Pacific 2014

Testing gravity with large scale structure dynamics

Elise Jennings University of Chicago

Kavli Institute for Cosmological Physics THE UNIVERSITY OF CHICAGO

THE ENRICO FERMI INSTITUTE

SIMONS FOUNDATION MATHEMATICS & THE PHYSICAL SCIENCES

Outline

- Accelerating expansion
- Growth of structure & Expansion history
- Redshift space distortions : an important cosmological probe
- Measuring the growth rate: Dark energy vs. modified gravity

EJ, B. Li, C.M. Baugh, G. Zhao, K. Kazuya 2013 EJ 2012 EJ, C. M. Baugh, S. Pascoli 2011 **Probing Dark Energy**

Supernovae, CMB BAO, Weak Lensing & Cluster observations

 $\longrightarrow \Lambda CDM cosmology$ $\Omega_{TOTAL} \sim 1$ $\sim 25\% Dark Matter$ $\sim 75\% Dark Energy$

What is causing the accelerating expansion ? Is dark energy constant or does it evolve with time? General Relativity or Modified gravity?

Missions to study the dark sector need precise measurements:

Expansion historyH(z)Growth ratef = dlnD/dlna

Probing Dark Energy

N-body simulations are an essential tool

- Model nonlinear fluctuation growth, peculiar motions, nonlinear and scale dependent bias

- Study nonlinear growth in different cosmologies

Angulo et al. 2008

Redshift space distortions

Redshift space distortions

Clustering statistics

The Dark Energy Science report aka "Rocky III": **RSD "among the most powerful ways of addressing whether the acceleration is caused by dark energy or modified gravity"**

$$\begin{split} \delta_D(\vec{k}) + P(k,\mu) &= \int \frac{\mathrm{d}^3 r}{(2\pi)^3} e^{-i\vec{k}\cdot\vec{r}} \langle e^{ik\mu\Delta u_z} [1+\delta(\vec{x})] [1+\delta(\vec{x}')] \rangle \\ \\ \text{Power spectrum in} \\ \text{redshift space} \end{split} \quad v_z(\vec{x}) - v_z(\vec{x'}) \end{split}$$

Linear theory

$$\delta_s(r) = \delta_r(r)(1 + \mu^2 \beta)$$

Current measurements & forecasts

Clustering statistics

Correlation function

$$\begin{pmatrix} \xi_0(s) \\ \xi_2(s) \end{pmatrix} = \begin{pmatrix} \left(1 + \frac{2}{3}\beta + \frac{1}{5}\beta^2\right)\xi(r) \\ \left(\frac{4}{3}\beta + \frac{4}{7}\beta^2\right)[\xi(r) - \bar{\xi}(r)] \end{pmatrix}$$

Improved model for the redshift space P(k):

$$P^{s}(k, \mu) = (P_{\delta\delta} + 2\mu^{2}P_{\delta\theta} + \mu^{4}P_{\theta\theta})$$
Velocity divergence cross P(k) Velocity divergence auto P(k)
$$\int_{a}^{b} \int_{a}^{b} \int_{a}^{b}$$

Improved model for the redshift space P(k):

Blake et al. 2011 Results from WiggleZ

Dark Energy or modified gravity

Anything that can simultaneously explain

Angular diameter distances (BAO, CMB)
Luminosity distances (Supernovae Ia)

can be called "dark energy" but could be the result of modified gravity!

Measuring the expansion history alone will not distinguish modified gravity from smooth dark energy

Need to break the degeneracy with measurements of growth factor

e.g Quintessence

e.g. parametrised by $\mu^2 = G/G_N$ and $\zeta = 1-\Psi/\Phi$ "slip parameter"

Dark energy
$$\longrightarrow H(z) \longleftarrow Modified gravity$$

e.g Quintessence

Within GR growth of density perturbations grows according to

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi G_N \rho_{\rm m} \delta = 0$$

e.g. parametrised by $\mu^2 = G/G_N$ and $\zeta = 1-\Psi/\Phi$ "slip parameter"

If gravitational constant varies & $g = \delta/a$

$$\delta_D(\vec{k}) + P(k,\mu) = \int \frac{\mathrm{d}^3 r}{(2\pi)^3} e^{-i\vec{k}\cdot\vec{r}} \langle e^{ik\mu\Delta u_z} [1+\delta(\vec{x})] [1+\delta(\vec{x}')] \rangle$$

Clustering statistics

e.g Quintessence

Within GR growth of density perturbations grows according to

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi G_N \rho_{\rm m}\delta = 0$$

e.g. parametrised by $\mu^2 = G/G_N$ and $\zeta = 1-\Psi/\Phi$ "slip parameter"

If gravitational constant varies & $g = \delta/a$

$${}_{D}(\vec{k}) + P(k,\mu) = \int \frac{\mathrm{d}^{3}r}{(2\pi)^{3}} e^{-i\vec{k}\cdot\vec{r}} \langle e^{ik\mu\Delta u_{z}} [1+\delta(\vec{x})] [1+\delta(\vec{x}')] \rangle$$

Consistency test of
cosmology :
compare growth &
expansion ratesGrowth
f(a)

RSD in f(R) gravity

Simulations: Modified Ramses

EJ, Baugh, Li, Zhao & Koyama 2012

CosmoSIS: modular cosmological parameter estimation

Sarah Bridle, Scott Dodelson, Elise Jennings, Jim Kowalkowski, Alessandro Manzotti, Marc Paterno, Doug Rudd, Saba Sehrish, Joe Zuntz

Modular Calculations

Zuntz et al 2014

CosmoSIS

CosmoSIS Standard Library CAMB, Planck, WMAP, BICEP2, BOSS, CRL...

Software tools: gcc, g++, gfortran,Python, SciPy, fftw, gsl,NumPy, cfitsio, pyfits

https://bitbucket.org/joezuntz/cosmosis/wiki/Home