The Search for Helical Intergalactic Magnetic Fields

Tanmay Vachaspati

Cosmology Initiative

1
UNIVERSITY

Based on:
H.Tashiro, W. Chen, F. Ferrer \& T.Vachaspati, MNRAS Lett. 445(I), L4I (2014);
H.Tashiro \& T.Vachaspati, MNRAS 448, 299 (20I5) ;
W. Chen, B. Chowdhury, F. Ferrer, H.Tashiro \& T.Vachaspati, MNRAS 450, 337 I (2015).
A. Long \& T.Vachaspati, MNRAS (20I5).

Why helical?

Protected: Helicity is conserved in ideal MHD.
Inverse cascade: Evolution from small to large length scales.
Predicted in matter-genesis scenarios: via baryon \# violation.
Enhances detectability: via parity odd signature.

Baryon number violation produces helical magnetic fields.

$$
\mathcal{H}(t)=\int d^{3} x \mathbf{A} \cdot \mathbf{B}
$$

Baryon number violation in standard model proceeds via a "sphaleron".
sphaleron $=$ twisted monopole-antimonopole
Taubes;
Manton;
Manton\&Klinkhamer;
TV \& Field;
Hindmarsh \& James.

- sphaleron decay produces helical B (numerical and analytical)

Copi, Ferrer,TV \& Achucarro, 2008
Diaz-Gil, Garcia-Bellido, Perez \& Gonzalez-Arroyo, 2008
Chen, Dent \& TV, 2010

Cosmological magnetic helicity

$$
\text { Every } \Delta B \Longrightarrow \Delta \mathcal{H} \quad \begin{gathered}
\text { J. Cornwall } \\
\text { Tv }
\end{gathered}
$$

$$
\Longrightarrow \quad h \approx-\# \frac{n_{b}}{\alpha}
$$

Statistical Description:

$$
\left\langle B_{i}(\mathbf{x}+\mathbf{r}) B_{j}(\mathbf{x})\right\rangle=M_{N}(r)\left[\delta_{i j}-\frac{r_{i} r_{j}}{r^{2}}\right]+M_{L}(r) \frac{r_{i} r_{j}}{r^{2}}+M_{H}(r) \epsilon_{i j l} r^{l}
$$

What is a good strategy to detect \& measure magnetic helicity?

i.e. not just B but the twisting of B.

Kahniashvili \& Vachaspati, 2006 (cosmic rays)
Tashiro \& Vachaspati, 2013 \& 2015 (gamma rays)

Cascade halos from TeV blazars

Gould \& Schreder, 1967; Coppi \& Aharonian, 1998; Neronov \& Semikoz, 2009

A Lower Bound? B-Detection?

Neronov \&Vovk, 2010; Ando \& Kusenko, 2010; Essey, Ando \& Kusenko, 201I; Chen, Buckley \& Ferrer, 2015.

Missing GeV photons attributed to $B>10^{-16}$ Gauss.
Uses spectral information alone.
Plasma instabilities? Broderick, Chang \& Pfrommer, 2012

Stacked Analyses

Ando \& Kusenko, 2010; Chen, Buckley \& Ferrer, 2015.
Hints for cascade photons from (stacked) sources.

Halo Morphology: Simulations

Elyiv, Neronov \& Semikoz, 2009
Non-helical B. Single mode. A. Long \& TV, 2015

Halo Morphology: Simulations

Helical B. Single mode.

Monte Carlo Simulations

Preliminary: Batista, Saveliev, Sigl \& TV, in progress

Cascade halos from (unseen*) blazars.

*Hundreds of unseen blazars for every seen blazar.

Gamma ray correlators

Tashiro \& TV, 2013
Kahniashvili \&TV, 2006

Relate correlators of arriving gamma rays to magnetic field correlators:

$$
\begin{aligned}
G\left(E_{1}, E_{2}\right) & =\left\langle\boldsymbol{\Theta}\left(E_{1}\right) \times \boldsymbol{\Theta}\left(E_{2}\right) \cdot \hat{\mathbf{x}}\right\rangle \propto \frac{1}{2} M_{H}\left(\left|r_{12}\right|\right) r_{12} \\
\left\langle B_{i}(\mathbf{x}+\mathbf{r}) B_{j}(\mathbf{x})\right\rangle & =M_{N}(r)\left[\delta_{i j}-\frac{r_{i} r_{j}}{r^{2}}\right]+M_{L}(r) \frac{r_{i} r_{j}}{r^{2}}+M_{H}(r) \epsilon_{i j l} r^{l}
\end{aligned}
$$

Different energy combinations probe magnetic field on different length scales.

Scheme

Tashiro, Chen, Ferrer \& Vachaspati, 2014

Patches on the galactic sky

- Implement -

Find $\mathrm{Q}(\mathrm{R})=\left\langle\mathbf{n}_{1} \times \mathbf{n}_{2} \cdot \mathbf{n}_{3}\right\rangle_{\mathrm{R}}$ using existing data.

Fermi-LAT CLEAN data

(through mid-September 2013)

	$10-20 \mathrm{GeV}$	$20-30 \mathrm{GeV}$	$30-40 \mathrm{GeV}$	$40-50 \mathrm{GeV}$	$50-60 \mathrm{GeV}$
North $\left(>60^{\circ}\right)$	3098	772	345	168	73
South $\left(>60^{\circ}\right)$	2816	661	281	126	74
Total $\left(>60^{\circ}\right)$	5914	1433	626	294	147
North $\left(>70^{\circ}\right)$	1322	340	156	79	40
South $\left(>70^{\circ}\right)$	1146	276	120	57	30
Total $\left(>70^{\circ}\right)$	2468	616	276	136	70
North $\left(>80^{\circ}\right)$	276	74	31	19	9
South $\left(>80^{\circ}\right)$	293	59	20	14	12
Total $\left(>80^{\circ}\right)$	569	133	51	33	21

TABLE I. Number of photons for each energy bin.
Don't know which photons are "cascade" (signal) and which are "non-cascade" (noise).

Fermi-LAT Exposure

Model $Q(R)$: features

Peak in $Q(R): Q(R)$ goes to zero at small R because of patch size, and at large R because of contamination by background.

Location of peak: depends mainly on E2.

$$
R_{\text {peak }}\left(E_{2}\right) \approx R_{\text {peak }, 0}\left(\frac{E_{2}^{(0)}}{E_{2}}\right)^{3 / 2} \text { based on model:Tashiro\&TV }
$$

Height of peak: depends on magnetic correlation function M_H. Use height to reconstruct M_H.

Sign of peak: all peaks should have the same sign as B handedness (assumes small bending).

Fermi-LAT Pass 7

\& MC with Exposure

Statistical significance $\mathrm{p}^{\sim} 1-3 \%$ depending on the exact test.

Milky Way Contamination?

- At R less than ~ 20 degrees Milky Way contamination is minimal (see plots). The $30,40 \mathrm{GeV}$ data sets are especially clean.
- The signal has a peak structure whereas expect Milky Way contamination to lead to a monotonically increasing signal until very large R (~ 80 degrees).

Fermi-LAT Pass 8 data

Significant revision of old data set plus some new data.

P7-Ultraclean vs. P8-Ultracleanveto, $b>80^{\circ}, 50 \mathrm{GeV}<E<60 \mathrm{GeV}$.

Event ID	$\mathbf{\Delta b}$	$\boldsymbol{\Delta l}$	$\boldsymbol{\Delta} \mathbf{E}[\mathrm{GeV}]$	Added/Dropped
5503488	-0.04	0.30	-2.7	-
4890690	0.01	-0.19	-3.1	-
4153460	-0.26	-4.64	4.5	-
15968068	0.04	-0.77	-3.6	-
8820606	-0.05	-0.19	1.0	-
2970731	0.02	-0.50	-3.0	-
4550395	0.01	0.08	-0.5	-
6030395	0.03	0.43	-0.8	-
416328	0.01	1.0	-0.4	-
3628595	0.03	-0.01	2.2	-
4897015	0.08	0.74	-0.2	-
3518924	-0.11	0.58	0.1	-
6336309	-0.07	0.11	1.7	-
3193818	-0.01	0.57	-0.5	-
4677466	0.01	-0.95	-1.3	-
7533363	3.8	0.04	2.8	-
4715735	0.01	-0.03	-0.7	-
6586539	0.01	0.004	-6.6	-
5554658	0.01	0.05	-0.1	-
5082626	0.08	0.12	-1.0	Source in P8
7693919	0.58	-2.25	-2.4	Source in P8
4873062	0.06	0.57	1.8	Source in P8
11159439	0.01	-0.02	-1.8	Source in P8
7316118	-	-	-	Not in P8
4708017	-	-	-	Not in P8
672765	-	-	-	Not in P8
5706981	-	-	-	Not in P8
6745444	-	-	-	Not in P8
5092183	-	-	-	Not in P8
5971682	-	-	-	Not in P8
5475541	-	-	-	Not in P8
4794054	-	-	-	Not in P8

In addition the following new events are new in P8: 1391689, 1851782, 2056790, 2077838, 2126241, 2347872, 2580764, 3045655, 3605689, 3781886, 4086287, $5387126,5431401,5627146,5803756,5988863,6122538,7030348,7418123,8332252$, 10163628, 10602321, 10828931, 11008279.

Fermi-LAT Pass 7

\& MC with Exposure

Statistical significance p~1-3\% depending on the exact test.

Fermi-LAT Pass 8 \& MC with Exposure

 Preliminary: Chen, Ferrer, Tashiro \& TV, in progress

North/South, week 328, Pass 8

Preliminary: Chen, Ferrer, Tashiro \& TV, in progress

Week 369, Pass 8

 Preliminary: Chen, Ferrer, Tashiro \& TV, in progress

North/South,Week 369, Pass 8

Preliminary: Chen, Ferrer, Tashiro \& TV, in progress

Conclusions

Virtues of helicity:

- Magnetic helicity *aids* detection of B and allows us to measure the magnetic power spectra.
- Helicity can distinguish cosmological/astrophysical fields, primordial/causal mechanisms, baryo/lepto-genesis.

Effect of helicity:

- Analysis+simulations show spirals in cascade gamma rays.

Observation of helicity:

- Analysis of Pass8 data hints at a signal but not conclusive (yet).

