What is the universe made of?

The view from strong lensing

TOMMASO **TREU** (University of California Los Angeles)

Outline

- Introduction. The view from Earth:
 - The standard model of particle physics
- The view from the Universe
 - Gravitational time delays and Dark energy
 - Strong lensing and dark matter
 - The quest for more lenses

The view from Earth: standard model of particle physics

The view from the universe

What is the universe made of? (2013-2015)

Cosmography with

gravitational lensing

Cosmography from time delays: how does it work?

Strong lensing in terms of Fermat's principle

Time delay distance

Shapiro delay

$$t(\vec{\theta}) = \frac{(1+z_{\rm d})}{c} \frac{D_{\rm d}D_{\rm s}}{D_{\rm ds}} \left[\frac{1}{2} (\vec{\theta} - \vec{\beta})^2 - \psi(\vec{\theta}) \right]$$

Excess time delay

geometric time delay

Observables: flux, position, and arrival time of the multiple images

Time delay distance in practice

 $\Delta t \propto D_{\Delta t}(z_s, z_d) \propto H_0^{-1} f(\overline{\Omega_m, w, \dots})$

Steps:

- Measure the time-delay between two images
- Measure and model the potential
- Infer the time-delay distance
- Convert it into cosmlogical parameters

The power of time-delays (and other low-z probes)

Suyu, Treu et al. 2014

Cosmography from time delays: A brief history

- * 1964 Method proposed
- * 70s First lenses discovered
- * 80s First time delay measured
 - * Controversy. Solution: improve sampling
- * 90s First Hubble Constant measured
 - * Controversy. Solution: improve mass models
- * 2000s: modern monitoring (COSMOGRAIL, Fassnacht & others); stellar kinematics (Treu & Koopmans 2002); extended sources
- * 2010s Putting it all together: precision measurements (6-7% from a single lens)
- * 2014 first multiply imaged supernova discovered (50th anniversary of Refsdal's paper)

November 2014 Supernova 'Refsdal'

Cosmography with strong lenses: the 4 problems solved

- * Time delay 2-3 %
 * Tenacious monitoring (e.g. Fassnacht et al. 2002); COSMOGRAIL (Meylan/Courbin)
- * Astrometry 10-20 mas
 * Hubble/VLA/(Adaptive Optics?)
- Lens potential (2-3%)
 Stellar kinematics/Extended sources (Treu & Koopmans 2002; Suyu et al. 2009)
- * Structure along the line of sight (2-3%)
 - * Galaxy counts and numerical simulations (Suyu et al. 2009)
 - * Stellar kinematics (Koopmans et al. 2003)

Cosmological Results

Blinded

In combination with WMAP7 in flat wCDM cosmology

Precision comparable to that of B1608+656

Accuracy?

After completing the blind analysis and agreeing we would publish the results without modification once unblinded...

Constraints from Two Lenses

In combination with WMAP7 in wCDM cosmology: $H_0 = 75.2^{+4.4}_{-4.2} \text{ km s}^{-1} \text{ Mpc}^{-1}$ $\Omega_{de} = 0.76^{+0.02}_{-0.03}$ $w = -1.14^{+0.17}_{-0.20}$

(Suyu et al. 2013)

Cosmological Probe Comparison

WMAP7owCDM prior

(Suyu et al. 2013)

contour orientations are different: complementarity b/w probes
contour sizes are similar: lensing is a competitive probe

Immediate prospects

Currently working on 9 lenses

Future Prospects

•Currently ~10 lenses have precise timedelays •Future telescopes (e.g. LSST) will discover and measure 100s of time delays (Oguri & Marshall 2010; Treu 2010)•A time delay survey could provide very interesting constraints on dark energy

Linder 2011

What's the (dark) matter?

Warm Dark Matter

Free streaming ~kev scale thermal relic

Lovell et al. 2014

Satellites as a probe of dark

matter "mass"

Dark Satellites in CDM vs WDM

Nierenberg, Treu, et al. 2013

Luminous Satellites in CDM vs WDM

"Missing satellites" and lensing

- Strong lensing can detect satellites based solely on mass!
- Satellites are detected as "anomalies" in the gravitational potential ψ and its derivatives
 - $-\psi'' = Flux$ anomalies
 - $-\psi'$ = Astrometric anomalies
 - $-\psi$ = Time-delay anomalies
- Natural scale is a few milliarcseconds. Astrometric perturbations of 10mas are expected

"Missing satellites" and lensing

Treu 2010

Flux Ratio Anomalies

A smooth mass distribution would predict:

What causes this the anomaly?1.Dark satellites?2.Astrophysical noise (i.e. microlensing and dust)?

Anomalies detected in 7 radio lenses

How do we make progress?

 Larger samples
 High precision photometry and astrometry
 Avoid microlensing
 Direct detection a.k.a. "gravitational imaging"

Dusty Torus and Narrow Line Region Are not affected by microlensing

Narrow line flux ratios of lensed AGN

Benefits: 1. Confirm/ eliminate microlensing

2. High resolution spectroscopy rules out wavelengthdependent suppression (e.g. dust)

3. Excellent astrometry and photometry

If the anomaly is from substructure...

If the anomaly is from microlensing...

OSIRIS detection of substructure

OSIRIS detection of substructure

Astrometric perturbations: gravitational imaging

Vegetti et al. 2010

Direct detection of a dark substructure

Statistics from gravitational imaging

HST/AO can detect down to 3e8 Msun

Vegetti et al 2010, 2012, 2014

Gravitational imaging: Future Prospects

• Gravitational imaging can now reach $\sim 10^8$ solar mass sensitivity, limited by resolution and S/N (Vegetti et al. 2012, 2014) • With Next Generation Adaptive Optics and then ELTs we should reach 10^7 solar masses, where the discrepancy with theory is strongest •LARGE SAMPLES WITH SUFFICIENT SENSITIVITY WITHIN REACH

Flux ratio anomalies: Future Prospects

Narrow line flux ratio anomalies can currently be studied for 15 systems
Future surveys will discover thousands of systems
ELTs will provide spectroscopic follow-up and emission line flux ratios How do we find more lensed quasars?

In large imaging surveys

WFIRST

Needle in a haystack!

Which ones are lenses? Agnello, Kelly Treu & Marshall 2015

We can find them using machine learning techniques

PC 4

PC 7

Agnello et al. 2015a

And here they are!

Conclusions

- Strong gravitational lensing is a cost-effective tool to study the composition of the universe:
 - A dedicated time-delay program can achieve subpercent accuracy on H₀ and increase figure of merit of other dark energy experiments by x5 or more
 - Flux ratios and gravitational imaging can probe the subhalo mass function down to 1e7 solar masses and thus help rule out (or confirm) WDM
- This is feasible in the next five years with a concerted follow-up effort of quasar lenses discovered in DES and other imaging surveys