PACIFIC 2015

UCLA Symposium on Particle Astrophysics and Cosmology Including Fundamental Interactions September 12 - 19, 2015, Moorea, French Polynesia

Exact anomalous dimensions of 4-dimensional N=4 super-Yang-Mills theory in 'tHooft limit

Vladimir Kazakov

(Ecole Normale Superieure, Paris)

Unterstützt von / Supported by

Outline

•Yang-Mills gauge theories are the mathematical basis of our description of Nature, but they are very difficult to deal with, especially beyond the weak coupling regime. Lattice Monte-Carlo simulations don't always lead to precise and transparent results.

•Can we hope on analytic understanding of Yang-Mills theories in strong coupling regime?

•A remarkable example of integrable (=solvable) 4D quantum gauge field theory is a remote relative of QCD - the superconformal N=4 Yang-Mills theory in the planar ('t Hooft) approximation $N_c = \infty$.

•In a certain sense, planar N=4 SYM is completely solvable, i.e. any reasonable physical quantity (not only in BPS sector!) can be computed at any force of coupling.

•Exact solution is due to AdS/CFT correspondence to string theory on $AdS_5 \times S^5$ background and to *quantum integrability* of string sigma-model.

•I will describe the origins and the form of exact equations for anomalous dimensions, called Quantum Spectral Curve (QSC, and review some results of computations using QSC.

Planar Graphs as String Worldsheets

Yang-Mills theory

$$S_{YM} = \frac{1}{g_{YM}^2} \int d^4x \operatorname{Tr} F_{\mu\nu} F^{\mu\nu}, \qquad F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu + [A_\mu, A_\nu]$$
$$A_\mu^{ij}, \quad i, j = 1, \dots N_c$$

Planar graphs and large-N expansion

Topological, in string coupling:

$$g_s = \frac{1}{N^2}$$

 Successfully applied for matrix approach in 2d quantum gravity and non-critical strings – early example of "AdS/CFT". David V.K.

String picture in QCD

Glueball: closed string

 Meson: quark and antiquark connected by an open string

Amplitudes

Barion flux tube formation (lattice QCD)...

Glueball masses as functions of number of colors N_c from lattice QCD simulations

N=4 Super-Yang-Mills theory

AdS/CFT correspondence and integrability

Anomalous dimension $\Delta_{\mathcal{O}}(g) \equiv$ Energy of the dual string state

- Super-conformal symmetry PSU(2,2|4) isometry of string target space
- Gamma-deformed N=4 SYM is also conformal&integrable (N=4 \rightarrow N=0)

 $[A,B] \to e^{i\gamma_{AB}} AB - e^{-i\gamma_{AB}} BA$

Leigh, Strassler Frolov Lunin,Maldacena Beisert, Roiban

They describe the whole conformal theory via operator product expansion

Dilatation operator in SYM perturbation theory

- Dilatation operator \widehat{D} from point-splitting and renormalization

$$\mathcal{O}_{j}^{\Lambda'}(x) = \left[\left(\frac{\Lambda'}{\Lambda} \right)^{\hat{D}} \right]_{jk} \mathcal{O}_{k}^{\Lambda}(x)$$

• Conformal dimensions are eigenvalues of dilatation operator \widehat{D}

$$\widehat{D}_{jk}\mathcal{O}_k(x) = \Delta_j\mathcal{O}_j$$

• Can be computed from perturbation theory in $g^2 = Ng_{VM}^2$

$$\hat{D} = \hat{D}^{(0)} + g^2 \hat{D}^{(2)} + g^4 \hat{D}^{(4)} + \dots$$

$$\Delta = \Delta^{(0)} + g^2 \Delta^{(2)} + g^4 \Delta^{(4)} + \dots$$

Exact spectrum at one loop (su(2)-sector)

• Dilatation operator = Heisenberg Hamiltonian, integrable by Bethe ansatz! Tr $Z^{L}(x)$ - vacuum:

$$\begin{split} \hat{D} &= L + g^2 \sum_{l=1}^{L} \left(1 - \sigma_l \cdot \sigma_{l+1} \right) & \text{Minahan, Zarembo} \\ &+ g^4 \sum_{l=1}^{L} \left(\left(1 - \sigma_l \cdot \sigma_{l+2} \right) - 4 \left(1 - \sigma_l \cdot \sigma_{l+1} \right) \right) + O(g^6) \end{split}$$

Beisert, Kristijansen,Staudacher also integrable!

- Twisted periodic boundary condition with twist parameter γ It corresponds to a particular case of gamma-deformed, N=1 SYM.
- One loop N=4 SYM anomalous dimensions given by condition of analyticity (polynomiality) of two Baxter functions

$$Q_1(u) = e^{iu\gamma} \prod_{j=1}^J (u - u_j), \qquad Q_2(u) = e^{-iu\gamma} \prod_{j=1}^{L-J} (u - \tilde{u}_j)$$

related by so called QQ-relation:

 $Q_1(u+i/2)Q_2(u-i/2) - Q_1(u-i/2)Q_2(u+i/2) = 2\sin(\gamma) u^L$

• One-loop anomalous dimensions in terms of solutions of QQ relations:

$$\Delta = L + i\partial_u \log \frac{Q(u - i/2)}{Q(u + i/2)}|_{u=0}$$
 Bethe'31

Quantum Spectral Curve for exact N=4 SYM dimensions

- QSC generalizes the integrability and analyticity principals from quantum spin chains to the AdS5xS5 string sigma-model.
- We brought spectral AdS/CFT problem from infinite AdS/CFT Y-system ۲ to a finite number of non-linear integral QSC equations.
- Basic functions with "simple" analytic properties (one cut, or i-periodic cuts)

- analytic continuation of

through the cut on

$$P_a(u), \qquad a = 1, 2, 3, 4;$$

$$\mu_{ab}(u) = -\mu_{ba}(u), \qquad a, b = 1, 2, 3, 4 \qquad \mathsf{Pf}(\mu) = 1$$

 J_2

Large u asymptotics defined by angular momenta on the sphere S⁵ \bullet

$$\mathbf{P}_a(u) \sim u^{rac{1}{2}(leph \cdot \mathbf{J})_a}$$

 $\tilde{\mu}_{ab}(u) = \mu_{ab}(u+i)$

- No other singularities for all functions!

Quantum Spectral Curve Equations (Pµ -system)

Reduction for SL(2) operators $Tr(\nabla^S Z^L)$

• Monodromy around the branch point:

• Pµ -system contains also an equation for monodromy of µ:

$$\tilde{\mu}_{ab} - \mu_{ab} = \mathbf{P}_a \tilde{\mathbf{P}}_b - \mathbf{P}_b \tilde{\mathbf{P}}_a$$

- Anomalous dimension can then be found from other asymptotics, e.g. $\mu_{12}\simeq u^{\Delta-J_1}$

Some Results for SYM Spectrum from Exact Equations

Perturbative Konishi dimension of N=4 SYM from QSC

$$\Delta = 4 + 12g^2 - 48g^4 + 336g^6 + \frac{g^8(-2496 + 576\zeta_3 - 1440\zeta_3)}{190} + \frac{131,000 \text{ graphs!}}{190} + \frac{19}{10} (15168 + 6912\zeta_3 - 5184\zeta_3^2 - 8640\zeta_5 + 30240\zeta_7) + \frac{19}{9} + \frac{19}{9} (-7680 - 262656\zeta_3 - 20736\zeta_3^2 + 112320\zeta_5 + 155520\zeta_5\zeta_5\zeta_5 + 75600\zeta_7 - 489888\zeta_9) + \frac{19}{9} + \frac{19}{9} + \frac{1}{(-2135040 + 5230080\zeta_3 - 421632\zeta_3^2 + 124416\zeta_3^2 - 229248\zeta_5 + 411264\zeta_5\zeta_5 - 993600\zeta_5^2 - 1254960\zeta_7 - 1935360\zeta_3\zeta_7 - 835488\zeta_9 + 7318080\zeta_{11}) + \frac{19}{9} + \frac{16}{(54408192 - 83496960\zeta_5 + 7934976\zeta_3^2 + 1990656\zeta_3^2 - 19678464\zeta_5 - 4354560\zeta_5\zeta_5 - 3255552\zeta_5^2\zeta_5\zeta_5 + 238460\zeta_5^2 + 21868704\zeta_7 - 6229440\zeta_5\zeta_7 + 22256640\zeta_5\zeta_7 + 9327744\zeta_9 + 23224320\zeta_3\zeta_9 + \frac{65929248}{5}\zeta_{11} - 106007616\zeta_{13} - \frac{684288}{5}Z_{11}^{(2)}) + \frac{18}{9} + \frac{1}{9} (-1014549504 + 1140922368\zeta_3 - 51259392\zeta_3^2 - 20155392\zeta_3^2 + 57554880\zeta_5 - 14294016\zeta_5\zeta_5 - 26044416\zeta_5\zeta_5 + 55296000\zeta_5^2 + 15759360\zeta_5\zeta_5^2 - 247093632\zeta_9 + 119470464\zeta_3\zeta_9 - 245099520\zeta_5\zeta_9 - \frac{186204096}{5}\zeta_{11} - 278505216\zeta_3\zeta_{11} - 25386566 + 1517836320\zeta_{15} + \frac{15676416}{5}Z_{11}^{(2)} - 1306368Z_{13}^{(2)} + 1306368Z_{13}^{(3)}) \\ \text{Marbeu, Volin} + \frac{g^{30}}{9} (16445313024 - 13069615104\zeta_3 - 1509027840\zeta_3^2 + 578949120\zeta_3^2 - 247093632\zeta_9 + 14929920\zeta_3^4 - 11247547392\zeta_5 + 1213581312\zeta_3\zeta_5 + 1234206720\zeta_3^2\zeta_5 + 12385666 + 1517836320\zeta_{15} + \frac{15676416}{5}Z_{11}^{(2)} - 130927980\zeta_3^2 + \frac{206252288}{115}\zeta_3^3 + 377212032\zeta_7 - 1610841600\zeta_3\zeta_7 + 15680192\zeta_3^2\zeta_7 + 222341760\zeta_5\zeta_7 + 133788672\zeta_3\zeta_5\zeta_7 + 868662144\zeta_7^2 + 4915257984\zeta_9 - 332646912\zeta_3\zeta_9 - 91072512\zeta_3^2\zeta_9 + 1099699200\zeta_5\zeta_9 + 2275620480\zeta_7\zeta_9 + \frac{973221190}{175}\zeta_3^2 - 1610841600\zeta_3\zeta_7 + 154680192\zeta_3^2\zeta_7 + \frac{973221190}{175}\zeta_3^2 - 1102434572928\zeta_3\zeta_1 + 2713772160\zeta_5\zeta_1 - \frac{787483944}{175}\zeta_1 + 3372969600\zeta_9\zeta_1 + \frac{33752069600}{175}\zeta_3^2 - \frac{13906388}{15}\zeta_1 + 2161960320\zeta_7 + \frac{75221936}{175}\zeta_1^2 - \frac{5070791808}{175}\zeta_1^2 - \frac{7159106}{175}\zeta_1^2 - \frac{71591063488}{875}\zeta_3^2 - \frac{17895168}{175}\zeta_3^2 + \frac{1193936}{13}\zeta_3^2 + \frac{1193936}{13}\zeta_3^2 + \frac{1193936}{13}\zeta_3^2 + \frac{1193936}{13} + \frac{1193936}{$$

Always expressed through rationals times Riemann multi-zeta numbers

Confirmed up to 5 loops by direct graph calculus

Fiamberti,Santambrogio,Sieg,Zanon Velizhanin Eden,Heslop,Korchemsky,Smirnov,Sokatchev

• Integrability is far more efficient than summing Feynman diagrams!

Strong coupling and numerics from exact QSC equations

• 1/g-expansion for dimension of Konishi operator from our exact equations

• Numerics of extremely high precision from QSC (easily 20 orders!)

0.1	4.115506377945	0.2	4.418859880802
0.3	4.826948662284	0.4	5.271565182595
0.5	5.712723424787	0.6	6.133862814488
0.7	6.531606077852	0.8	6.907504206024
0.9	7.264169587439	1.	7.604070717047
1.1	7.929294264157	1.2	8.241563441148
1.3	8.542302872295	1.4	8.832699939316
1.5	9.113754048916	1.6	9.386314656368
1.7	9.651110426530	1.8	9.908771708559
1.9	10.159848013162	2.	10.404821743441

Gromov, Levkovich-Maslyuk, Sizov

Confirms earlier results of Gromov, V.K., Vieira Frolov

Exact AdS/CFT QSC equations pass all known tests!

BFKL Dimension from Quantum Spectral Curve

Balitsky-Fadin-Kuraev-Lipatov limit for twist-2 operator: •

- LO and NLO known from the direct Feynman graph resummation. ٠
- We realized the analytic continuation in spin S and BFKL limit for QSC equations ٠

Alfimov, Gromov, V.K.

	Jaroszevicz	Costa, Concalves, Penedones		
LO :	Lipatov, Kotikov, Lipatov	Reproduced from QSC by Alfimov, Gromov, V.K.		
NLO :				
	1		Kotikov, Lipatov	
NNLO :	$\frac{1}{256}F_3 =$ Gromov, Levkovich-	Maslyuk, Sizov	Multi-zeta functions:	
	$-\frac{5S_{-5}}{8}-\frac{S_{-4,1}}{2}+\frac{S_{1}S_{-3,1}}{2}+\frac{S_{-3,2}}{2}-\frac{5S_{2}S_{-2,1}}{4}$			
	$+rac{S_{-4}S_1}{4}+rac{S_{-3}S_2}{8}+rac{3S_{3,-2}}{4}-rac{3S_{-3,1,1}}{2}-S_1S_{-2,1,1}$			
	$+S_{2,-2,1}+3S_{-2,1,1,1}-\frac{3S_{-2}S_3}{4}-\frac{S_5}{8}+\frac{S_{-2}S_1S_2}{4}$			
	$+\pi^2\left[rac{S_{-2,1}}{8}-rac{7S_{-3}}{48}-rac{S_{-2}S_1}{12}+rac{S_1S_2}{48} ight]$	Found from		
	$+\zeta_3\left[-\frac{7S_{-1,1}}{4}+\frac{7S_{-2}}{8}+\frac{7S_{-1}S_1}{4}-\frac{S_2}{16}\right]$	iterative solution of QSC		
	+ $\left[2\mathrm{Li}_4 - \frac{\pi^2 \log^2 2}{12} + \frac{\log^4 2}{12}\right] (S_{-1} - S_1) - \pi^4 \left[\frac{2S_{-1}}{45}\right]$	$-\frac{S_1}{96}$		
	$+\frac{\log^5 2}{60} - \frac{\pi^2 \log^3 2}{36} - \frac{2\pi^4 \log 2}{45} - \frac{\pi^2 \zeta_3}{24} + \frac{49\zeta_5}{32} - 2L5$	15		

Might help to find the NNLO leading pomeron trajectory for QCD ٠

Conclusions and prospects

 We have a few examples of exactly solvable planar gauge theories at D>2, such as 4D N=4 SYM and 3D ABJM model, dual to CP³ x AdS₄

- The problem of computing the anomalous dimensions of local operators is reduced to a finite set of non-linear Riemann-Hilbert type equations --Quantum Spectral Curve – a unique tool for analytic and numerical study of anomalous dimensions at any coupling.
- Many other physical quantities might be exactly computable: n-point correlation f-ns, Wilson loops, gluon scattering amplitudes, 1/N-corrections
- Can we use it as a zero order approximation to realistic gauge theories, such as QCD?
- What is the origin of this integrability on the gauge side?

