

Higgs couplings at the LHC and

constraints on New Physics

Gabriella Sciolla Brandeis University

<u>Outline</u>

Introduction

- Higgs production and decay
- The channels of discovery
 - H \rightarrow bosons: $\gamma\gamma$, ZZ, WW
 - H \rightarrow leptons: $\tau\tau$, bb
- Measurements of Higgs properties
 - Mass, Spin/CP, x-sections, <u>couplings</u>
 - Constraints on NP
- Conclusion

 Kull.
 204703

 Event:
 71902630

 Date:
 2012.00 10

PACIFIC 2014, Tahiti, Sep 17 2014

The discovery: Jul 4th 2012

ATLAS and CMS at the LHC

LHC

Disclaimer & Warning

 Similar measurements exist for both experiments: chose ATLAS
 All measurements in this talk are based on full Run-1 statistics about 5 fb⁻¹ at 7 TeV (2011) and 23 fb⁻¹ at 8 TeV (2012)

The Higgs at the LHC: Production modes

The Higgs at the LHC:

Decay modes

The channels of discovery

Higgs \rightarrow Vector Bosons

- H→ZZ
- $H \rightarrow \gamma \gamma$
- H→WW

■ Higgs → Fermions

- $H \rightarrow \tau^+ \tau^-$
- H→ bb

Phys. Rev. D. 90, 052004 (2014)

$H \rightarrow ZZ^{(*)} \rightarrow 4$ leptons (e or μ)

- The golden channel: S/B > 1:1
 - Small rates σ x BR ~ 2.5 fb
 - Very small backgrounds (SM diboson)
 - Final state is fully reconstructed
 - Can measure everything!
- Selection criteria
 - 4 isolated leptons |η|<2.5
 - p_T>20,15,10,6 GeV
 - One on-shell Z⁰, m₁₂=[50,106] GeV

- Distinct kinematic signature
 - Two back-to-back γ , isolated & energetic
 - $p_T > \sim 40,30$ GeV within | η | < 2.5
 - Excellent energy (1.7 GeV) and angular (0.5°) resolution
- Experimental challenges
 - Small BR (~0.2%)
 - But rates (σ x BR ~ 50 fb)
 - Abundant SM background: S/B ~ 3%

Phys. Rev. D. 90, 052004 (2014)

Significance: 5.2 σ (4.6 expected)

PLB 726 (2013) 88

$H \rightarrow WW^* \rightarrow I_V I_V$

- Large rates expected
 - σ x BR ~ 200 fb
- Significant backgrounds
 - SM WW, top, W+jets, WZ
- Missing particles in final state
 - Not all measurements possible
- Analysis strategy
 - Define categories according to lepton flavor (ee, eµ, µµ) and N_{jets}:
 - 0 and 1 jets: mainly ggF events
 - >= 2 jets: mainly VBF events

$$m_T = \sqrt{\left(E_T^{ll} + \mathbf{E}_T\right)^2 - \left|\vec{p}_T^{ll} + \vec{E}_T\right|^2}$$

• Significance_{mH=125}: 3.8 σ (3.7 σ)

The channels of discovery

- Higgs → Vector Bosons
 - $H \rightarrow \gamma \gamma$
 - H→ZZ
 - H→WW

ATLAS-CONF-2013-108

$H \rightarrow \tau^+ \tau^-$

- Large rates
 - σ x BR ~ 1500 fb
- Large backgrounds
 - $\underline{Z \rightarrow \tau \tau}$, Z/W+jets, top,...
- Challenging final states
 - 2-4 neutrinos: large MET
- 3 final states:
 - lep-lep, lep-had, had-had
- Multivariate analysis: 9 variables BDT
 - $\mathbf{m}_{\tau \tau}$, $\Delta \mathbf{R}_{\tau \tau}$, \mathbf{m}_{jj} , $\Delta \eta_{jj}$, \mathbf{p}_{T} -sum, \mathbf{m}_{T} , ...
- Signal clearly visible in weighted mass
 - Event weight = ln(1+S/B)
- Observed significance: 4.1 σ
 - Expected 3.2 σ

H→bb

- Highest Higgs BR (58%) but very high backgrounds
- Suppress backgrounds studying associated production in
 - $ZH \rightarrow vv+b\overline{b}$ (Backgrounds: top, W/Z+heavy jets)
 - $ZH \rightarrow II+b\overline{b}$ (Backgrounds: Z+heavy jets)
 - WH \rightarrow lv+bb (Backgrounds: top, W+heavy jets)

No significant excess observed

$$\mu^{bb} = 0.2 \pm 0.5(stat) \pm 0.4(sys)$$

Beyond discovery: measurement of Higgs properties

Combining channels is key!

Higgs property #1: Phys. Rev. D. 90, 052004 (2014) Higgs Mass

Not predicted by SM but important input to predict other quantities

Higgs property #2: Phys. Lett. B 726 (2013), 88-119 Spin and Parity

Higgs property #3: **Cross-section x BR**

To test SM compatibility, we measure signal strength μ

$$\mu \equiv \frac{\sigma \times BR}{\left(\sigma \times BR\right)_{SM}}$$

$$\mu_{VB} = 1.35^{+0.21}_{-0.20} \qquad \mu_F = 1.09^{+0.36}_{-0.32}$$

→ Evidence of fermionic H decays: 3.7σ

Average:

$$\mu = 1.30^{+0.18}_{-0.17}$$

Compatible with SM

Higgs property #4: Higgs couplings

Couplings affect both production and decay mode:

- Can we disentangle the couplings from the rest?
 - Couplings: g_X=coupling strength between H and particle X

$$g_{HFF} = \frac{\sqrt{2}m_F}{v}, \quad g_{HVV} = \frac{2m_V^2}{v}, \quad v = 246 \text{ GeV}$$

• Measure deviations w.r.t. SM introducing parameters $\boldsymbol{\kappa}$

$$g_{HFF} = \kappa_F g_{Hff}^{SM}$$
, $g_{HVV} = \kappa_V g_{HVV}^{SM}$ If only SM: $\kappa = 1$

Beyond cross-sections: Higgs Couplings

Different production modes to disentangle couplings of the Higgs to f or V Kinematics used to define categories enriched in each production mode

Higgs Couplings:

ATLAS-CONF-2014-009

Fermion and Boson couplings

2D compatibility with SM: 10%

Custodial Symmetry

• Assumption: same κ for all fermions $\kappa_{F_{\ell}}$ but in principle different κ for Z and W ($\kappa_{Z_{\tau}} \kappa_{W}$)

ATLAS-CONF-2014-009

Probing up/down fermion symmetry

- Assume same $\kappa_{\!_V}$ for bosons, but allow for different κ for up-type and down-type fermions
 - Asymmetry between κ_u and κ_d expected in some models (e.g.: some 2HDM)
 - Up-type: top from $H \rightarrow \gamma \gamma$
 - Down-type: H→bb,ττ

$$\lambda_{du} \equiv \frac{\kappa_d}{\kappa_u} = [0.78, 1.15]$$

SM compatibility: 20%

- Quark-lepton symmetry also tested
 - Compatibility with SM: 15%

Simplified MSSM

Couplings to VB, up-type and down-type fermions can be calculated in MSSM from the mass mixing matrix

- L. Maiani, A. Polosa, and V. Riquer, *Bounds to the Higgs Sector Masses in Minimal Supersymmetry from LHC Data*, arXiv:1305.2172 [hep-ph].
- Djouadi, L. Maiani, G. Moreau, A. Polosa, J. Quevillon, et al., *The post-Higgs MSSM scenario: Habemus MSSM?*, arXiv:1307.5205 [hep-ph]. 22

ATLAS-CONF-2014-010

Minimal Composite Higgs Model (MCHM)

Couplings modified as a function of the Higgs compositeness scale f

[1]K. Agashe, R. Contino, A. Pomarol, *The minimal composite Higgs model*, Nucl. Phys. **B**₇19 (2005) 165, arXiv:hep-ph/0412089

[2]R. Contino, L. Da Rold, A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014

[3]M. Carena, E. Ponton, J. Santiago, C. Wagner, *Electroweak constraints on warped models with custodial symmetry*, Phys. Rev. D76 (2007) 035006, arXiv:hep-ph/0701055

2HDMs limits

- In 2HDMs, we expect 5 Higgses (H[±], CP- A, 2 CP+: h, H)
- Parameters: $\tan \beta = \frac{v_1}{v_2}$; α : mixing angle between h,H
- 4 types of 2HDMs survive constraints from B physics
- Couplings can can be expressed as function of β and α :

Coupling scale factor	Type I	Type II	Type III	Type IV
κ_V	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$
ĸu	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$
κ_d	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$
κ_l	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$

ATLAS-CONF-2014-010

2HDMs limits (cont)

 $\tan \beta = \frac{v_1}{v_2}$; α : mixing angle (h,H)

ATLAS-CONF-2014-010

2HDMs limits (cont)

 $\tan \beta = \frac{v_1}{v_2}$; α : mixing angle (h,H)

Higgs portal to DM

- Dark Sector couples very weakly to all SM particles but H
 - Coupling of Higgs to WIMP DM (χ) is a free parameter
- Calculate $BR_{inv} = Br(H \rightarrow \chi \chi)$ combining measurements of Higgs rates and limit on invisible H decays (ZH \rightarrow I⁻I⁺E_T^{miss})
 - Couplings of H to SM particles assumed to same as SM

Limits on $\sigma_{\chi N}$ vs. m_{χ}

Cross-section σ can be calculated for scalar (S), fermionic (f) and vector (V) WIMPs:

Conclusion

LHC Run-1 has been extremely successful in Higgs physics

- Discovery in 2012!
- Higgs is reconstructed in bosonic and fermionic channels
- All production modes investigated
- Properties of the Higgs are being measured
 - Mass is known better than 400 MeV
 - Spin and parity seems to be consistent with SM J^P=0⁺
 - Rates and Couplings look as expected
- So far, nothing inconsistent with the SM has been observed
 - \rightarrow First limits on New Physics are being set
- This is just the very beginning
 - Final analyses on Run-1 just coming out (not used for NP limits)
 - No combination between ATLAS and CMS yet
 - Run-2 will bring 13 TeV collisions and 300 fb⁻¹: stay tune!