## Studies of the Highest Energy Cosmic Rays with the Telescope Array Observatory

John Belz University of Utah PAGIFIC2014 16 September, 2014

#### **The Telescope Array Collaboration**

RU Abbasi<sup>a</sup>, M Abe<sup>b</sup>, T Abu-Zayyad<sup>a</sup>, M Allen<sup>a</sup>, R Anderson<sup>a</sup>, R Azuma<sup>c</sup>, E Barcikowski<sup>a</sup>, J.W. Belz<sup>a</sup>, DR Bergman<sup>a</sup>, SA Blake<sup>a</sup>, R Cady<sup>a</sup>, MJ Chae<sup>d</sup>, BG Cheon<sup>e</sup>, J Chiba<sup>f</sup>, M Chikawa<sup>g</sup>, WR Cho<sup>h</sup>, T Fujii<sup>i</sup>, M Fukushima<sup>i,j</sup>, T Goto<sup>k</sup>, W Hanlon<sup>a</sup>, Y Hayashi<sup>k</sup>, N Hayashida<sup>l</sup>, K Hibino<sup>l</sup>, K Honda<sup>m</sup>, D Ikeda<sup>i</sup>, N Inoue<sup>b</sup>, T Ishii<sup>m</sup>, R Ishimori<sup>c</sup>, H Ito<sup>n</sup>, D Ivanov<sup>a</sup>, CCH Jui<sup>a</sup>, K Kadota<sup>o</sup>, F Kakimoto<sup>c</sup>, O Kalashev<sup>p</sup>, K Kasahara<sup>q</sup>, H Kawai<sup>r</sup>, S Kawakami<sup>k</sup>, S Kawana<sup>b</sup>, S Kawata<sup>i</sup>, E Kido<sup>i</sup>, HB Kim<sup>e</sup>, JH Kim<sup>a</sup>, JH Kim<sup>e</sup>, S Kitamura<sup>c</sup>, Y Kitamura<sup>c</sup>, V Kuzmin<sup>p</sup>, YJ Kwon<sup>h</sup>, J Lan<sup>a</sup>, SI Lim<sup>d</sup>, JP Lundquist<sup>a</sup>, K Machida<sup>m</sup>, K Martens<sup>l</sup>, T Matsuda<sup>s</sup>, T Matsuyama<sup>k</sup>, JN Matthews<sup>a</sup>, M Minamino<sup>k</sup>, Y Mukai<sup>m</sup>, I Myers<sup>a</sup>, K Nagasawa<sup>b</sup>, S Nagataki<sup>n</sup>, T Nakamura<sup>t</sup>, T Nonaka<sup>i</sup>, T Nozato<sup>g</sup>, S Ogio<sup>k</sup>, J Ogura<sup>c</sup>, M Ohnishi<sup>i</sup>, H Ohoka<sup>i</sup>, K Oki<sup>i</sup>, T Okuda<sup>u</sup>, M Ono<sup>n</sup>, A Oshima<sup>k</sup>, S Ozawa<sup>q</sup>, IH Park<sup>v</sup>, MS Pshirkov<sup>w</sup>, DC Rodriguez<sup>a</sup>, G Rubtsov<sup>p</sup>, D Ryu<sup>x</sup>, H Sagawa<sup>i</sup>, N. Sakurai<sup>k</sup>, AL Sampson<sup>a</sup>, LM Scott<sup>v</sup>, PD Shah<sup>a</sup>, F Shibata<sup>m</sup>, T Shibata<sup>i</sup>, H Shimodaira<sup>i</sup>, BK Shin<sup>e</sup>, JD Smith<sup>a</sup>, P Sokolsky<sup>a</sup>, RW Springer<sup>a</sup>, BT Stokes<sup>a</sup>, SR Stratton<sup>a y</sup>, T Stroman<sup>a</sup>, S Suzawa<sup>b</sup>, Y Takamura<sup>t</sup>, M Takeda<sup>i</sup>, A. Taketa<sup>z</sup>, M Takita<sup>i</sup>, Y Tameda<sup>i</sup>, H Tanaka<sup>k</sup>, K Tanaka<sup>aa</sup>, M Tanaka<sup>s</sup>, SB Thomas<sup>a</sup>, GB Thomson<sup>a</sup>, P Tinyakov<sup>p.w</sup>, I Tkachev<sup>p</sup>, H Tokuno<sup>c</sup>, T Tomida<sup>ab</sup>, S Troitsky<sup>p</sup>, Y Tsunesada<sup>c</sup>, K Tsutsumi<sup>c</sup>, Y Uchihori<sup>ac</sup>, S Udo<sup>i</sup>, F Urban<sup>w</sup>, G Vasiloff<sup>a</sup>, T Wong<sup>a</sup>, R Yamane<sup>k</sup>, H Yamaoka<sup>s</sup>, K Yamazaki<sup>k</sup>, J Yang<sup>d</sup>, K Yashiro<sup>†</sup>, Y Yoneda<sup>k</sup>, S Yoshida<sup>r</sup>, H Yoshii<sup>ad</sup>, R Zollinger<sup>a</sup>, Z Zundel<sup>a</sup>

<sup>a</sup>High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA,<sup>b</sup> The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan,<sup>c</sup> Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan,<sup>d</sup> Department of Physics and Institute for the Early Universe, Ewha Womans University, Seodaaemun-gu, Seoul, Korea,<sup>e</sup> Department of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul, Korea, Department of Physics, Tokyo University of Science, Noda, Chiba, Japan,<sup>9</sup> Department of Physics, Kinki University, Higashi Osaka, Osaka, Japan,<sup>b</sup> Department of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan, Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa, Chiba, Japan, Graduate School of Science Osaka City University, Osaka, Osaka, Japan, Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan, University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi, Japan," Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama, Japan,<sup>o</sup> Department of Physics, Tokyo City University, Setagaya-ku, Tokyo, Japan,<sup>o</sup> Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia,<sup>q</sup> Advanced Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan,<sup>r</sup> Department of Physics, Chiba University, Chiba, Chiba, Japan,<sup>s</sup> Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan, <sup>1</sup>Faculty of Science, Kochi University, Kochi, Kochi, Japan," Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan," Department of Physics, Sungkyunkwan University, Jang-an-gu, Suwon, Korea,<sup>w</sup> Service de Physique Théorique, Universite Libre de Bruxelles, Brussels, Belgium,<sup>\*</sup> Department of Astronomy and Space Science, Chungnam National University, Yuseong-gu, Daejeon, Korea, <sup>y</sup> Department of Physics and Astronomy, Rutgers University – The State University of New Jersey, Piscataway, New Jersey, USA,<sup>z</sup> Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo, Japan,<sup>aa</sup> Department of Physics, Hiroshima City University, Hiroshima, Hiroshima, Japan, ab Advanced Science Institute, RIKEN, Wako, Saitama, Japan, ao National Institute of Radiological Science, Chiba, Chiba, Japan, <sup>ad</sup> Department of Physics, Ehime University, Matsuyama, Ehime, Japan,

# The TA Observatory



- 3 fluorescence detectors (FD's)
  - 120° azimuth, 3°-31° elevation

Middle Drum

- Overlook SD array
- Full shower reconstruction
- 10% duty cycle





Hinckley

Black Rock Mesa









### **Typical Fluorescence Event**



Monocular timing fit (time vs angle)

**Reconstructed Shower Profile** 

## The TA Observatory

**Telescope Array Locations** 

General Reference Map

Meters

6.000

- 507 Surface Detectors (SD's)
  - Each 3 m<sup>2</sup> active area, 2 layers

Middle Drum

- 1.2 km spacing, 700 km<sup>2</sup>
- Shower footprint only
- 100% duty cycle
- Over/six years of data



### Surface Detector Reconstruction



#### **Individual SD**



#### **Determine flux 800 m from core**



#### **Shower Geometry from Timing**



**1**<sup>st</sup> Energy Estimate from lookup table

#### UHE Cosmic Ray Spectrum SD Data (6 Yrs: 20080511-20140511, 5400 km<sup>2</sup> str yr)

**Broken Power Law Fit**   $\gamma_1 = -3.298 +/- 0.029$   $\gamma_2 = -2.673 +/- 0.028$  **Log(E\_GZK/eV) = 19.74 +/- 0.038**  $\gamma_3 = -4.539 +/- 0.441$ 

 Significance of GZK Effect:

 Integrate log10(E/eV) = 19.8 to 21.0

  $N_{exp} = 85.9$   $N_{obs} = 32$  

 GZK  $_{Chance Prob} = 2.248e-11 = 6.59\sigma$  

 Berezinsky  $E_{1/2:}$ :

 Log(E/eV) = 19.73 +/- 0.042



Break significance =  $6.59\sigma$ 



#### **Search for Arrival Direction Anisotropy**



#### TASD 5-Year Skymap, E > 57 EeV





- Over-sampling with 20° radius circle
- 19 events found at R.A.=146.7°, Dec. = 43.2° with isotropic BG of 4.5 events (5.1σ by Li-Ma)
- Chance probability from Isotropic sky is 3.7 x 10<sup>-4</sup> (3.4 σ)
   i.e. we generated 100k sets of isotropic 72 events, analyzed the same way as data, and counted how often we have 5.1σ enhancement, anywhere in TA's FoV with any size of r=15, 20,... 35°.

ApJ:790:L21(2014), arXiv:1404:5890





- 6<sup>th</sup> year: 15 further events, 4 in hotspot.
- Li-Ma significance = 5.5 σ
- Chance probability = 4.3 σ

```
(4.0 \sigma \text{ with r-scan})
```

• Take-home message:  $3\frac{1}{2} \sigma \rightarrow just over 4 \sigma$ 

# UHECR Composition via Depth of Shower Maximum X<sub>max</sub>



PAO hybrid, 2013 ICRC

#### HiRes stereo, PRL 104 (2010)

# Hybrid Composition

- Middle Drum (ref HiRes) fluorescence detector, in *hybrid* mode.
- Light composition
- Paper in review, APP





## **Upgrades and Affiliated Experiments**

- TALE Low-Energy Extension
- NICHE Non-Imaging Cherenkov Array
- $TA \times 4$  Anisotropy engine to map the hotspot
- Electron Light Source
- TARA EAS detection by bistatic radar
- TA/LMA Novel use for a cosmic ray detector

# TA Upgrades

- Low-energy extension; TALE
- NICHE



# TA Low Energy Extension (TALE)

- Study 10<sup>16</sup> and 10<sup>17</sup> eV decades in hybrid
- Astrophysics
  - End of "knee"
  - Second knee
  - Galactic-Extragalactic
     Transition
- High-energy physics: Crosssection measurements overlapping LHC





# TALE Detectors are being deployed.







### **TALE:** Cherenkov Events



T. Abu- Zayyad







#### > 4 orders of magnitude, one observatory!



# TA Upgrades

- TA x 4
- 3,000 km<sup>2</sup>
  - 500 SD's, 2 km spacing
  - 1 new FD (HiRes refurbished)
- Proposals submitted NSF, Japan
- Anisotropy: 20 TA-SD years by 2019



# TARA: What is the EAS radar cross-section?

- 80 year old question!
- Underdense Region
  - Most of shower
  - $\sigma$  = (Thomson x N<sub>e</sub>)
- Overdense Region: ionization density exceeds critical density (plasma frequency = sounding frequency)
  - Relatively small (few cm?)
  - like macroscopic conductor

$$\omega_p = \left(\frac{n_e e^2}{m_e \varepsilon}\right)^{\frac{1}{2}}$$

Collisional Damping?



# TARA

• 40 kW analog TV transmitter

(54.1 MHz, Channel 2)

- High-gain antenna (8 MW ERP)
- 250 MS/s smart receiver







# TARA

• 40 kW analog TV transmitter

(54.1 MHz, Channel 2)

- High-gain antenna (8 MW ERP)
- 250 MS/s smart receiver



## Novel Discovery: TA "Burst" Events



T. Okuda



#### "Burst Events" and National Lightning Detector Network



#### **Reconstructable!**

#### Lightning Mapping at Telescope Array NM Tech, BNL, and the TA Collaboration



VHF Lightning Detector

> Lightning produces keV-MeV gamma showers TA (uniquely) can reconstruct these showers Also: Can cosmic rays initiate lightning?

face Detector



3D Reconstruction of Gamma Showers and lightning strike

## Conclusions

- TA energy spectrum now spans four orders of magnitude. (Just above the "knee" to GZK feature.
- TA sees evidence for anisotropy in the Northern Hemisphere
- Composition measured via  $X_{max}$  appears light, mostly protonic.
- Rich program of affiliated experiments





## Origin of UHE Cosmic Rays?

Evidence for Comic Ray Anisotropy above 5.7x 10<sup>19</sup> eV in the North and South - Still statistically limited – but it will be clear in a few years

