Gamma-ray Blazars and the Cosmic Background Radiation

Yoshiyuki Inoue
(JAXA International Top Young Fellow)

Cosmic Background Radiation

Cosmic Infrared Background

Cosmic Optical \& Infrared Background (COB \& CIB)

Zodiacal Light

- Scattered solar emission by interplanetary dust (NIR)
- Interplanetary dust distribute around the plane of the ecliptic
- Brightest foreground emission for the COB/CIB measurement

Foregrounds for COB \& CIB

- Foreground: Zodiacal light, Diffuse galactic light, Star light.

Gamma-ray Attenuation by The Cosmic Optical \& Infrared Background

Typical Spectra of Blazars

- Non-thermal emission from radio to gamma-ray
- Two peaks
- Synchrotron
- Inverse Compton
- Luminous blazars (Flat Spectrum Radio Quasars: FSRQs) tend to have lower peak energies (Fossati+'98, Kubo +'98)

Constraints from Gamma rays

Abramowski +'13

- Fermi derived the COB opacity using the combined spectra of blazars (see also Gong \& Cooray '13, Dominguez +'13).
- H.E.S.S. derived the COB/CIB intensity using the combined spectra of blazars.
- Assume 1) no pile-up in the TeV band \& 2) extrapolation from unattenuated spectra.

Two VHE (>100 GeV) Gamma Rays from PKS 0426-380 at $z=1.1$

- 2 VHE photons at flaring states, but not an exact correspondence to the peak of each flare.
- Spectral hardening from ~30 GeV.

Is VHE Spectral Hardening Universal?

Essey \& Kusenko '12

- It "seems"TeV blazars show spectral hardening.

What is the origin of the hardening?
 PKS 1424+240 (z=0.6)

Secondary Gamma Rays

1ES 0229+200 (z=0.1396)
Stochastic Acc.

- Secondary gamma rays from cosmic rays along line of sight (Essey \& Kusenko '10, Essey
+'10, Essey+'11, Murase+'12,Takami+'13).
- Observed GeV -TeV photon index dependence on redshift will be different from simple CIB attenuation (Essey \& Kusenko ${ }^{12}$).
- Stochastic acceleration (Stawarz \& Petrosian '08, Lefa+'11).
- Lepto-hadronic emission (Cerutti+14).

TeV blazar sample

- Select 36 blazars with z from the default TeVcat catalog.
- Low-state data are available for 31/36.
- 3FGL SED data.
- CIB correction by YI+'13.
- Systematic jet parameter study w/ MWL data is also ongoing.

GeV-TeV index dependence on redshift

KUV 00311-1938 (z=0.61)
Secondary Gamma Rays

- No clear correlation (see also Sanchez+'13).
- But, 1ES 0229+200 seems to be peculiar.
- additional components at TeV band are not significantly seen via F-test. No sources with $P(F)<0.05$.
- Future test by CTA is necessary (e.g. Takami+'13, YI+'14b).

Cosmic Gamma-ray Background

Cosmic Gamma-ray Background Spectrum at $>0.1 \mathrm{GeV}$

- Fermi has resolved 30% of the CGB at $\sim 1 \mathrm{GeV}$ and more at higher energies.

Possible Origins of CGB at GeV

Unresolved sources

Blazars

Dominant class of LAT extragalactic sources. Many estimates in literature. EGB contribution ranging from 20\%-100\%

Non-blazar active galaxies 27 sources resolved in 2FGL $\sim 25 \%$ contribution of radio galaxies to EGB expected. (Inoue 2011)

Star-forming galaxies

Several galaxies outside the local group resolved by LAT. Significant contribution to EGB expected. (e.g. Pavlidou \& Fields, 2002)

GRBs
High-latitude pulsars
small contributions expected. (e.g. Dermer 2007, Siegal-Gaskins et al. 2010)

Diffuse processes

Intergalactic shocks

widely varying predictions of EGB contribution ranging from 1% to 100% (e.g. Loeb \& Waxman 2000, Gabici \& Blasi 2003)

Dark matter annihilation

Potential signal dependent on nature of DM, cross-section and structure of DM distribution (e.g. Ullio et al. 2002)

Interactions of UHE cosmic rays with the EBL dependent on evolution of CR sources, predictions varying from 1% to 100% (e.g. Kalashev et al. 2009)

Extremely large galactic

 electron halo (Keshet et al. 2004)CR interaction in small solar system bodys (Moskalenko \& Porter 2009)
© M. Ackermann

Blazar contribution to CGB

- Padovani+'93; Stecker+'93; Salamon \& Stecker ‘94; Chiang + '95; Stecker \& Salamon'96; Chiang \& Mukherjee ‘98; Mukherjee \& Chiang '99; Muecke \& Pohl '00; Narumoto \& Totani '06; Giommi +'06; Dermer '07; Pavlidou \& Venters '08; Kneiske \& Mannheim '08; Bhattacharya +'09; YI \& Totani '09; Abdo+'10; Stecker \& Venters '10; Cavadini+'11, Abazajian+'11, Zeng+'12, Ajello+'12, Broderick+'12, Singal+'12, Harding \& Abazajian '12, Di Mauro+'14, Ajello+'14,Singal+'14, Ajello, YI, +'15,
- Blazars explain $\sim 50 \%$ of CGB at $0.1-100 \mathrm{GeV}$.

Radio Galaxies

- Strong+'76; Padovani+'93; YI'11; Di Mauro+'13; Zhou \& Wang '13
- Use gamma-ray and radio luminosity correlation.
- $\sim 20 \%$ of CGB at $0.1-100 \mathrm{GeV}$.

Star-forming Galaxies

- Soltan '99; Pavlidou \& Fields '02; Thompson +'07; Bhattacharya \& Sreekumar 2009; Fields et al. 2010; Makiya et al. 2011; Stecker \& Venters 2011; Lien+'12, Ackermann+'12; Lacki+'12; Chakraborty \& Fields '13; Tamborra+'14
- Use gamma-ray and infrared luminosity correlation
- $\sim 10-30 \%$ of CGB at $0.1-100 \mathrm{GeV}$.

Components of the Cosmic Gamma-ray Background

- Blazars (Ajello+ ${ }^{\prime} 155$), Radio gals. ((Y'11), \& Star-forming galaxies (Ackermann+'12) make up almost 100% of CGB from $0.1-10^{3} \mathrm{GeV}$.
- But,,"
- \# of detected radio gals. and star-forming gals. is ~10.
- TeV spectra of blazars are not well established. Redshifts of $\sim 50 \%$ of BL Lacs are not measured.

Upper Bound on the Cosmic TeV Gamma-ray Background

- Cascade component from VHE CGB can not exceed the Fermi data (Coppi \& Aharonian '97, YI \& loka '12, Murase+'12, Ackermann+'14).
- No or negative evolution is required -> low-luminosity BL Lacs show negative evolution (Ajello+'14).

Cosmic TeV Gamma-ray Background

- The TeV blazar data give lower limit on to the cosmic gamma-ray background.
- Current limit at $0.3-10 \mathrm{TeV}$ is

$$
3 \times 10^{-5}\left(\frac{E}{100 \mathrm{GeV}}\right)^{-1}\left[\mathrm{MeV} / \mathrm{cm}^{2} / \mathrm{s} / \mathrm{sr}\right]<E^{2} \frac{d N}{d E}<5 \times 10^{-5}\left(\frac{E}{100 \mathrm{GeV}}\right)^{-0.7}\left[\mathrm{MeV} / \mathrm{cm}^{2} / \mathrm{s} / \mathrm{sr}\right]
$$

- Fermi has resolved more portion of the TeV sky than IACTs do?
- Need to remove ~3 orders higher electron background to detect the CGB with CTA.

Summary

- We have not understood blazar emission mechanism to constrain the cosmic infrared background from gamma-ray observations
- New emission mechanisms: secondary gamma rays, stochastic acceleration, lepto-hadronic emission...
- At least, the GeV - TeV index distribution of blazars has no correlation.
- The cosmic GeV gamma-ray background is from blazars, radio galaxies, and star-forming galaxies
- Current GeV \& TeV observations give strict constraints on the cosmic TeV gamma-ray background.

