The first billion years of galaxy formation Pratika Dayal

Volker Bromm, Tirth Choudhury, James Dunlop, Andrea Ferrara, Andrei mesinger & Fabio Pacucci

The main questions

- What is the fundamental physics driving the evolution of early galaxies?
- How does galaxy formation (and reionization) proceed in different Dark Matter cosmologies?

The two main classes of high-z galaxies

Lyman Break Galaxies (LBGs) - Broad Band photometric band in which galaxy drops-out used to obtain redshift.

Oesch+2010 - z~7 dropouts

LBG Observational status

Pre-2009 (WFC3 era): 1 convincing z>7 candidate (Bouwens et al. 2004)

Status after the installation of the WFC3 (2009)

What can we learn from all this data?

Global quantities

Ultraviolet luminosity functions (UV LF)

Stellar Mass Density (SMD)

Individual galaxy properties

Mass-to-light ratios

The premise: maximum SFE limited by energy required to unbind rest of the gas and quench star formation - up to a

A semi-analytic model implemented with this simple idea

PD, Ferrara, Dunlop & Pacucci, 2014

The number counts of early LBGs (the UV LF)

PD, Ferrara, Dunlop & Pacucci, MNRAS, 2014

The gastrophysics of early LBGs

Light scales linearly with mass - but slope debated

PD, Ferrara, Dunlop & Pacucci, 2014

Testable prediction: $\log M_* \propto -0.38 M_{UV}$

Extending this framework to Warm Dark Matter Cosmologies

Hierarchical structure formation in CDM

Mass roughly 100 GeV

Lighter the WDM particle, more is the suppression of small scale structures

Lighter the WDM particle, more is the suppression of small scale structures

Lighter the WDM particle, more is the suppression of small scale structures

UV LFs in WDM

Including baryons (and SF) decreases the difference between CDM and 1.5 keV WDM models

PD, Mesinger & Pacucci, 2015

Since the merger tree starts building up later in WDM models..

it leads to a delayed assembly of the stellar mass

Mass-to-light ratios depend on cosmology!

PD, Mesinger & Pacucci, 2015

Light WDM models show lower M/L ratios (i.e. more luminosity per unit stellar mass) compared to CDM

UV LFs in WDM

Including baryons (and SF) decreases the difference between CDM and 1.5 keV WDM models

PD, Mesinger & Pacucci, 2015

Observational imprints of light WDM particles: buildup of the cosmic stellar mass density

Redshift evolution of stellar mass density with JWSTdetectable galaxies can allow constraints on WDM mass of about 2keV!

PD, Mesinger & Pacucci, 2015

Reionization in different DM cosmologies

While old Planck optical depths rules out <2 keV WDM, the newer lower measurements are consistent with such light masses.

Reionization sources in different DM cosmologies

Currently detected galaxies contribute ~25% (~50%) of ionizing photons in CDM (1.5 keV WDM). Need to go as faint as UV magnitude of -13 to get 65% (100%) ionizing photons in CDM (1.5 keV WDM).

The emerging picture

• Observables like M/L are cosmology dependent!

•JWST SMD measurements may help distinguish between ~2 keV WDM and CDM (heavier WDM indistinguishable from CDM).

• New Planck reionization limits consistent with WDM as light as 1.5 keV with most (all) reionizing photons coming from MUV ~-13 galaxies in CDM (1.5 keV) WDM.

PD, Cockell, Rice & Mazumdar, arXiv:1507.04346

Spirals or ellipticals?

Giant ellipticals roughly twice as massive as MW, with a tenth of its SFR best places for habitability