N=4 Super-Yang-Mills in 't Hooft limit as Exactly Solvable 4D Conformal Field Theory

Vladimir Kazakov
(Ecole Normale Superieure and UPMC, Paris)

Outline

- Yang-Mills gauge theories in 4 dimensions describe fundamental forces of Nature, but they are very difficult for practical computations. Treated so far only perturbatively (weak coupling \rightarrow high energies, Regge limit \rightarrow BFKL), or by computer lattice Monte-Carlo simulations, with all advantages and disadvantages of "experimental" approach.
- Some exact results in topological, BPS sectors of supersymmetric gauge theories: Examples: Seiberg-Witten prepotentials for N=2 SYM, Dijkgraaf-Vafa matrix models for N=1 SYM, AGT-correspondence, etc. Does not work for non-BPS physical quantities given by sums of genuine Feynman graphs (gluons, quarks etc.)
- $\mathrm{N}=4 \mathrm{SYM}$ theory - a unique exactly solvable (=integrable) 4D QFT, at least $\mathrm{N}_{\mathrm{c}}=\boldsymbol{m}$. Correlators, scattering amplitudes, Wilson loops etc., are "in principal" computable at any value of 't Hooft coupling $g^{2}=N_{C} \alpha_{Y M}$. Tools: AdS/CFT-duality + Integrability
- Already achieved: exact Riemann-Hilbert equations for scaling dimensions of any local operators at any 't Hooft coupling g. Sums up non-trivial 4D Feynman diagrams!

$$
\left\langle\mathcal{O}_{i}(x) \mathcal{O}_{j}(0)\right\rangle=\frac{\delta_{i j}}{|x|^{2 \Delta_{j}(g)}}
$$

CFT: N=4 SYM as a superconformal 4d QFT

$$
\mathcal{S}_{S Y M}=\frac{N_{c}}{g^{2}} \int d^{4} x \operatorname{Tr}\left(F^{2}+[\mathcal{D}, \Phi]^{2}+\bar{\Psi}[\phi \Psi]+\bar{\Psi}[\phi, \Psi]+[\Phi, \Phi]^{2}\right)
$$

- Zero β-function! Global 4d superconformal symmetry PSU(2,2|4)
- Operators from local fields, e.g. $\Phi_{m}^{i j} \Longleftrightarrow \mathrm{i}^{m} \mathrm{j}$ $\mathcal{O}(x)=\operatorname{Tr}[\mathcal{D D} \Psi \Psi \Phi \Phi \mathcal{D} \Psi \ldots](x) \quad$ +permutations
- Dilatation operator \hat{D} from point-splitting and renormalization

$$
\begin{gathered}
\mathcal{O}_{j}^{\Lambda^{\prime}}(x)=\left[\left(\frac{\Lambda^{\prime}}{\Lambda}\right)^{\hat{D}}\right]_{j k} \mathcal{O}_{k}^{\wedge}(x) \\
\hat{D}=\hat{D}^{(0)}+g^{2} \hat{D}^{(2)}+g^{4} \hat{D}^{(4)}+\ldots
\end{gathered}
$$

- Conformal dimensions are eigenvalues of dilatation operator

$$
\hat{D}_{j k} \mathcal{O}_{k}(x)=\Delta_{j} \mathcal{O}_{j} \quad \Delta=\Delta^{(0)}+g^{2} \Delta^{(2)}+g^{4} \Delta^{(4)}+\ldots
$$

- $\quad \tau \sim \log \wedge$ corresponds to AdS time for dual string on AdS/CFT

Perturbative Integrability, su(2)-sector:

$$
X=\Phi_{1}+i \Phi_{2}
$$

$$
Z=\Phi_{5}+i \Phi_{6}
$$

- 1-loop dilatation operator = Hamiltonian of Heisenberg quantum spin chain. Integrable by Bethe ansatz!

$$
\begin{aligned}
& \operatorname{Tr} Z^{L}(x) \text { - vacuum: } \\
& \qquad \hat{D}=L+g^{2} \sum_{l=1}^{L}\left(1-\sigma_{l} \cdot \sigma_{l+1}\right)
\end{aligned}
$$

Minahan, Zarembo

also integrable!
Beisert, Kristijansen,Staudacher

- One loop Baxter equations for the N=4 SYM spectrum:

$$
T(u) Q(u)=\left(u-\frac{i}{2}\right)^{L} Q(u+i)+\left(u+\frac{i}{2}\right)^{L} Q(u-i)
$$

- Polynomiality of $T(u) \quad$ fixes Bethe roots in $\quad Q(u)=\prod_{k=1}^{J}\left(u-u_{k}\right)$

Anomalous dimensions: $\quad \Delta-L=\left.\frac{g^{2}}{8 \pi^{2}} \partial_{u} \log \frac{Q\left(u+\frac{i}{2}\right)}{Q\left(u-\frac{i}{2}\right)}\right|_{u=0}+\mathcal{O}\left(g^{4}\right)$

SYM is dual to supersting σ-model on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

- Super-conformal symmetry $\operatorname{PSU}(2,2 \mid 4) \rightarrow$ isometry of string target space
- 2D б-model on a coset

$G(\sigma, \tau)=\left(\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right) \quad \in \operatorname{SL}(4 \mid 4)$

$$
J=-G^{-1} d G=J^{(0)}+J^{(1)}+J^{(2)}+J^{(3)} \in s u(2,2 \mid 4) \tau \uparrow
$$

target space

Dimension of YM operator $\Delta(g)=$ Energy of a string state

Classical integrability of superstring on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

- String eqs. of motion and constraints recast into flatness condition

Mikhailov,Zakharov
Bena,Roiban,Polchinski

$$
\left[\left(\partial_{0}+\mathcal{A}_{0}(u)\right),\left(\partial_{1}+\mathcal{A}_{1}(u)\right)\right]=0
$$

 for Lax connection double valued w.r.t. spectral parameter \boldsymbol{u}

$$
\mathcal{A}(u)=J^{(0)}+\frac{u}{\sqrt{u^{2}-4 g^{2}}} J^{(2)}+\frac{g}{\sqrt{u^{2}-4 g^{2}}} * J^{(2)}+\left(\frac{u+2 g}{u-2 g}\right)^{1 / 4} J^{(1)}+\left(\frac{u-2 g}{u+2 g}\right)^{1 / 4} J^{(3)}
$$

- Monodromy matrix $\quad \Omega(u)=P \exp \oint_{\gamma} \mathcal{A}(u) \quad \in \operatorname{PSU}(2,2 \mid 4)$

- Eigenvalues define quasi-momenta:
V.K.,Marshakov,Minahan,Zarembo Beisert,V.K.,Sakai,Zarembo
$\Omega(u)=U^{-1}\left\{e^{i \widehat{p}_{1}(u)}, e^{i \widehat{p}_{2}(u)}, e^{i \widehat{p}_{3}(u)}, e^{i \widehat{p}_{4}(u)} \| e^{i \breve{p}_{1}(u)}, e^{i \breve{p}_{2}(u)}, e^{i \breve{p}_{3}(u)}, e^{i \breve{p}_{4}(u)}\right\} U$
- Asymptotics fixed by Cartan charges of PSU(2,2|4): $\left\{J_{1}, J_{2}, J_{3} \mid \Delta, S_{1}, S_{2}\right\}$
$\left(\begin{array}{l}\hat{p}_{1} \\ \widehat{p}_{2} \\ \hat{p}_{3} \\ \hat{p}_{4}\end{array}\right) \simeq \frac{1}{2 u}\left(\begin{array}{l}+J_{1}+J_{2}-J_{3} \\ +J_{1}-J_{2}+J_{3} \\ -J_{1}+J_{2}+J_{3} \\ -J_{1}-J_{2}-J_{3}\end{array}\right)$

$$
\left(\begin{array}{l}
\check{p}_{1} \\
\tilde{p}_{2} \\
\tilde{p}_{3} \\
\tilde{p}_{4}
\end{array}\right) \simeq \frac{1}{2 u}\left(\begin{array}{l}
+\Delta_{1}-S_{1}+S_{2} \\
+\Delta_{1}+S_{1}-S_{2} \\
-\Delta_{1}-S_{1}-S_{2} \\
-\Delta_{1}+S_{1}+S_{2}
\end{array}\right)
$$

- Each quasi-momentum inherits the double-valuedness of Lax connection.

Exact integrability: Y-system, T-system, Q-system...

- Exact quantum equations boil down to T-system (Hirota-Miwa eq.) on discrete T-shaped lattice ("T-hook"):

$$
T_{a, s}\left(u+\frac{i}{2}\right) T_{a, s}\left(u-\frac{i}{2}\right)=T_{a, s-1}(u) T_{a, s+1}(u)+T_{a+1, s}(u) T_{a-1, s}(u)
$$

- Integrable system, solvable in terms of Wronskians of Baxter's Q-functions
- Example: solution for right band via two arbitrary functions:

$$
T_{1, s}(u)=\mathbf{P}_{1}\left(u+\frac{i s}{2}\right) \mathbf{P}_{2}\left(u-\frac{i s}{2}\right)-\mathbf{P}_{1}\left(u-\frac{i s}{2}\right) \mathbf{P}_{2}\left(u+\frac{i s}{2}\right)
$$

- Complete solution described by Q-system - full set of 2^{8} Q-functions

All of them can be expressed through 8 basic Q-functions

- Important: it should be supplemented by analyticity conditions

Exact quantum analogues of quasimomenta

- One assumes exact quantum integrability of this sigma model. Then standard tools can be applied: thermodynamic Bethe ansatz (TBA), exact Y-system, T-system (Hirota-Miwa eq.).

Gromov,V.K.,Vieira
Bombardelli,Fioravanti,Tateo Gromov,V.K.,Kozak,Vieira Arutyunov,Frolov

- Consequence: a set of exact Riemann-Hilbert equations for AdS/CFT spectrum - quantum spectral curve. Gromov, v.K., Leurent, Volin 2013
- $4+4$ basic functions, with relatively simple analytic properties (one cut!)

$$
\begin{aligned}
& \mathbf{P}_{a}(u) \sim \exp \left(-\int^{u} \widehat{p}_{a}\left(u^{\prime}\right) d u^{\prime}\right) \\
& \mathbf{Q}_{j}(u) \sim \exp \left(+\int^{u} \check{p}_{j}\left(u^{\prime}\right) d u^{\prime}\right)
\end{aligned}
$$

- Large u asymptotics defined by classical quasimomenta:

$$
\mathbf{P}_{b} \simeq A_{b} u^{\frac{ \pm J_{1} \pm J_{2} \pm J_{3}}{2}}, \quad \mathbf{Q}_{j} \simeq B_{j} u^{\frac{ \pm \Delta \pm S_{1} \pm S_{2}}{2}}, \quad b, j=1,2,3,4
$$

- On the next sheets: infinite ladder of such cuts spaced by i.
- No other singularities are admitted
- To fix these functions completely we have to know the monodromy around the branch points.
- Monodromy around the branch point matrix:

$$
\tilde{\mathbf{P}}_{a}=\mu_{a b} \mathbf{P}^{b}
$$

- Antisymmetric pseudo-periodic coefficient matrix:

$$
\tilde{\mu}_{a b}(u)=\mu_{a b}(u+i), \quad \operatorname{Pf}(\mu)=0
$$

$$
\begin{aligned}
& \text { SL(2) reduction: } \\
& \qquad \mathbf{P}^{a}=-\chi^{a b} \mathbf{P}_{b}
\end{aligned}
$$

$\widetilde{\mathbf{P}}$ is the analytic continuation of
\mathbf{P} through the cut:

$$
\chi=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

- $P \mu$-system contains also an equation for monodromy of μ :

$$
\tilde{\mu}_{a b}-\mu_{a b}=\mathbf{P}_{a} \tilde{\mathbf{P}}_{b}-\mathbf{P}_{b} \tilde{\mathbf{P}}_{a}
$$

- Asymptotics at $u \rightarrow \infty$

$$
\left(\begin{array}{l}
\mathbf{P}_{1} \\
\mathbf{P}_{2} \\
\mathbf{P}_{3} \\
\mathbf{P}_{4}
\end{array}\right) \sim\left(\begin{array}{c}
A_{1} u^{-\frac{L}{2}} \\
A_{2} u^{-\frac{L+2}{2}} \\
A_{3} u^{\frac{L}{2}} \\
A_{4} u^{\frac{L-2}{2}}
\end{array}\right) \quad\left(\begin{array}{l}
\mu_{12} \\
\mu_{\mu_{3}} \\
\mu_{14} \\
\mu_{24} \\
\mu_{34}
\end{array}\right) \sim\left(\begin{array}{l}
u^{\wedge-L} \\
u^{\wedge+1} \\
u^{\wedge} \\
u^{\wedge-1} \\
u^{\wedge+L}
\end{array}\right), \quad \wedge=0, \pm \Delta, \pm(S-1)
$$

Perturbative Konishi: integrability versus Feynman graphs

- Integrability allows to sum up exactly enormous numbers of Feynman diagrams of $\mathrm{N}=4 \mathrm{SYM}$
$\begin{aligned} & \text { Bajnok,Janik } \\ & \text { arent,Serban, Volin }\end{aligned}-96 g^{10}\left(-158-72 \zeta_{3}+54 \zeta_{3}+90 \zeta_{5}-315 \zeta_{7}\right)$
131000

$$
\mathcal{O}_{\text {Konishi }}=\operatorname{Tr}[\mathcal{D}, \mathrm{Z}]^{2}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { Bajnok,Janik,Lukowski } \\
\text { Lukowski,Rej, }
\end{array}-48 g^{12}\left(160+5472 \zeta_{3}-3240 \zeta_{3} \zeta_{5}+432 \zeta_{3}^{2}-2340 \zeta_{5}-1575 \zeta_{7}+10206 \zeta_{9}\right) \\
& \text { Velizhanin,Orlova }+48 g^{14}\left(-44480+108960 \zeta_{3}+8568 \zeta_{3} \zeta_{5}-40320 \zeta_{3} \zeta_{7}-8784 \zeta_{3}^{2}+2592 \zeta_{3}^{3}\right. \\
& \left.-4776 \zeta_{5}-20700 \zeta_{5}^{2}-26145 \zeta_{7}-17406 \zeta_{9}+152460 \zeta_{11}\right) \\
& +96 g^{16}\left(566752-869760 \zeta_{3}-45360 \zeta_{3} \zeta_{5}-64890 \zeta_{3} \zeta_{7}+241920 \zeta_{3} \zeta_{9}+82656 \zeta_{3}^{2}-33912 \zeta_{3}^{2} \zeta_{5}+20736 \zeta_{3}^{3}\right. \\
& \text { Leurent, Volin } \quad-204984 \zeta_{5}+231840 \zeta_{5} \zeta_{7}+24840 \zeta_{5}^{2}+227799 \zeta_{7}+97164 \zeta_{9}+135927 \zeta_{11}-1104246 \zeta_{13} \\
& \text { (8 loops from FiNLIE) } \\
& \left.+7128 \frac{\zeta_{11}-\zeta_{3} \zeta_{3,5}+\zeta_{3,5,3}}{5}\right) \\
& \underset{\text { oolin spectral curve })}{ }-96 g^{18}\left(10568224-11884608 \zeta_{3}+148896 \zeta_{3} \zeta_{5}-177768 \zeta_{3} \zeta_{5}^{2}-354384 \zeta_{3} \zeta_{7}-1244484 \zeta_{3} \zeta_{9}+2901096 \zeta_{11} \zeta_{3}\right. \\
& +533952 \zeta_{3}^{2}+284904 \zeta_{3}^{2} \zeta_{5}-229824 \zeta_{3}^{2} \zeta_{7}+209952 \zeta_{3}^{3}-5993280 \zeta_{5}+963954 \zeta_{5} \zeta_{7}+2553120 \zeta_{5} \zeta_{9}-576000 \zeta_{5}^{2} \\
& +2324196 \zeta_{7}+1184274 \zeta_{7}^{2}+2573892 \zeta_{9}+355266 \zeta_{11}+2644434 \zeta_{13}-15810795 \zeta_{15} \\
& \left.+163296 \frac{\zeta_{11}-\zeta_{3} \zeta_{3,5}+\zeta_{3,5,3}}{5}-13608\left(\zeta_{3} \zeta_{3,7}-\zeta_{3,7,3}+\zeta_{3}^{2} \zeta_{5}-\zeta_{5} \zeta_{5,3}+\zeta_{5,3,5}\right)\right)
\end{aligned}
$$

- Confirmed up to 5 loops by direct graph calculus (6 loops promised)

AdS string quasiclassics and numerics in $\mathrm{SL}(2)$ sector: twist-L operators of spin $S \quad \operatorname{Tr} \mathcal{D}^{\mathrm{S}} \mathrm{Z}^{\mathrm{L}}$

- 3 leading strong coupling terms were calculated for any S and L
- Numerics from Y-system, TBA, FiNLIE, at any coupling:
$S=2, \quad L=2, \quad n=1$ - for Konishi operator
$S=2, \quad L=3, \quad n=1$ - and twist-3 operator
They perfectly reproduce the TBA/Y-system or FiNLIE numerics

- AdS/CFT Integrability passes all known tests!

BFKL Dimension from Quantum Spectral Curve

- QSC allows for analytic continuation of exact dimension $\quad \Delta(S, g)$ to continuous spins $-1<S<\infty$ We need to find the appropriate analytic continuation of P, Q-functions -1

Janik Gromov, V.K.
Gromov, Levkovich-Maslyuk, Sizov, Valatka

- BFKL is a double scaling limit:
$w=S+1 \rightarrow 0, \quad g \rightarrow 0, \quad \wedge=\frac{g^{2}}{S+1} \quad$-fixed

- We will restore from QSC the leading order (LO) BFKL approximation for $\Delta(S, g)$ already known up to NLO from direct summation of Feynman graphs

Balitsky, Fadin, Kuraev, Lipatov

$$
\begin{gathered}
\frac{S+1}{4 g^{2}}=\Psi(\Delta)+g^{2} \delta(\Delta)+\mathcal{O}\left(g^{4}\right) \quad \text { Wotikov, Lipatov } \quad \text { Where } \Psi(\Delta)=-\psi\left(\frac{1+\Delta}{2}\right)-\psi\left(\frac{1-\Delta}{2}\right)+2 \psi(1) \\
\delta(\Delta)=4 \Psi^{\prime \prime}(\Delta)+6 \zeta_{3}+2 \zeta_{2} \Psi(\Delta)-\frac{\pi^{3}}{\cos \frac{\pi \Delta}{2}}-4 \Phi\left(\frac{1}{2}-\frac{\Delta}{2}\right)-4 \Phi\left(\frac{1}{2}+\frac{\Delta}{2}\right), \quad \Phi(x)=\sum_{k=0}^{\infty} \frac{(-)^{k}}{(x+k)^{2}}[\psi(k+1+x)-\psi(1)]
\end{gathered}
$$

- In particular, near the Regge pole

$$
\Delta-1 \simeq \frac{-8 g^{2}}{w}+w \zeta_{3}\left(\frac{-4 g^{2}}{w}\right)^{3}+\mathcal{O}\left(\left(\frac{g^{2}}{w}\right)^{4}\right)
$$

- BFKL is an excellent test for the whole AdS/CFT integrability: it sums up "wrapped" graphs omitted in asymptotic Bethe ansatz

P- and μ-functions at LO BFKL

- \mathbf{P} have a single cut which generates poles at $\boldsymbol{u}=\mathbf{0}$ in the regime $g \ll|u| \ll 1$
$\sqrt{u^{2}-4 g^{2}} \equiv \sqrt{u^{2}-4 \Lambda w}=u-\frac{2 \Lambda}{u} w-\frac{2 \Lambda^{2}}{u^{3}} w^{2}+O\left(w^{3}\right)$

reminder:
- Due to asymptotics and parity P's are fixed at leading
$w=S+1$
$\wedge=\frac{g^{2}}{S+1}$ order (LO) up to a single constant (fixed in NLO):

$$
\mathbf{P}_{1}=\frac{1}{u}, \quad \mathbf{P}_{2}=\frac{1}{u^{2}}, \quad \mathbf{P}_{3}=A_{3}^{(0)} u+\frac{c_{3,1}^{(1)}}{\Lambda u}, \quad \mathbf{P}_{4}=A_{4}^{(0)}
$$

- μ has a "ladder" of cuts generating poles at $u=i \mathbb{Z}$
- Asymptotics $u \rightarrow \infty$ suggests that at LO $\mu=$ polynomials $\times \operatorname{Sinh}^{2}(\pi u)$
- Combining it with the monodromy equation we can fix μ

$$
\mu_{12}=\frac{1}{w^{2}} \frac{\sinh ^{2} \pi u}{\pi^{2} \Lambda^{2}} \frac{-4 i}{\left(\Delta^{2}-1\right)^{2}}, \quad \mu_{13}=\cdots,
$$

- At the same time we fix the missing coefficient in \mathbf{P}

$$
c_{3,1}^{(1)}=-\frac{i\left(\Delta^{2}-1\right)^{2}}{96}
$$

Analytic properties of Q-functions

- Natural objects for approaching BFKL are \mathbf{Q}-functions: their asymptotics contain conformal charges, including Δ
- A "ladder" of cuts generates poles at $u=i \mathbb{Z}_{-}$

- From purely algebraic relations of Q-system we get a 4-th order finite difference equation with 4 solutions giving all $4 \mathbf{Q}$-functions in terms of on \mathbf{P}-functions:

$$
\mathrm{o}=\mathbf{Q}^{[+4]} D_{0}-\mathbf{Q}^{[+2]}\left[D_{1}-\mathbf{P}_{a}^{[+2]} \mathbf{P}^{a[+4]} D_{\mathrm{O}}\right]+\frac{1}{2} \mathbf{Q}\left[D_{3}+\mathbf{P}_{a} \mathbf{P}^{a[+4]} D_{0}+\mathbf{P}_{a} \mathbf{P}^{a[+2]} D_{1}\right]+\text { c.c. }
$$

- The coefficients depend only on \mathbf{P}-functions: $D_{m}=\operatorname{det}_{1 \leq a, k \leq 4}\left(\mathbf{P}^{a}\right)^{\left[4-2 k+2 \delta_{k, m}\right]}$
- Plugging NLO P's we get factorized eq. for BFKL Q

$$
\left[D+D^{-1}-2-\frac{1-\Delta^{2}}{4 u^{2}}\right] \mathbf{Q}=0
$$

- 2-nd order equation is the Faddeev-Korchemsky Baxter eq. for BFKL pomeron!
- Similarly, we find NLO \mathbf{P} and NLO Baxter equation for \mathbf{Q}
$\mathbf{Q}_{j}\left(\frac{\Delta^{2}-1-8 u^{2}}{4 u^{2}}+w \frac{\left(\Delta^{2}-1\right) \wedge-u^{2}}{2 u^{4}}\right)+\mathbf{Q}_{j}^{--}\left(1-\frac{i w / 2}{u-i}\right)+\mathbf{Q}_{j}^{++}\left(1+\frac{i w / 2}{u+i}\right)=0$
- Solution - hypergeometric function. Gives pomeron spectrum and twist-2 dimension!

Conclusions and Comments

- We proposed a system of matrix Riemann-Hilbert equations - Quantum Spectral Curve - for the exact spectrum of anomalous dimensions of planar $\mathrm{N}=4$ SYM theory in 4D.
- BFKL dimension in LO is recovered. Consequences for scattering theory in Regge limit and a link to QCD pomeron.
- Hopefully efficient for numerics. In particular, the full curve $\Delta(\mathrm{S}, \mathrm{g})$ could be restored numerically.
- Applicable for Wilson loops and quark-antiquark potential in N=4 SYM Correa, Maldacena, Sever
- Works for cusped Wilson loops and quark-antiquark potential in N=4 SYM
- Very efficient for various approximations: weak coupling (9 loops!) and strong

Gromov, Sever
coupling (3 loops) expansions exact slope and curvature functions

$$
\Delta(\mathrm{S}, \mathrm{~g})-\Delta_{0}=\Delta^{\prime}(\mathrm{g}) \mathrm{S}+\Delta^{\prime \prime}(\mathrm{g}) \mathrm{S}^{2}+\mathrm{O}\left(\mathrm{~S}^{3}\right) \quad \begin{aligned}
& \text { Basso } \\
& \text { Gromov, Levkovich-Maslyuk, Sizov, Valatka }
\end{aligned}
$$

Future directions

- Similar equations in gluon amplitudes, correlators, Wilson loops, $1 / \mathrm{N}$ - expansion ?
- Strong coupling expansion from $\mathrm{P}-\mu$-system?
- Same method of Riemann-Hilbert equations and Q-system for other sigma models ?
- Finite size bootstrap for 2D sigma models without S-matrix and TBA ?
- Deep reasons for integrability of planar $\mathrm{N}=4 \mathrm{SYM}$?
- NLO, NNLO, ... BFKL (in progress)

