The Search for Helical Intergalactic Magnetic Fields

Tanmay Vachaspati

Cosmology Initiative

Based on:

H. Tashiro, W. Chen, F. Ferrer & T. Vachaspati, MNRAS Lett. 445(1), L41 (2014); H. Tashiro & T. Vachaspati, MNRAS 448, 299 (2015); W. Chen, B. Chowdhury, F. Ferrer, H. Tashiro & T. Vachaspati, MNRAS 450, 3371 (2015). A. Long & T. Vachaspati, MNRAS (2015).

<u>Protected</u>: Helicity is conserved in ideal MHD.

Inverse cascade: Evolution from small to large length scales.

<u>Predicted in matter-genesis scenarios</u>: via baryon # violation.

Enhances detectability: via parity odd signature.

Baryon number violation produces helical magnetic fields.

$$\mathcal{H}(t) = \int d^3x \, \mathbf{A} \cdot \mathbf{B}$$

Baryon number violation in standard model proceeds via a "sphaleron".

sphaleron = twisted monopole-antimonopole

3

Taubes; Manton; Manton&Klinkhamer; TV & Field; Hindmarsh & James.

• sphaleron decay produces helical **B** (numerical and analytical)

Copi, Ferrer, TV & Achucarro, 2008 Diaz-Gil, Garcia-Bellido, Perez & Gonzalez-Arroyo, 2008 Chen, Dent & TV, 2010

Cosmological magnetic helicity

Every $\Delta B \implies \Delta \mathcal{H}$

$$\Rightarrow \qquad h \approx -\#\frac{n_b}{\alpha}$$

J. Cornwall

TΥ

Statistical Description:

$$\langle B_i(\mathbf{x} + \mathbf{r}) B_j(\mathbf{x}) \rangle = M_N(r) \left[\delta_{ij} - \frac{r_i r_j}{r^2} \right] + M_L(r) \frac{r_i r_j}{r^2} + M_H(r) \epsilon_{ijl} r^l$$

What is a good strategy to detect & measure magnetic helicity?

i.e. not just B but the twisting of B.

Kahniashvili & Vachaspati, 2006 (cosmic rays) Tashiro & Vachaspati, 2013 & 2015 (gamma rays)

Cascade halos from TeV blazars

Gould & Schreder, 1967; Coppi & Aharonian, 1998; Neronov & Semikoz, 2009

 $D_{\rm TeV} \sim 100 \ {
m Mpc}, \ D_e \sim 30 \ {
m kpc}, \ D_\gamma \sim D_s \sim 1 \ {
m Gpc}$

A Lower Bound? B-Detection?

Neronov & Vovk, 2010; Ando & Kusenko, 2010; Essey, Ando & Kusenko, 2011; Chen, Buckley & Ferrer, 2015.

Hints for cascade photons from (stacked) sources.

Halo Morphology: Simulations

Elyiv, Neronov & Semikoz, 2009 A. Long & TV, 2015

Non-helical B. Single mode.

Halo Morphology: Simulations

A. Long & TV, 2015

Helical B. Single mode.

Monte Carlo Simulations

Preliminary: Batista, Saveliev, Sigl & TV, in progress

Cascade halos from (unseen*) blazars.

 $Q(R) = \langle \mathbf{n}_1 \times \mathbf{n}_2 \cdot \mathbf{n}_3 \rangle_R$

*Hundreds of unseen blazars for every seen blazar.

Gamma ray correlators

Tashiro & TV, 2013 Kahniashvili & TV, 2006

Relate correlators of arriving gamma rays to magnetic field correlators:

$$G(E_1, E_2) = \langle \boldsymbol{\Theta}(E_1) \times \boldsymbol{\Theta}(E_2) \cdot \hat{\mathbf{x}} \rangle \propto \frac{1}{2} M_H(|r_{12}|) r_{12}$$
$$B_i(\mathbf{x} + \mathbf{r}) B_j(\mathbf{x}) \rangle = M_N(r) \left[\delta_{ij} - \frac{r_i r_j}{r^2} \right] + M_L(r) \frac{r_i r_j}{r^2} + M_H(r) \epsilon_{ijl} r^l$$

Different energy combinations probe magnetic field on different length scales.

Scheme

Tashiro, Chen, Ferrer & Vachaspati, 2014

 $Q(R) = \langle \mathbf{n}_1 \times \mathbf{n}_2 \cdot \mathbf{n}_3 \rangle_R$

Patches on the galactic sky

— Implement —

Find $Q(R) = \langle \mathbf{n}_1 \times \mathbf{n}_2 \cdot \mathbf{n}_3 \rangle_R$ using existing data.

Fermi-LAT CLEAN data

(through mid-September 2013)

	10-20 GeV	20-30 GeV	30-40 GeV	$40-50 \mathrm{GeV}$	$50-60 \mathrm{GeV}$
$North(> 60^{\circ})$	3098	772	345	168	73
$\operatorname{South}(>60^\circ)$	2816	661	281	126	74
Total $(> 60^{\circ})$	5914	1433	626	294	147
$\operatorname{North}(>70^\circ)$	1322	340	156	79	40
$\operatorname{South}(>70^\circ)$	1146	276	120	57	30
Total $(> 70^{\circ})$	2468	616	276	136	70
$\operatorname{North}(>80^\circ)$	276	74	31	19	9
$\operatorname{South}(>80^\circ)$	293	59	20	14	12
Total $(> 80^{\circ})$	569	133	51	33	21

TABLE I. Number of photons for each energy bin.

Don't know which photons are "cascade" (signal) and which are "non-cascade" (noise).

Fermi-LAT Exposure

Model Q(R): features

Peak in Q(R): Q(R) goes to zero at small R because of patch size, and at large R because of contamination by background.

Location of peak: depends mainly on E2.

 $R_{\text{peak}}(E_2) \approx R_{\text{peak},0} \left(\frac{E_2^{(0)}}{E_2}\right)^{3/2}$ based on model:Tashiro&TV

Height of peak: depends on magnetic correlation function M_H. Use height to reconstruct M_H.

Sign of peak: all peaks should have the same sign as B handedness (assumes small bending).

2.70×10¹¹ Fermi-LA® Pass 7 & MC with Exposure

GLON

GLON

 1.86×10^{11}

R degrees

Statistical significance $p \sim 1-3\%$ depending on the exact test.

Milky Way Contamination?

- At R less than ~20 degrees Milky Way contamination is minimal (see plots). The 30, 40 GeV data sets are especially clean.
- The signal has a peak structure whereas expect Milky Way contamination to lead to a monotonically increasing signal until very large R (~80 degrees).

Fermi-LAT Pass 8 data

Significant revision of old data set plus some new data.

P7-Ultraclean vs. P8-Ultraclean veto, $b > 80^{\circ}$, 50 GeV < E < 60 GeV.

Event ID	$\Delta \mathrm{b}$	Δl	$\Delta \mathbf{E} \; [\text{GeV}]$	Added/Dropped
5503488	-0.04	0.30	-2.7	—
4890690	0.01	-0.19	-3.1	_
4153460	-0.26	-4.64	4.5	_
15968068	0.04	-0.77	-3.6	_
8820606	-0.05	-0.19	1.0	-
2970731	0.02	-0.50	-3.0	-
4550395	0.01	0.08	-0.5	-
6030395	0.03	0.43	-0.8	-
416328	0.01	1.0	-0.4	-
3628595	0.03	-0.01	2.2	-
4897015	0.08	0.74	-0.2	-
3518924	-0.11	0.58	0.1	-
6336309	-0.07	0.11	1.7	-
3193818	-0.01	0.57	-0.5	-
4677466	0.01	-0.95	-1.3	-
7533363	3.8	0.04	2.8	-
4715735	0.01	-0.03	-0.7	-
6586539	0.01	0.004	-6.6	-
5554658	0.01	0.05	-0.1	—
5082626	0.08	0.12	-1.0	Source in P8
7693919	0.58	-2.25	-2.4	Source in P8
4873062	0.06	0.57	1.8	Source in P8
11159439	0.01	-0.02	-1.8	Source in P8
7316118	—	—	—	Not in P8
4708017	—	_	_	Not in P8
672765	—	_	_	Not in P8
5706981	—	_	_	Not in P8
6745444	_	_	—	Not in P8
5092183	—	_	_	Not in P8
5971682	—	_	_	Not in P8
5475541	_	_	—	Not in P8
4794054	_	_	_	Not in P8

In addition the following new events are new in P8: 1391689, 1851782, 2056790, 2077838, 2126241, 2347872, 2580764, 3045655, 3605689, 3781886, 4086287, 5387126, 5431401, 5627146, 5803756, 5988863, 6122538, 7030348, 7418123, 8332252, 10163628, 10602321, 10828931, 11008279.

Fermi-LAT Pass 8 & MC with Exposure

North/South, week 328, Pass 8

Week 369, Pass 8

North/South, Week 369, Pass 8

Conclusions

Virtues of helicity:

- Magnetic helicity *aids* detection of B and allows us to measure the magnetic power spectra.
- Helicity can distinguish cosmological/astrophysical fields, primordial/causal mechanisms, baryo/lepto-genesis.

Effect of helicity:

• Analysis+simulations show spirals in cascade gamma rays.

Observation of helicity:

• Analysis of Pass8 data hints at a signal but not conclusive (yet).