Dark Matter from Higgs Boson

A come back of the Higgsino Kid

Leszek Roszkowski*

BayesFITS Group

National Centre for Nuclear Research (NCNR/NCBJ)

Warsaw, Poland

*On leave of absence from University of Sheffield

Grants for innovation. Project operated within the Foundation for Polish Science "WELCOME" co-financed by the European Regional Development Fund

L. Roszkowski, PACIFIC-2014, 19 Sep. 2014

Outline

 \diamond Brief Introduction

 \diamond Implications of mh~125 GeV and direct limits on SUSY:

DM: ~1 TeV higgsino

 \diamond Prospects for detection

 \diamond (Issue of fine tuning)

♦ Summary

Based on BayesFITS Group papers:

- arXiv:1302.5956, Two ultimate tests of constrained supersymmetry, K. Kowalska, L. Roszkowski, E. M. Sessolo JHEP 1306 (2013) 078
- arXiv:1402.1328, Low fine tuning in the MSSM with higgsino dark matter and unification constraints, K. Kowalska, L. Roszkowski, E. M. Sessolo, S. Trojanowski JHEP 1404 (2014) 166
- arXiv:1405.4289, What next for the CMSSM and the NUHM: Improved prospects for superpartner and dark matter detection, L. Roszkowski, E. M. Sessolo, A. J. Williams
- Bayes FITS
- ... plus some earlier papers

There is more out there than meets the eye

The WIMP Reigns

...but remains elusive

Footprints of Dark Matter

Well-motivated particle candidates for dark matter

- vast ranges of interactions and masses
- different production mechanisms in the early Universe (thermal, non-thermal)
- need to go beyond the Standard Model
- WIMP candidates testable at present/near future
- axino, gravitino EWIMPs/superWIMPs not directly testable, but some hints from LHC

Where is the WIMP?

- Mass range: at least 20 orders of magnitude
- Interaction range: some32 orders of magnitude

Direct Detection AD 2011 - Before LHC

Main news from the LHC so far...

SM-like Higgs particle at ~125 GeV

No (convincing) deviations

from the SM

BR $(B_s \to \mu^+ \mu^-)_{\text{LHCb}} = (2.9^{+1.1}_{-1.0}) \times 10^{-9}$ BR $(B_s \to \mu^+ \mu^-)_{\text{CMS}} = (3.0^{+1.0}_{-0.9}) \times 10^{-9}$

$$BR(B_s \to \mu^+ \mu^-)_{SM} = (3.65 \pm 0.23) \times 10^{-9}$$

Stringent lower limits
 on superpartner masses

SUSY masses pushed to 1 TeV+ scale...

...and from the media...

Is Supersymmetry Dead?

The grand scheme, a stepping-stone to string theory, is still high on physicists' wish lists. But if no solid evidence surfaces soon, it could begin to have a serious PR problem

SCIENTIFIC AMERICAN[™]

April 2012

Supersymmetry

Symmetry among particles

bosons <-> fermions

L. Roszkowski, PACIFIC-2014, 19 Sep. 2014

SUSY and dark matter

WIMP = lightest supersymmetric particle

The 125 GeV SM-Like Higgs Boson

A blessing or a curse for SUSY?

L. Roszkowski, PACIFIC-2014, 19 Sep. 2014

The 125 GeV Higgs Boson and SUSY

A blessing...

Fundamental scalar --> SUSY
 Light and SM-like --> SUSY

Low energy SUSY prediction: Higgs mass up to ~135 GeV

Constrained SUSY prediction: SM-like Higgs with mass up to ~130 GeV

The 125 GeV Higgs Boson and SUSY

L. Roszkowski, PACIFIC-2014, 19 Sep. 2014

 $\sigma = 0.6 \text{ GeV}, \tau = 2 \text{ GeV}$

Constrained Minimal Supersymmetric Standard Model (CMSSM)

figure from hep-ph/9709356

At $M_{\rm GUT} \simeq 2 \times 10^{16} \, {\rm GeV}$:

- ${}^{ {}_{ { \hspace{-.1em} \hspace{-.1em} \hspace{-.1em} \hspace{-.1em} \hspace{-.1em} \hspace{-.1em} \hspace{-.1em} }}$ gauginos $M_1=M_2=m_{\widetilde{g}}=m_{1/2}$
 - scalars $m_{\widetilde{q}_i}^2=m_{\widetilde{l}_i}^2=m_{H_b}^2=m_{H_t}^2=m_0^2$

9 3-linear soft terms
$$A_b = A_t = A_0$$

- $\begin{array}{l} \bullet \quad \text{radiative EWSB} \\ \mu^2 = \frac{m_{H_b}^2 m_{H_t}^2 \tan^2 \beta}{\tan^2 \beta 1} \frac{m_Z^2}{2} \end{array}$
- five independent parameters: $m_{1/2}, m_0, A_0, \tan\beta, \operatorname{sgn}(\mu)$
- well developed machinery to compute masses and couplings

~125 GeV Higgs in the CMSSM

 Include <u>only</u> m_h~125 GeV and lower limits from direct SUSY searches

$$\mathcal{L} \sim e^{rac{(m_h-125.8\,{
m GeV})^2}{\sigma^2+ au^2}}$$

$$\sigma = 0.6 \text{ GeV}, \tau = 2 \text{ GeV}$$

We use DR-bar approach (SoftSusy). It gives larger m h.

A curse...

~125 GeV Higgs mass implies multi-TeV scale for SUSY

Consistent with:

- SUSY direct search lower limits at LHC
- constraints from flavor

125 GeV - worst possible value (G. Giudice)kowski, PACIFIC-

If m_h were, say, 116 GeV...

...would have created significant tension with LHC bounds on SUSY

The 125 GeV SM-Like Higgs Boson

A blessing or a curse for DM?

L. Roszkowski, PACIFIC-2014, 19 Sep. 2014

CMSSM: numerical scans

- Perform random scan over 4 CMSSM +4 SM (nuisance) parameters <u>simultaneously</u>
- Very wide ranges: $100 ext{ GeV} \leq m_0 \leq 20 ext{ TeV}$ $100 ext{ GeV} \leq m_{1/2} \leq 10 ext{ TeV}$ $-20 ext{ TeV} \leq A_0 \leq 20 ext{ TeV}$ $3 \leq ext{tan} eta \leq 62$

 Use Nested Sampling algorithm to evaluate posterior

Nuisance	Description	Central value \pm std. dev.	Prior Distribution
M_t	Top quark pole mass	$173.5 \pm 1.0 \mathrm{GeV}$	Gaussian
$m_b(m_b)_{ m SM}^{\overline{MS}}$	Bottom quark mass	$4.18\pm0.03{\rm GeV}$	Gaussian
$\alpha_s(M_Z)^{\overline{MS}}$	Strong coupling	0.1184 ± 0.0007	Gaussian
$1/\alpha_{\rm em}(M_Z)^{\overline{MS}}$	Inverse of em coupling	127.916 ± 0.015	Gaussian

Use 4 000 live points

Use Bayesian approach (posterior)

Hide and seek with SUSY

The experimental measurements that we apply to constrain the CMSSM's parameters. Masses are in GeV.

		Measurement	Mean or Range	Error: (Exp., Th.)	Distribution		
<u></u>		Combination of:					
		CMS razor 4.4/fb , $\sqrt{s}=7{\rm TeV}$	See text	See text	Poisson		
		CMS $\alpha_T \ 11.7/\text{fb}$, $\sqrt{s} = 8 \text{ TeV}$	See text	See text	Poisson		
		m_h by CMS	$125.8{ m GeV}$	$0.6{ m GeV}, 3{ m GeV}$	Gaussian		
		$\Omega_{\chi}h^2$	0.1120	0.0056,10%	Gaussian		
	-	$\delta \left(g-2 ight)^{ m SUSY}_{\mu} imes 10^{10}$	28.7	8.0, 1.0	Gaussian		
		$\mathrm{BR}\left(\overline{B} \to X_s \gamma\right) \times 10^4$	3.43	0.22,0.21	Gaussian		
		$BR(B_u \to \tau \nu) \times 10^4$	1.66	0.33, 0.38	Gaussian		
		ΔM_{B_s}	$17.719{\rm ps}^{-1}$	$0.043 \mathrm{ps^{-1}},\ 2.400 \mathrm{ps^{-1}}$	Gaussian		
		$\sin^2 heta_{ m eff}$	0.23116	0.00012, 0.00015	Gaussian		
		M_W	80.385	0.015, 0.015	Gaussian		
		$BR(B_s \to \mu^+ \mu^-)_{current} \times 10^9$	3.2	+1.5 - 1.2, 10% (0.32)	Gaussian		
		BR $(B_s \to \mu^+ \mu^-)_{\rm proj} \times 10^9$	$3.5(3.2^*)$	$0.18~(0.16^*),~5\%~[0.18~(0.16^*)]$	Gaussian		
		SM value: $\simeq 3.5 \times 10^{-9}$					

most important (by far)

10 dof

The CMSSM with DM relic density

Global scan, Bayesian total posterior probability regions

Kowalska, LR, Sessolo, arXiv:1302.5956

CMSSM and DD DM searches

Focus point region ruled out by LUX (already tension with X100)

~1TeV higgsino DM: exiting prospects for LUX, X100 and 1t detectors

~1 TeV higgsino DM

Robust, present in many SUSY models (both GUT-based and not)

Condition: heavy enough gauginos

When $m_{\tilde{B}} \gtrsim 1 \, \text{TeV}$:
easiest to achieve $\Omega_{\chi} h^2 \simeq 0.1$
when $m_{\tilde{H}} \simeq 1 \, \text{TeV}$ \diamondsuit Implied by ~125 GeV Higgs mass
and relic density
 \diamondsuit Most naturalNo need to employ special mechanisms
(A-funnel or coannihilation) to obtain
correct relic density \diamondsuit Smoking gun of SUSY!?

... generic

e.g., Next-to-MSSM (extra singlet Higgs)

Kaminska, Ross, Schmidt-Hoberg, 1308.4168

L. Roszkowski, PACIFIC-2014, 19 Sep. 2014

Fall and rise of higgsino DM

Chances of susy signal at the LHC?

- LHC only stau coannihilation will be +/- covered
- Need a lot of luck!

CMSSM-like: chances look remote!

Bayesian vs chi-square analysis (updated to include 3loop Higgs mass corrs)

~1 TeV higgsino-like WIMP: implied by ~125 GeV Higgs -> large m1/2 and m0

Unified vs pheno SUSY

MSSM:

- much bigger ranges allowed
- ~1 TeV higgsino DM: prospects for detection similar to unified SUSY
- new LUX limit: started to exclude mixed (bino-higgsino) neutralino

DM direct detection

Excellent prospects!

L. Roszkowski, PACIFIC-2014, 19 Sep. 2014

1407.0017

DM Direct detection AD2014

1407.0017

Indirect detection

- Jook for traces of WIMP annihilation in the MW halo (γ 's, e^+ 's, \bar{p} , ...)
- detection prospects often strongly depend on astrophysical uncertainties (halo models, astro bgnd, ...)

Much activity:

PAMELA

neutrino telescopes, ATCs, ...

SUSY DM and positron flux

L. Roszkowski, PACIFIC-2014, **If**edirectional: pulsar

CTA – New guy in DM hunt race

http://www.cta-observatory.org/

- > ground-based gamma-ray telescope
- Arrays in southern and northern hemisphere for full-sky coverage
- Energy range: tens of GeV to >100 TeV
- Sensitivity: more than an order of mag improvement in 100 GeV – 10 TeV

Galactic Center DM Halo

CTA and Unified SUSY DM

1405.4289

- CTA to probe large WIMP masses
- ~1 TeV higgsino DM: to be almost fully covered CTA

CTA and general SUSY DM

- CTA to probe large WIMP masses
- ~1 TeV higgsino DM: to be completely covered by DD and CTA

L. Roszkowski, PACIFIC-2014, 19 Sep. 2014

Fine-tuning in ~1 TeV higgsino region

To take home:

DM: jury is still out, discovery claims come and go, ...but

≻ Higgs of 125 GeV → ~1TeV (higgsino) DM – robust prediction of unified (and pheno) SUSY:

Smoking gun of SUSY!?

- To be probed by 1-tonne DM detectors
- Big bite by LUX already in 2014
- Independent probe by CTA
- Other indirect detection modes (nu, e^+, ...): no chance
- Far beyond direct LHC reach
- (Fine-tuning can be reduced down to 1 in 20)

SUSY may be too heavy for the LHC

DM searches may hopefully come to the rescue