^4 \qquad \Rightarrow \qquad |\phi| < 0.62\lambda_{\rm eff}^{-1/4}H_I$$

ICs

Quantum fluctuation of the Higgs field

Example: the Higgs field ϕ on the inflationary background (inflaton *I*).

 $V\left(\phi,I\right) = V_{H}\left(\phi\right) + V_{I}\left(I\right) + \ldots \approx \frac{1}{4}\lambda_{\mathrm{eff}}\phi^{4} + \Lambda_{I}^{4} + \ldots$

■ The quantum transition of the Higgs field from 0 to *φ* is not suppressed if

$$\frac{1}{4}\lambda_{\rm eff}\phi^4 < \frac{8}{3}\left(\frac{\Lambda_I^2}{m_{pl}}\right)^4 \sim H_I^4 \qquad \Rightarrow \qquad |\phi| < 0.62\lambda_{\rm eff}^{-1/4}H_I$$

Even though $\langle \phi \rangle = 0$ due to the even potential, the variance of the fluctuation of ϕ is not zero.

 $\phi_0 = \sqrt{\langle \phi^2 \rangle} \cong 0.36 \lambda_{\rm eff}^{-1/4} H_I$

ICs

Quantum fluctuation of the Higgs field

Example: the Higgs field ϕ on the inflationary background (inflaton *I*).

 $V\left(\phi,I\right) = V_{H}\left(\phi\right) + V_{I}\left(I\right) + \ldots \approx \frac{1}{4}\lambda_{\mathrm{eff}}\phi^{4} + \Lambda_{I}^{4} + \ldots$

The quantum transition of the Higgs field from 0 to ϕ is not suppressed if

$$\frac{1}{4}\lambda_{\rm eff}\phi^4 < \frac{8}{3}\left(\frac{\Lambda_I^2}{m_{pl}}\right)^4 \sim H_I^4 \qquad \Rightarrow \qquad |\phi| < 0.62\lambda_{\rm eff}^{-1/4}H_I$$

Even though $\langle \phi \rangle = 0$ due to the even potential, the variance of the fluctuation of ϕ is not zero.

 $\phi_0 = \sqrt{\langle \phi^2 \rangle} \cong 0.36 \lambda_{\rm eff}^{-1/4} H_I$

Generally, during inflation, we expect the scalar field to obtain a large VEV ϕ_0 such that

$$V_H\left(\phi_0\right) \sim H_I^4$$

Classical Motion of Scalar Fields

Evolution of Scalar Fields in the Early Universe (slide 10)

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Scalar field in an expanding universe

$$\ddot{\phi} + 3H\dot{\phi} + \Gamma_{\phi}\dot{\phi} + \frac{\partial V}{\partial\phi} = 0$$

Evolution of Scalar Fields in the Early Universe (slide 11)

イロト イ理ト イヨト イヨト

Scalar field in an expanding universe

$$\ddot{\phi} + 3H\dot{\phi} + \Gamma_{\phi}\dot{\phi} + \frac{\partial V}{\partial\phi} = 0$$

During inflation, the scalar field can be in **slow-roll**.

Scalar field in an expanding universe

$$\ddot{\phi} + 3H\dot{\phi} + \Gamma_{\phi}\dot{\phi} + \frac{\partial V}{\partial\phi} = 0$$

During inflation, the scalar field can be in **slow-roll**.

 $\ddot{\phi} \ll \frac{\partial V}{\partial \phi} \quad \text{and} \quad \dot{\phi}^2 \ll V$ The slow-roll conditions are $9H^2 \gg \frac{\partial^2 V(\phi, I)}{\partial \phi^2} = m_{\text{eff}}^2(\phi) \quad \text{and} \quad \sqrt{48\pi} \frac{V(\phi, I)}{m_{nl}} \gg \left| \frac{\partial V(\phi, I)}{\partial \phi} \right|.$

Scalar field in an expanding universe

$$\ddot{\phi} + 3H\dot{\phi} + \Gamma_{\phi}\dot{\phi} + \frac{\partial V}{\partial\phi} = 0$$

During inflation, the scalar field can be in **slow-roll**.

 $\ddot{\phi} \ll rac{\partial V}{\partial \phi} \hspace{1cm} ext{and} \hspace{1cm} \dot{\phi}^2 \ll V$

The slow-roll conditions are $9H^2 \gg \frac{\partial^2 V(\phi, I)}{\partial \phi^2} = m_{\text{eff}}^2(\phi) \text{ and } \sqrt{48\pi} \frac{V(\phi, I)}{m_{pl}} \gg \left| \frac{\partial V(\phi, I)}{\partial \phi} \right|.$

The first condition can be understood as the time scale for rolling down

$$\tau \sim m_{\rm eff}^{-1} = \left(\sqrt{\frac{\partial^2 V}{\partial \phi^2}}\right)^{-1} \gg H^{-1}.$$

Slow rolling during inflation

Scalar field in an expanding universe

$$\ddot{\phi} + 3H\dot{\phi} + \Gamma_{\phi}\dot{\phi} + \frac{\partial V}{\partial\phi} = 0$$

During inflation, the scalar field can be in **slow-roll**.

 $\ddot{\phi} \ll rac{\partial V}{\partial \phi}$ and $\dot{\phi}^2 \ll V$

The slow-roll conditions are $9H^2 \gg \frac{\partial^2 V(\phi, I)}{\partial \phi^2} = m_{\text{eff}}^2(\phi) \text{ and } \sqrt{48\pi} \frac{V(\phi, I)}{m_{pl}} \gg \left| \frac{\partial V(\phi, I)}{\partial \phi} \right|.$

The first condition can be understood as the time scale for rolling down

$$\tau \sim m_{\rm eff}^{-1} = \left(\sqrt{\frac{\partial^2 V}{\partial \phi^2}}\right)^{-1} \gg H^{-1}.$$

■ As long as m_{eff} (φ) ≪ H, there is insufficient time for the scalar field to roll down.

Evolution of Scalar Fields in the Early Universe (slide 11)

• For $\frac{1}{4}\lambda\phi^4$ or the Higgs potential, the slow-roll conditions are

 $|\phi| \ll 3\lambda_{\text{eff}}^{-1/2} H_I$ and $|\phi| \ll \left(\frac{27}{4\pi}\right)^{1/6} \lambda_{\text{eff}}^{-1/3} \left(m_{pl} H_I^2\right)^{1/3}$.

Evolution of Scalar Fields in the Early Universe (slide 12)

PACIFIC 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• For $\frac{1}{4}\lambda\phi^4$ or the Higgs potential, the slow-roll conditions are

$$|\phi| \ll 3\lambda_{\text{eff}}^{-1/2} H_I$$
 and $|\phi| \ll \left(\frac{27}{4\pi}\right)^{1/6} \lambda_{\text{eff}}^{-1/3} \left(m_{pl} H_I^2\right)^{1/3}$.

The conditions for all the quantum fluctuations to be unable to roll are:

 $\lambda_{
m eff} \ll 4800$ and $\lambda_{
m eff} \ll 3 imes 10^5 \left(rac{m_{pl}}{\Lambda_I}
ight)^2,$

which are easily satisfied when $\Lambda_I < m_{pl}$.

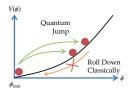
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• For $\frac{1}{4}\lambda\phi^4$ or the Higgs potential, the slow-roll conditions are

$$|\phi| \ll 3\lambda_{\text{eff}}^{-1/2} H_I$$
 and $|\phi| \ll \left(\frac{27}{4\pi}\right)^{1/6} \lambda_{\text{eff}}^{-1/3} \left(m_{pl} H_I^2\right)^{1/3}$.

The conditions for all the quantum fluctuations to be unable to roll are:

$$\lambda_{\rm eff} \ll 4800$$
 a


and

 $\lambda_{
m eff} \ll 3 imes 10^5 \left(rac{m_{pl}}{\Lambda_I}
ight)^2,$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

which are easily satisfied when $\Lambda_I < m_{pl}$.

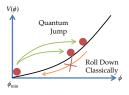
In other words, during inflation, the Higgs field can jump quantum mechanically but cannot roll down classically.

• For $\frac{1}{4}\lambda\phi^4$ or the Higgs potential, the slow-roll conditions are

$$|\phi| \ll 3\lambda_{\text{eff}}^{-1/2} H_I$$
 and $|\phi| \ll \left(\frac{27}{4\pi}\right)^{1/6} \lambda_{\text{eff}}^{-1/3} \left(m_{pl} H_I^2\right)^{1/3}$.

The conditions for all the quantum fluctuations to be unable to roll are:

$$\lambda_{\rm eff} \ll 4800$$


and

 $\lambda_{
m eff} \ll 3 imes 10^5 \left(rac{m_{pl}}{\Lambda_I}
ight)^2,$

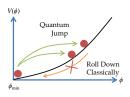
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

which are easily satisfied when $\Lambda_I < m_{pl}$.

- In other words, during inflation, the Higgs field can jump quantum mechanically but cannot roll down classically.
 - \Rightarrow a **large Higgs VEV** is developed.

Brief summary

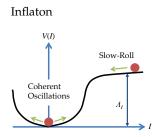
Quantum fluctuation

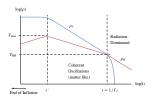

Brings the field to a VEV ϕ_0 such that

 $V_{\phi}\left(\phi_{0}\right)\sim H^{4}$

Slow rolling

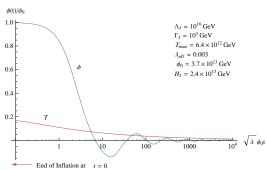
The field won't roll down if

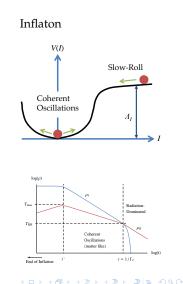

 $m_{\rm eff}^2 \ll H^2$



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

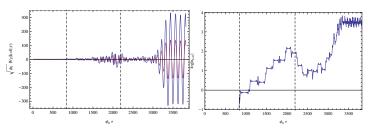
Relaxation of the Higgs field after inflation


As inflation ends, the inflaton enters the coherent oscillations regime, *H* < m_{eff} (φ₀). The Higgs field is no longer in slow-roll.



Relaxation of the Higgs field after inflation

- As inflation ends, the inflaton enters the coherent oscillations regime, *H* < m_{eff} (φ₀). The Higgs field is no longer in slow-roll.
- The Higgs then rolls down and oscillates around $\phi = 0$ with decreasing amplitude within $\tau_{\text{roll}} \sim H^{-1}$.



Evolution of Scalar Fields in the Early Universe (slide 14)

PACIFIC 2015

Relaxation of the Higgs field after inflation

During the oscillation of the Higgs field, the Higgs condensate can decay into several product particles:

Non-perturbative decay: W and Z bonsons.

 $\Lambda_I = 10^{15} \text{ GeV}$ and $\Gamma_I = 10^9 \text{ GeV}$ for IC-1

- **Perturbative** decay (thermalization): top quark.
- Those decay channels do affect the oscillation of the Higgs field but they becomes important only after several oscillations.

The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).
- Sakharov conditions:

315

(I)

- The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).
- Sakharov conditions:

1 C and CP violations

3 5

- The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).
- Sakharov conditions:
 - 1 C and CP violations
 - Out of thermal equilibrium

《曰》《曰》《曰》《曰》 《曰》

- The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).
- Sakharov conditions:
 - 1 C and CP violations
 - 2 Out of thermal equilibrium
 - 3 Lepton/Baryon number violations

315

< □ > < E > < E >

- The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).
- Sakharov conditions:
 - 1 C and CP violations
 - 2 Out of thermal equilibrium
 - 3 Lepton/Baryon number violations

Time-dependent background Higgs field + ...

- The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).
- Sakharov conditions:
 - 1 C and CP violations
 - 2 Out of thermal equilibrium

- Time-dependent background Higgs field + ...
- \leftarrow Roll down of the Higgs field
- 3 Lepton/Baryon number violations

- The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).
- Sakharov conditions:
 - 1 *C* and *CP* violations
 - 2 Out of thermal equilibrium
 - 3 Lepton/Baryon number violations

- Time-dependent background Higgs field + ...
- $\leftarrow \ \text{Roll down of the Higgs field}$
- ← Next talk by Lauren Pearce

- The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).
- Sakharov conditions:
 - 1 C and CP violations
 - 2 Out of thermal equilibrium

- Time-dependent background Higgs field + ...
- \leftarrow Roll down of the Higgs field
- 3 Lepton/Baryon number violations
- \leftarrow Next talk by Lauren Pearce
- One possibility is to have the lepton asymmetry $L \propto \partial_0 |\phi^2|$

ICs

Possible New Physics

- The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).
- Sakharov conditions:
 - 1 C and CP violations
 - 2 Out of thermal equilibrium

- Time-dependent background Higgs
 field + ...
- \leftarrow Roll down of the Higgs field
- 3 Lepton/Baryon number violations
- ← Next talk by Lauren Pearce
- One possibility is to have the lepton asymmetry $L \propto \partial_0 |\phi^2|$
 - A. Kusenko, L. Pearce, L. Yang, Phys. Rev. Lett. 114 (2015) 6, 061302

- The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).
- Sakharov conditions:
 - 1 C and CP violations
 - 2 Out of thermal equilibrium

- Time-dependent background Higgs field + ...
- \leftarrow Roll down of the Higgs field
- 3 Lepton/Baryon number violations
- ← Next talk by Lauren Pearce
- One possibility is to have the lepton asymmetry $L \propto \partial_0 |\phi^2|$
 - A. Kusenko, L. Pearce, L. Yang, Phys. Rev. Lett. 114 (2015) 6, 061302
 - L. Pearce, L. Yang, A. Kusenko, M. Peloso, Phys. Rev. D 92 (2015) 2, 023509

- The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).
- Sakharov conditions:
 - 1 C and CP violations
 - 2 Out of thermal equilibrium

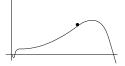
- Time-dependent background Higgs field + ...
- \leftarrow Roll down of the Higgs field
- 3 Lepton/Baryon number violations
- ← Next talk by Lauren Pearce
- One possibility is to have the lepton asymmetry $L \propto \partial_0 |\phi^2|$
 - A. Kusenko, L. Pearce, L. Yang, Phys. Rev. Lett. 114 (2015) 6, 061302
 - L. Pearce, L. Yang, A. Kusenko, M. Peloso, Phys. Rev. D 92 (2015) 2, 023509
 - L. Yang, L. Pearce, A. Kusenko, Phys. Rev. D 92 (2015) 043506

- The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).
- Sakharov conditions:
 - 1 C and CP violations
 - 2 Out of thermal equilibrium

- Time-dependent background Higgs field + ...
- \leftarrow Roll down of the Higgs field
- 3 Lepton/Baryon number violations
- ← Next talk by Lauren Pearce
- One possibility is to have the lepton asymmetry $L \propto \partial_0 |\phi^2|$
 - A. Kusenko, L. Pearce, L. Yang, Phys. Rev. Lett. 114 (2015) 6, 061302
 - L. Pearce, L. Yang, A. Kusenko, M. Peloso, Phys. Rev. D 92 (2015) 2, 023509
 - L. Yang, L. Pearce, A. Kusenko, Phys. Rev. D 92 (2015) 043506
- Similar idea for axion

- The relaxation from such large VEV opens a great channel for many interesting physics including matter-antimatter asymmetry (Leptogenesis or Baryogenesis).
- Sakharov conditions:
 - 1 C and CP violations
 - 2 Out of thermal equilibrium

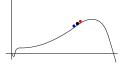
- Time-dependent background Higgs field + ...
- \leftarrow Roll down of the Higgs field
- 3 Lepton/Baryon ← Next talk number violations
 - \leftarrow Next talk by Lauren Pearce
- One possibility is to have the lepton asymmetry $L \propto \partial_0 |\phi^2|$
 - A. Kusenko, L. Pearce, L. Yang, Phys. Rev. Lett. 114 (2015) 6, 061302
 - L. Pearce, L. Yang, A. Kusenko, M. Peloso, Phys. Rev. D 92 (2015) 2, 023509
 - L. Yang, L. Pearce, A. Kusenko, Phys. Rev. D 92 (2015) 043506
- Similar idea for axion
 - A. Kusenko, K. Schmitz, and T. T. Yanagida, Phys. Rev. Lett. 115 (2015) 011302


Issue with Isocurvature Perturbations

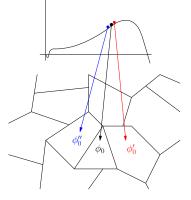
Evolution of Scalar Fields in the Early Universe (slide 17)

PACIFIC 2015

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

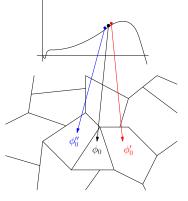

One issue for applying to Leptogenesis

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <


[Figure from Lauren Pearce]

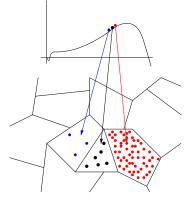
- One issue for applying to Leptogenesis
- $\phi_0 = \sqrt{\langle \phi^2 \rangle}$ is the **average** over several Hubble volumes.

[Figure from Lauren Pearce]


- One issue for applying to Leptogenesis
- $\phi_0 = \sqrt{\langle \phi^2 \rangle}$ is the **average** over several Hubble volumes.
- Each Hubble volume has different initial ϕ_0 value.

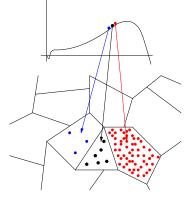
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

[[]Figure from Lauren Pearce]


- One issue for applying to Leptogenesis
- $\phi_0 = \sqrt{\langle \phi^2 \rangle}$ is the **average** over several Hubble volumes.
- Each Hubble volume has different initial ϕ_0 value.
- When inflation end, each patch of the observable universe began with different value of \u03c6₀.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

[Figure from Lauren Pearce]


- One issue for applying to Leptogenesis
- $\phi_0 = \sqrt{\langle \phi^2 \rangle}$ is the **average** over several Hubble volumes.
- Each Hubble volume has different initial ϕ_0 value.
- When inflation end, each patch of the observable universe began with **different** value of ϕ_0 .
- If $L \propto \partial_0 |\phi^2| \Rightarrow$ Different asymmetry in each Hubble volume

[Figure from Lauren Pearce]

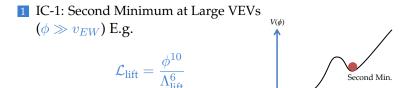
- One issue for applying to Leptogenesis
- $\phi_0 = \sqrt{\langle \phi^2 \rangle}$ is the **average** over several Hubble volumes.
- Each Hubble volume has different initial ϕ_0 value.
- When inflation end, each patch of the observable universe began with different value of \u03c6₀.
- If $L \propto \partial_0 |\phi^2| \Rightarrow$ Different asymmetry in each Hubble volume

 \Rightarrow Large **isocurvature perturbations**, which are constrainted by current CMB observation.

[Figure from Lauren Pearce]

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

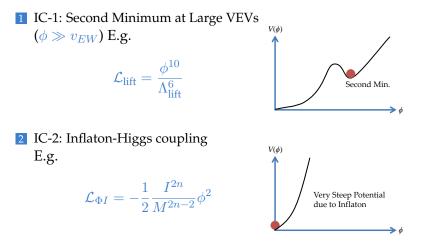
Solutions to the isocurvature perturbation issue


Solutions:

Evolution of Scalar Fields in the Early Universe (slide 19)

Solutions to the isocurvature perturbation issue

Solutions:


> φ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

ICs

Solutions to the isocurvature perturbation issue

Solutions:

IC-1: Second minimum at large VEV

Motivations:

Evolution of Scalar Fields in the Early Universe (slide 20)

PACIFIC 2015

イロト イ理ト イヨト イヨト

IC-1: Second minimum at large VEV

Motivations:

1 At large VEVs, Higgs potential is sensitive to higher-dimensional operators.

$$\mathcal{L}_{ ext{lift}} = rac{\phi^{10}}{\Lambda_{ ext{lift}}^6}$$

Evolution of Scalar Fields in the Early Universe (slide 20)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

IC-1: Second minimum at large VEV

- Motivations:
 - 1 At large VEVs, Higgs potential is sensitive to higher-dimensional operators.

$$\mathcal{L}_{ ext{lift}} = rac{\phi^{10}}{\Lambda_{ ext{lift}}^6}$$

2 There seems to be a planckian minimum below our electroweak (EW) vacuum. Our EW vacuum is not stable.

- Motivations:
 - 1 At large VEVs, Higgs potential is sensitive to higher-dimensional operators.

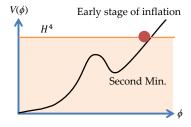
$$\mathcal{L}_{ ext{lift}} = rac{\phi^{10}}{\Lambda_{ ext{lift}}^6}$$

- 2 There seems to be a planckian minimum below our electroweak (EW) vacuum. Our EW vacuum is not stable.
- 3 A higher-dimensional operator can lift the possible planckian minimum and stablize our EW vacuum.

ICs

IC-1: Second minimum at large VEV

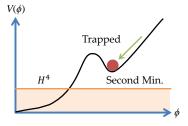
- Motivations:
 - 1 At large VEVs, Higgs potential is sensitive to higher-dimensional operators.


$$\mathcal{L}_{ ext{lift}} = rac{\phi^{10}}{\Lambda_{ ext{lift}}^6}$$

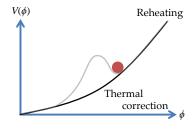
- 2 There seems to be a planckian minimum below our electroweak (EW) vacuum. Our EW vacuum is not stable.
- 3 A higher-dimensional operator can lift the possible planckian minimum and stablize our EW vacuum.
- The second minimum becomes metastable and higher than the EW vacuum.

< ロ > < 同 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 < の < の </p>

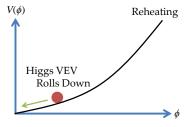
The scenario:


1 Large VEV at early stage of inflation

A B > A B >

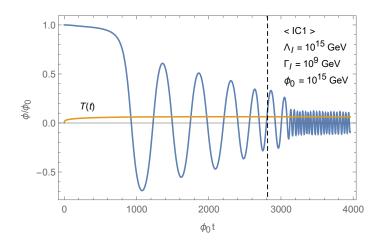

The scenario:

- 1 Large VEV at early stage of inflation
- 2 The initial Higgs VEV is trapped in this second minimum (quasi-stable vacuum) at the end of inflation.


The scenario:

- 1 Large VEV at early stage of inflation
- 2 The initial Higgs VEV is trapped in this second minimum (quasi-stable vacuum) at the end of inflation.
- 3 Reheating destablize the quasi-stable vacuum.

The scenario:


- 1 Large VEV at early stage of inflation
- 2 The initial Higgs VEV is trapped in this second minimum (quasi-stable vacuum) at the end of inflation.
- 3 Reheating destablize the quasi-stable vacuum.
- 4 Higgs field rolls down from the second minimum.

A B > A B >

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

IC-1: Second minimum at large VEV

イロト イ理ト イヨト イヨト

IC-2: Inflaton-Higgs coupling

Introduce coupling between the Higgs and inflaton field.
 E.g.

$$\mathcal{L}_{\Phi I} = -\frac{1}{2} \frac{I^{2n}}{M^{2n-2}} \phi^2.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

IC-2: Inflaton-Higgs coupling

Introduce coupling between the Higgs and inflaton field.
 E.g.

$$\mathcal{L}_{\Phi I} = -\frac{1}{2} \frac{I^{2n}}{M^{2n-2}} \phi^2.$$

 Motivations: This could be obtained by integrating out heavy states in loops.

Introduce coupling between the Higgs and inflaton field.
 E.g.

$$\mathcal{L}_{\Phi I} = -\frac{1}{2} \frac{I^{2n}}{M^{2n-2}} \phi^2.$$

- Motivations: This could be obtained by integrating out heavy states in loops.
- Induces an large effective mass

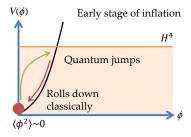
 $m_{\mathrm{eff},\phi}\left(\langle I\rangle\right) = \langle I\rangle^n / M^{n-1}$

for the Higgs field when $\langle I \rangle$ is large.

Introduce coupling between the Higgs and inflaton field.
 E.g.

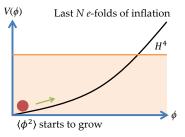
$$\mathcal{L}_{\Phi I} = -\frac{1}{2} \frac{I^{2n}}{M^{2n-2}} \phi^2.$$

- Motivations: This could be obtained by integrating out heavy states in loops.
- Induces an large effective mass

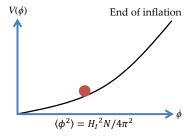

 $m_{\mathrm{eff},\phi}\left(\langle I\rangle\right) = \langle I\rangle^n / M^{n-1}$

for the Higgs field when $\langle I \rangle$ is large.

• If $m_{\text{eff},\phi}(\langle I \rangle) \gg H$ in the early stage of inflation, the slow roll condition is not satisfied.

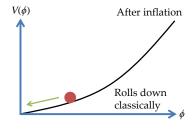

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

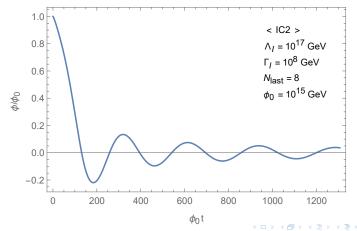
In the early stage of inflation, $\langle I \rangle$ is large. Higgs potential is steep. Slow-roll condition is not satisfied. The Higgs VEV stay at $\phi = 0$.


(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

- 1 In the early stage of inflation, $\langle I \rangle$ is large. Higgs potential is steep. Slow-roll condition is not satisfied. The Higgs VEV stay at $\phi = 0$.
- 2 At the last N_{last} e-folds of inflation, $\langle I \rangle \downarrow$, $m_{\text{eff},\phi} (\langle I \rangle) < H_I$, Higgs VEV starts to develop.

- 1 In the early stage of inflation, $\langle I \rangle$ is large. Higgs potential is steep. Slow-roll condition is not satisfied. The Higgs VEV stay at $\phi = 0$.
- 2 At the last N_{last} e-folds of inflation, $\langle I \rangle \downarrow$, $m_{\text{eff},\phi} (\langle I \rangle) < H_I$, Higgs VEV starts to develop.
- 3 At the end of inflation, the Higgs field has obtained a VEV


$$\phi_0 = \sqrt{\langle \phi^2 \rangle} = \frac{H_I}{2\pi} \sqrt{N_{\text{last}}}.$$


- In the early stage of inflation, $\langle I \rangle$ is large. Higgs potential is steep. Slow-roll condition is not satisfied. The Higgs VEV stay at $\phi = 0$.
- 2 At the last N_{last} e-folds of inflation, $\langle I \rangle \downarrow$, $m_{\text{eff},\phi} (\langle I \rangle) < H_I$, Higgs VEV starts to develop.
- 3 At the end of inflation, the Higgs field has obtained a VEV

$$\phi_0 = \sqrt{\langle \phi^2 \rangle} = \frac{H_I}{2\pi} \sqrt{N_{\rm last}}. \label{eq:phi_last}$$

4 The Higgs VEV then rolls down from
$$\phi_0$$
.

■ For *N*_{last} = 5 − 8, the isocurvature perturbation only develops on the **small angular scales** which are not yet constrained.

 During inflation, the Higgs field can obtain a large VEV through quantum fluctuation, but the field cannot roll down due to inflationary background.

(I)

- During inflation, the Higgs field can obtain a large VEV through quantum fluctuation, but the field cannot roll down due to inflationary background.
- As the inflation end, the Higgs field rolls down within around Hubble time scale and oscillates around its minimum.

• • = • • = •

- During inflation, the Higgs field can obtain a large VEV through quantum fluctuation, but the field cannot roll down due to inflationary background.
- As the inflation end, the Higgs field rolls down within around Hubble time scale and oscillates around its minimum.
- Through the relaxation of the Higgs or other scalar fields, Letpogenesis and Baryongenesis are possible.

- During inflation, the Higgs field can obtain a large VEV through quantum fluctuation, but the field cannot roll down due to inflationary background.
- As the inflation end, the Higgs field rolls down within around Hubble time scale and oscillates around its minimum.
- Through the relaxation of the Higgs or other scalar fields, Letpogenesis and Baryongenesis are possible.
- Possible issue with isocurvature perturbation can be solved by introducing higher dimensional operators.

- During inflation, the Higgs field can obtain a large VEV through quantum fluctuation, but the field cannot roll down due to inflationary background.
 - As the inflation end, the Higgs field rolls down within around Hubble time scale and oscillates around its minimum.
 - Through the relaxation of the Higgs or other scalar fields, Letpogenesis and Baryongenesis are possible.
 - Possible issue with isocurvature perturbation can be solved by introducing higher dimensional operators.

Thank you for your listening!

■ The Universe appears to be almost homogeneous and isotropic today ⇒ Inflation

イロト イポト イヨト イヨト 油

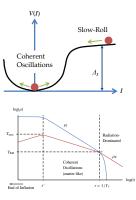
- The Universe appears to be almost homogeneous and isotropic today ⇒ Inflation
- In the early universe, the energy density was dominated by vacuum energy.

- The Universe appears to be almost homogeneous and isotropic today ⇒ Inflation
- In the early universe, the energy density was dominated by vacuum energy.
- Inflation from a real scalar field: Inflaton I(x)

$$\mathcal{L}_{I} = \frac{1}{2} g^{\mu\nu} \partial_{\mu} I \partial_{\nu} I - V_{I} \left(I \right)$$

(日)

- The Universe appears to be almost homogeneous and isotropic today ⇒ Inflation
- In the early universe, the energy density was dominated by vacuum energy.
- Inflation from a real scalar field: Inflaton I(x)

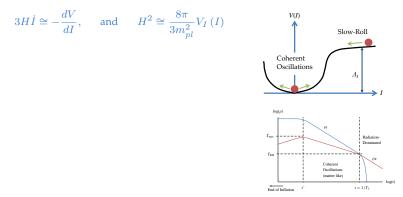

$$\mathcal{L}_{I} = \frac{1}{2} g^{\mu\nu} \partial_{\mu} I \partial_{\nu} I - V_{I} \left(I \right)$$

The equation of motion is

$$\ddot{I} + 3H\dot{I} + \Gamma_{I}\dot{I} + \frac{dV_{I}(I)}{dI} = 0, \quad \text{with} \quad H^{2} \equiv \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi}{3m_{pl}^{2}}\left(\rho_{I} + \rho_{other}\right)$$

where we assume a uniform field configuration and a FRW spacetime $ds^2 = dt^2 - a(t)^2 (dr^2 + r^2 d\Omega^2)$.

1 Slow-roll (inflation) regime: $\ddot{I} \ll \frac{dV}{dI}$ and $\dot{I}^2 \ll V$.

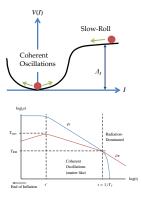

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Evolution of Scalar Fields in the Early Universe (slide 28)

PACIFIC 2015

1 Slow-roll (inflation) regime: $\ddot{I} \ll \frac{dV}{dI}$ and $\dot{I}^2 \ll V$.

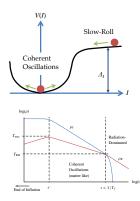
 Γ_I is not active.



Evolution of Scalar Fields in the Early Universe (slide 28)

- **1** Slow-roll (inflation) regime: $\ddot{I} \ll \frac{dV}{dI}$ and $\dot{I}^2 \ll V$.
 - $\ \ \Gamma_I$ is not active.

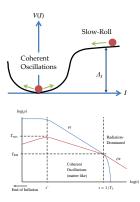
 $3H\dot{I} \simeq -\frac{dV}{dI}$, and $H^2 \simeq \frac{8\pi}{3m_{pl}^2} V_I(I)$



- **1** Slow-roll (inflation) regime: $\ddot{I} \ll \frac{dV}{dI}$ and $\dot{I}^2 \ll V$.
 - $\ \ \Gamma_I$ is not active.

 $3H\dot{I} \cong -\frac{dV}{dI}$, and $H^2 \cong \frac{8\pi}{3m_{pl}^2}V_I(I)$

- Inflaton acts like vacuum energy. $a(t) \propto e^{Ht}$
- **2** Coherent oscillations regime: $a(t) \propto (t t_i)^{2/3}$

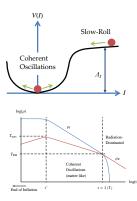


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- **1** Slow-roll (inflation) regime: $\ddot{I} \ll \frac{dV}{dI}$ and $\dot{I}^2 \ll V$.
 - Γ_I is not active.

 $3H\dot{I} \cong -\frac{dV}{dI}$, and $H^2 \cong \frac{8\pi}{3m_{pl}^2}V_I(I)$

- Inflaton acts like vacuum energy. $a(t) \propto e^{Ht}$
- **2** Coherent oscillations regime: $a(t) \propto (t t_i)^{2/3}$
 - Inflaton acts like non-relativistic particle. The Universe is matter-dominated.



- **1** Slow-roll (inflation) regime: $\ddot{I} \ll \frac{dV}{dI}$ and $\dot{I}^2 \ll V$.
 - Γ_I is not active.

 $3H\dot{I} \cong -\frac{dV}{dI}$, and $H^2 \cong \frac{8\pi}{3m_{pl}^2}V_I(I)$

- Inflaton acts like vacuum energy. $a(t) \propto e^{Ht}$
- **2** Coherent oscillations regime: $a(t) \propto (t t_i)^{2/3}$
 - Inflaton acts like non-relativistic particle. The Universe is matter-dominated.
 - Inflaton then decays into relativistic particles ρ_R .

$$\dot{\rho_I} + 3H\rho_I + \Gamma_I\rho_I = 0 \quad \Rightarrow \quad \rho_I(t) = \frac{\Lambda_I^4}{a(t)^3} e^{-\Gamma_I t}$$

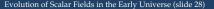
- **1** Slow-roll (inflation) regime: $\ddot{I} \ll \frac{dV}{dI}$ and $\dot{I}^2 \ll V$.
 - $\ \ \Gamma_I$ is not active.

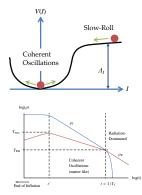

 $3H\dot{I} \cong -\frac{dV}{dI}$, and $H^2 \cong \frac{8\pi}{3m_{pl}^2}V_I(I)$

- Inflaton acts like vacuum energy. $a(t) \propto e^{Ht}$
- **2** Coherent oscillations regime: $a(t) \propto (t t_i)^{2/3}$
 - Inflaton acts like non-relativistic particle. The Universe is matter-dominated.
 - Inflaton then decays into relativistic particles ρ_R .

$$\dot{\rho_I} + 3H\rho_I + \Gamma_I\rho_I = 0 \quad \Rightarrow \quad \rho_I(t) = \frac{\Lambda_I^4}{a(t)^3} e^{-\Gamma_I t}$$

3 Radiation-dominated regime: $a(t) \propto (t - t_i)^{1/2}$


- **1** Slow-roll (inflation) regime: $\ddot{I} \ll \frac{dV}{dI}$ and $\dot{I}^2 \ll V$.
 - Γ_I is not active.


 $3H\dot{I} \cong -\frac{dV}{dI}$, and $H^2 \cong \frac{8\pi}{3m_{pl}^2}V_I(I)$

- Inflaton acts like vacuum energy. $a(t) \propto e^{Ht}$
- **2** Coherent oscillations regime: $a(t) \propto (t t_i)^{2/3}$
 - Inflaton acts like non-relativistic particle. The Universe is matter-dominated.
 - Inflaton then decays into relativistic particles ρ_R .

$$\dot{\rho_I} + 3H\rho_I + \Gamma_I\rho_I = 0 \quad \Rightarrow \quad \rho_I(t) = \frac{\Lambda_I^4}{a(t)^3} e^{-\Gamma_I t}$$

- **3** Radiation-dominated regime: $a(t) \propto (t t_i)^{1/2}$
 - At $t = 1/\Gamma_I$, most of the inflatons decay into ρ_R , and the reheating is complete.

PACIFIC 2015

The Hawking-Moss Tunneling

If $|V(\phi_f) - V(\phi_i)| \ll V(\phi_i)$, we have

$$S_{E}(\phi_{i}) - S_{E}(\phi_{f}) = -\frac{3m_{pl}^{4}}{8} \left[\frac{1}{V(\phi_{i})} - \frac{1}{V(\phi_{f})} \right] \approx -\frac{3m_{pl}^{4}}{8} \frac{V(\phi_{f}) - V(\phi_{i})}{V(\phi_{i})^{2}}$$

イロト イポト イヨト イヨト 油

The Hawking-Moss Tunneling

If
$$|V(\phi_f) - V(\phi_i)| \ll V(\phi_i)$$
, we have

$$S_{E}(\phi_{i}) - S_{E}(\phi_{f}) = -\frac{3m_{pl}^{4}}{8} \left[\frac{1}{V(\phi_{i})} - \frac{1}{V(\phi_{f})} \right] \approx -\frac{3m_{pl}^{4}}{8} \frac{V(\phi_{f}) - V(\phi_{i})}{V(\phi_{i})^{2}}$$

The transition rate is then

$$\frac{\Gamma}{\mathcal{V}} \propto \exp\left(-\frac{3m_{pl}^4}{8} \frac{V\left(\phi_f\right) - V\left(\phi_i\right)}{V\left(\phi_i\right)^2}\right)$$

★ E ► < E ►</p>

The Hawking-Moss Tunneling

If
$$|V(\phi_f) - V(\phi_i)| \ll V(\phi_i)$$
, we have

$$S_{E}(\phi_{i}) - S_{E}(\phi_{f}) = -\frac{3m_{pl}^{4}}{8} \left[\frac{1}{V(\phi_{i})} - \frac{1}{V(\phi_{f})} \right] \approx -\frac{3m_{pl}^{4}}{8} \frac{V(\phi_{f}) - V(\phi_{i})}{V(\phi_{i})^{2}}$$

The transition rate is then

$$\frac{\Gamma}{\mathcal{V}} \propto \exp\left(-\frac{3m_{pl}^4}{8} \frac{V\left(\phi_f\right) - V\left(\phi_i\right)}{V\left(\phi_i\right)^2}\right)$$

Thus, the transition is not suppressed as long as

$$V\left(\phi_{f}\right) - V\left(\phi_{i}\right) < \frac{8}{3m_{pl}^{4}}V\left(\phi_{i}\right)^{2}$$

Reheating

As inflation ends, the inflatons enter the coherent oscillations regime, the Higgs field is no longer in slow-roll. In this case, we have to consider the full equation of motion

$$\ddot{\phi} + 3H\dot{\phi} + \Gamma_{\phi}\dot{\phi} = -\frac{\partial V_H(\phi)}{\partial\phi}.$$

Reheating

As inflation ends, the inflatons enter the coherent oscillations regime, the Higgs field is no longer in slow-roll. In this case, we have to consider the full equation of motion

$$\ddot{\phi} + 3H\dot{\phi} + \Gamma_{\phi}\dot{\phi} = -\frac{\partial V_H(\phi)}{\partial\phi}.$$

The Hubble parameter and the temperature of the plasma are determined by

$$\begin{split} \dot{\rho}_r + 4H\rho_r &= \Gamma_I \rho_I, \\ H^2 &= \frac{8\pi G}{3} \left(\rho_I + \rho_r \right), \\ \rho_r &= \frac{\pi^2}{30} g_* T^4. \end{split}$$

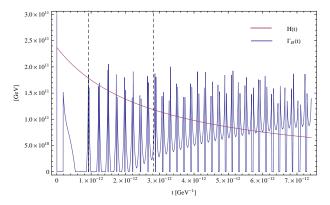
Reheating

As inflation ends, the inflatons enter the coherent oscillations regime, the Higgs field is no longer in slow-roll. In this case, we have to consider the full equation of motion

$$\ddot{\phi} + 3H\dot{\phi} + \Gamma_{\phi}\dot{\phi} = -\frac{\partial V_H(\phi)}{\partial\phi}.$$

The Hubble parameter and the temperature of the plasma are determined by

$$\dot{\rho}_r + 4H\rho_r = \Gamma_I \rho_I,$$


$$H^2 = \frac{8\pi G}{3} \left(\rho_I + \rho_r\right),$$

$$\rho_r = \frac{\pi^2}{30} g_* T^4.$$

While the decay of Higgs may produce some non-zero lepton number by itself, most of the plasma are generated by the decay of inflaton.

Perturbative decay (thermalization) to top quark

Thermalization rate is comparable to the Hubble parameter only after the maximum reheating has been reached.

H(t) vs $\Gamma_H(t)$ through top quark for IC-1, with the parameters $\Lambda_I = 10^{15}$ GeV and $\Gamma_I = 10^9$ GeV. The vertical lines: the first time the Higgs VEV crosses zero, and the time of maximum reheating, from left to right.

Evolution of Scalar Fields in the Early Universe (slide 31)