PACIFIC conference Gump Station, Moorea Sept 14, 2015

Multi-D SNR Simulations with Particle Acceleration

Gilles Ferrand, University of Manitoba (gferrand@physics.umanitoba.ca) in collaboration with Samar Safi-Harb (U of M) and Anne Decourchelle (CEA Saclay)

POUR L'INNOVATION

Outline of the Talk

Introduction: particle acceleration in supernova remnants

- SNRs as Cosmic Ray accelerators
- SNR structure and evolution

3D numerical simulations

- hydro+kinetic code (Ramses+Blasi)
- thermal emission
- non-thermal emission
- perspetives

The 3 dimensions of Cosmic Radiation

mass spectrum

energy spectrum

EAS experiments

Balloon and

Satellite experiments

Knee

2nd Knee

Ankle

log(ENERGY eV)

speculated GZK cutof

angular spectrum

even at the highest energies?

[Pierre Auger Coll. 2010, 2012]

[Israel 2004]

[Nagano & Watson 2000]

power-law, with breaks

> 10 orders of magnitude

in energy !

Engines of acceleration : massive stars, compact objects Physics of shocks, of accretion/ejection, of magnetic fields

1.3 The structure of a young supernova remnant

Tycho's SNR seen by Chandra (at age 433 yr)

Warren et al 2005

0.95 - 1.26 keV 1.63 - 2.26 keV 4.10 - 6.10 keV

The evolution of a supernova remnant

enrichment in heavy elements

Big Bang:	stars:	average stars: up to C-O
H, He	all other elements	massive stars: up to Fe
Li, Be, B	from C to U	supernovae: everything else

injection of energy

heating of the gas

1.5

hydrodynamic turbulence magnetic field amplification

impact on subsequent
star formation cycles?

acceleration of particles

SNRs main sources? Also PSRs and binaries

the acceleration of charged particles is an important feature of magnetized shocks in collisionless plasma

Supernova Remnants as Galactic CR sources

mass spectrum

 Standard overall composition
 but what about all the "anomalies"?

angular spectrum

 observational proofs of acceleration of e Ø difficult to find energetic protons!

[recent reviews: Drury 2012, Blasi 2013, Bell 2013]

SNR broad-band emission

[review for CR evidence: Helder et al 2012]

Modelling DSA at different scales

Diffusive shock acceleration: the coupled system

2.2

[reviews : Drury 1983, Jones and Ellison 1991, Malkov and Drury 2001]

Numerical simulations with Ramses

Hydro- and thermodynamics of the plasma

Thermal emission in each cell depends on:

• plasma density n^2

2.4

• electron temperature T_e

progressive equilibration with protons temperature T_p via Coulomb interactions

• ionization states $f_i(Z)$

computation of non-equilibrium ionization with the exponentiation method

$$\tau_I = \int_{t_S}^t n(t').\mathrm{d}t'$$

Note: all these parameters depend on the **history** of the material after it was shocked.

Thermal emission

test particle vs. back-reaction

test particle vs. back-reaction

test particle vs. back-reaction

Magnetic field and radiative losses

Non-thermal emission in each cell depends on:

- pion decay: plasma density n(x,t)
- synchrotron: magnetic field B(x,t) (amplified at the shock, then frozen in the flow)
- Compton: ambiant photon fields (CMB)

Note: the acceleration model gives the CR spectra just behind the shock $f_p(p, x, t)$, $f_e(p, x, t)$ they must be **transported** to account for losses:

- adiabatic decompression $\alpha = \frac{\rho(x,t)}{\rho(x_S,t_S)}$
- radiative losses $\Theta \propto \int_{t_S}^t B^2 \alpha^{\frac{1}{3}} dt$

Non-thermal emission

Thermal + non-thermal emission

Energetic protons,

accelerated at the shock front, don't radiate as efficiently as electrons, however:

1/ they impact the dynamics of the shock wave, and therefore the **thermal emission** from the shell (optical, X-rays)

2/ they impact the evolution of the magnetic field, and therefore the **non-thermal** emission from the electrons (radio – X-

rays – γ-rays)

test-particle case

shock

Đ

modifi

- impact of the **progenitor** : | ejecta profiles (stratification, asymmetries) | stellar wind (for core-collapse)
- impact of the **environment** : | molecular clouds (radiative? ionized?)
 ISM turbulence (hydro + mag)

