



# What cosmic-ray anisotropy tells us

#### Martin Pohl

with David Eichler

# Topics

- 1. Introduction
- 2. Measurements
- 3. Modeling
- 4. Intermittency
- 5. Outlook

## Introduction

**Observables in cosmic-ray research** 

- 1. Spectrum
- 2. Composition
- 3. Survival fraction of unstable nuclei
- 4. Secondary-to-primary ratios
- 5. Anisotropy

Conventionally used in, e.g., Galprop, Usine, Dragon

#### Measurements

#### **TeV-band measurements with IceCube**



#### Measurements

2 energy bands, median 20 TeV and 400 TeV



#### Measurements

Anisotropy along RA Real anisotropy is a bit larger

~0.1%



Cosmic rays undergo diffusion

not necessarily isotropic w.r.t. large-scale magnetic field

Small-scale anisotropy reflects residual MF structure and individual elements of diffusion tensor.

Write continuity equation for isotropic part of distribution function

 $\rightarrow$  dipole anisotropy related to diffusive flux

#### For one source

$$\frac{\partial N}{\partial t} - \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 D \frac{\partial N}{\partial r} \right) = Q(E) \delta(t) \frac{\delta(r)}{4\pi r^2}$$

$$N(r,t,E) = \frac{\Theta(t)Q(E)}{\left(4\pi Dt\right)^{1.5}} \exp\left(-\frac{r^2}{4Dt}\right)$$

Easy to add contributions from many sources

Escape and boundary condition by mirror method

**Beware of singularities!** 

Make sources active for finite time and represent a thin shell of radius R

 $\rightarrow$ 

$$N(r,t,E) = \frac{\Theta(t)Q(E)}{\left(4\pi Dt\right)^{1.5}} \exp\left(-\frac{r^2 + R^2}{4Dt}\right) \frac{2Dt}{rR} \sinh\left(\frac{rR}{2Dt}\right)$$

Now fix propagation parameters

Most important :

source distribution



Use results of Trotta et al. (Large-scale fit @ GeV with Galprop)

$$D = D_0 \left(\frac{E}{4 \,\mathrm{GeV}}\right)^{\delta}$$

$$D_0 = (1.2 + 1.3H) \cdot 10^{28} \text{ cm}^2 \text{s}^{-1}$$

| Parameters                     | Symbol   | Value                     |
|--------------------------------|----------|---------------------------|
| Injection index                | S        | 2.4                       |
| Energy dependence of diffusion | $\delta$ | 0.3                       |
| Source distribution            | a        | 1.25                      |
| Source distribution            | b        | 3.56                      |
| Source rate                    | $P_Q$    | $10^{-2} \text{ yr}^{-1}$ |
| Source lifetime                |          | $2\cdot 10^3 { m yr}$     |
| Source radius                  | R        | $10 \ \mathrm{pc}$        |

Randomly place cosmic ray sources

Simulate many times

→ The actual source distribution matters

Central 90% band of expected anisotropy

with median

and one real example



Anisotropy is

$$\delta = \lambda_{mfp} \frac{1}{N} \frac{\partial N}{\partial r} = \frac{D}{3cN} \frac{\partial N}{\partial r}$$

For continuous and steady sources related to source distribution.

Gradient scale is a few kpc for Trotta et al. MFP at 20 TeV is about 25 pc  $\rightarrow$  0.1%-1% anisotropy

May need flat source distribution Gradient scale of Strong et al is 8 kpc!

Try flat source distribution a la Strong et al.

and propagation parameters by Putze et al.

 $D_0 \cong H \cdot 10^{28} \text{ cm}^2 \text{s}^{-1}$ 

Seems to work marginally

**Check out further!** 



#### IceCube comparison

Rare spikes in flux from nearby SNe

Wild fluctuations in anisotropy

Do we live in am anisotropy lull?



### IceCube comparison

Adapt to IceCube data selection, scale to protons

Important:

Asymmetry of fluctuations

Correlations across spectrum

Account for direction



### **IceCube Comparison**

Project on IceCube declination band

~10% probability to meet data

Anisotropy direction varies strongly



### IceCube comparison

Vary source rate and increase halo size (dotted curves)

 $\rightarrow$  Doesn't help

#### Measured

#### LE $(7.9 \pm 0.1_{st} \pm 0.3_{sy}) \cdot 10^{-2} \%$ HE $(3.7 \pm 0.7_{st} \pm 0.7_{sy}) \cdot 10^{-2} \%$

Only 11% probability for absolutely flat source distribution



### Discussion

Calculation of cosmic-ray dipole anisotropy

**Specifically accounts for intermittency and 3-D structure** 

**Intermittency effects are large** 

Difficult to reproduce 0.1-% level over wide energy bands

Need flat source distribution

Also need small diffusion coefficient beyong 10 TeV

What are the sources of cosmic rays?