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1.  Some advertising

CoEPP:  Started March 2011.  
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              U Melb led group inc. U Adelaide,
              Monash U and U Sydney.
              Expt. (ATLAS) & theory collab.
              ~20 postdoc and 4 faculty positions.

International partners: U Penn (Trodden), 
Cambridge (Parker), Geneva (Clark), Freiburg 
(Jacobs), INFN Milano (Meroni), Duke (Kruse).

Collaborators welcome!
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2. Motivation and review

Setting all bare masses in the SM to zero increases
the symmetry at the classical level:

Scale invariance. (B is boson, F is fermion.)

Bare masses are:  Higgs and RH Majorana neutrino.

Adding gravity:  Planck mass also.

B(x)→ λB(λx) F (x)→ λ3/2F (λx)
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μΦ2 term in Higgs potential ⇒ 

                                               gauge hierarchy problem.

Scale invariance removes this term.

But scale invariance is anomalous: masses are 
generated at the quantum level via dimensional 
transmutation.

Is the gauge hierarchy problem really solved?

Saturday, 1 October 2011



Automatically if you use dimensional regularisation.
W.A. Bardeen FERMILAB-CONF-95-391-T
K.A. Meissner and H. Nicolai, PLB648, 312 (2007); PLB660, 260 (2008)
R. Foot,  A. Kobakhidze and RV, PLB655, 156 (2007)
See also: M. Shaposhnikov and D. Zenhausern, PLB671, 162 (2009)
M. Shaposhnikov and F. Tkachov, arXiv:0905.4857

Define the quantum theory to violate scale invariance
in the “least possible way”.

�
d4k

(2π)4
→ (µ̃)2�

�
d4−2�k

(2π)4−2� (µ̃)2� = 1 + � ln µ̃2 + . . .
as �→ 0

   explicitly breaks scale invariance, but it 
always occurs under a logarithm.
µ̃

Momentum cut-off or Pauli-Villars regularisation 
breaks scale invariance in a hard way (impose WI on counterterms).

In DR, however:

Saturday, 1 October 2011



With classical scale invariance and DR, there simply 
are no mass parameters available to even radiatively 
generate a μΦ2 term, let alone produce a quadratic 
divergent one.  For example:

�
ddkE

(2π)d

1
(k2

e + ∆)n
=

1
(4π)d/2

Γ
�
n− d

2

�

Γ(n)

�
1
∆

�n− d
2

Standard DR formula. For d=4-2ε and n=1, you get

�
d4−2�kE

(2π)4−2�

1
k2

E + ∆
=

1
(4π)2−�

Γ(−1 + �)∆1−�

Scale invariance ⇒ Δ=0 ⇒ quad. div. integral is zero.
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The scale anomaly manifests via logarithms:
• running parameters
• Coleman-Weinberg potential

The scale anomaly can generate symmetry breaking 
scales:

Strong coupling examples:
• QCD with massless quarks ⇒ ΛQCD (DχSB)

• Technicolour ⇒

Weak coupling example:
• Coleman-Weinberg breaking

(ΛEW)3 ∼ �TT �

S. Coleman and E. Weinberg, PRD7, 1888 (1973)
E. Gildener and S. Weinberg, PRD13, 3333 (1976)
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Gildener & S. Weinberg explained how to analyse 
CW symmetry breaking for weakly-coupled massless 
scalar field theories:

• 1-loop CW potential dominates along flat 
direction of tree-level potential
• Quartic couplings are running parameters 
λi = λi(μ)
• Get flat direction by suitable relation 
amongst λi at certain scale μ=Λ.

The relation replaces one λi with quantally-
generated scale Λ: dimensional transmutation (not 
fine-tuning!!).

Λ is free parameter; all masses related to it.
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OK, so what exactly do we want?

A fully-realistic theory with classical scale invariance!

Fully-realistic means:
• Generates acceptable EW Higgs mass
• Has nonzero neutrino masses
• Has dark matter
• Has baryogenesis
• Solves strong CP problem
• Has acceptable inflationary cosmology
• Explains origin of Planck scale
• Accommodates dark energy

I’ll discuss how to do some of the above, especially 
how to fine-tune an appropriate cosmological 
constant.
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Hierarchy of scales is required:

mν ∼ 0.1 eV

mEW ∼ 100 GeV

mleptogen ∼ 109 GeV

mDM ∼ 10 keV − 1016 GeV

mP ∼ 1019 GeV

mPQ ∼ 1010 GeV

How to get rich set of scales from scale-invariance?

mDE ∼ 10−3 eV
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Obvious role for hidden sectors.

Strong coupling example:

Hidden sector 1

QCD-like dynamics → Λ1 

Hidden sector 2

Another QCD-like dynamics → Λ2 

Hidden sector 3

Yet another QCD-like dynamics → Λ3 

Weak coupling
between sectors
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Weak coupling scheme:

Φ = EW Higgs doublet            S1, S2, ... gauge singlets

In limit where S-sector decouples from SM-sector:

V (φ, S1, S2, . . .) = V (φ) + V (S1, S2, . . .)

V(Φ) is the SM Coleman-Weinberg potential.  
Because of large top mass, it fails to radiatively 
induce a nonzero VEV for Φ.

But V(S1, S2, ...) can imply nonzero VEVs for S fields:

�φ� = 0 ≪ �S� �= 0
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Now switch on small coupling between sectors:

�

i

λi
xφ†φS2

i

Negative λx induce negative squared-mass for Φ, 
hence nonzero VEV for Φ.

But as λx → 0, we must get 〈Φ〉→ 0, so

is a technically-natural hierarchy.

�φ�
�S� � 1
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3. Fine tuning CC to be tiny

Classical potential: V0(Si) = λijklSiSjSkSl

Hyperspherical rep: modulus r,  angles θi

V0(r, θi) = r4f(λijkl, θi)

Classical CC = V0,min = 0 (classical scale invariance)
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V = A[g(µ), m(µ), θ(µ), µ]r(µ)4

+ B[g(µ), m(µ), θ(µ), µ]r(µ)4 ln
�

r(µ)2

µ2

�

+ C[g(µ), m(µ), θ(µ), µ]r(µ)4
�
ln

�
r(µ)2

µ2

��2

+ . . .

Effective potential when classical scale inv. holds:

B. Kastening PLB283, 287 (1992)
M. Bando et al., PLB301, 83 (1993)

Extremum condition
∂V

∂r
= 0 with �r� �= 0 ⇒

2A(µ = �r�) + B(µ = �r�) = 0

Dimensional transmutation: generation of scale �r�
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The PGB thus gets mass at 2-loops at best:

Fine-tuning the CC to zero: Vmin = 0 ⇒ A(�r�) = 0

So A = B = 0 at scale <r>.   A ≈ A(0) ≈ 0 is approx. 
Gildener-Weinberg condition.

m2
PGB = 8C(�r�)�r�2

This must be positive for the CC fine-tuning to work.

From the RG Eqn expressing μ-independence of V:

C(�r�) =
1
4
µ

dB

dµ

����
µ=�r�

with

B(1−loop)(�r�) =
1

64π2�r�2
�
3Trm4

V + Trm4
S − 4Trm4

F

���
µ=�r�
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Thus we can only accept theories which allow:

C(2−loop)(�r�) =
1

64π2�r�2
�
3Trm4

V γV + Trm4
SγS − 4Trm4

F γF

���
µ=�r� > 0

ϒ’s are anomalous dimensions
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4. Explicit Model
R. Hempfling, PLB379, 153 (1996)
R. Foot, A. Kobakhidze and RV, PLB655, 156 (2007);  PRD82, 035005 (2010);  arXiv: 1012.4848
R. Foot, A. Kobakhidze, K. McDonald and RV, PRD76, 075014 (2007); PRD77, 035006 (2008)
K.A. Meissner and H. Nicolai, PLB648, 312 (2007); Eur. Phys. J C57, 493 (2008); PRD80, 086005 (2009)
W.F. Chang, J.N. Ng and J.M.S. Wu, PRD75, 115016 (2007)
J.R. Espinosa and M. Quiros, Phys.Rev.D76:076004 (2007)
S. Iso, N. Okada and Y. Orikasa, PLB676, 81 (2009)
M. Holthausen, M. Lindner and M.A. Schmidt, arXiv:0911.0710
L.  Alexander-Nunneley and A. Pilaftsis, arXiv:1006.5916

Ingredients: Φ, S1 and S2 with

�φ� � �S2� � �S1�

EW     see-saw     Planck
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V0(S1, S2) =
λ1

4
S4

1 +
λ2

4
S4

2 +
λ3

2
S2

1S2
2

Scale-invariant tree-level potential for singlets:

Interested in λ3 < 0 s.t. λ1λ2 ≥ λ32 (boundedness). Let

S1 = r cos ω, S2 = r sin ω

For given S1, minimum is at                   with:

V0 =
1
4
S4

1

�
λ1 + 2λ3 tan2 ω + λ2 tan4 ω

�

tan2 ω =
|λ3|
λ2

Vmin =
λ1λ2 − λ2

3

4λ2
S4

1 Approx. flat direction when

Dimensional transmutation

(S1 → −S1 imposed)

λ3(�r�) � −
�

λ1(�r�)λ2(�r�)
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The flat direction is along:

S1 = r

�
1

1 + �
≡ v, S2 =

√
�v

� ≡ tan2 ω =

�
λ1(Λ)
λ2(Λ)

Choose λ1,2(Λ) so that                                         i.e.� ∼ (Msee−saw/MP )2 � 1

λ1(Λ) = −�λ3(Λ) = �2λ2(Λ)
λ1(Λ)� |λ3(Λ)|� λ2(Λ)

S1

S1
S1

S1

S2

S2

λ3 λ3 δλ1 ∼
λ2

3

16π2
=

�2λ2
2

16π2
=

λ1λ2

16π2

hierarchy stable for 
perturbative λ2

Λ = �r�
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Generate Planck scale through

Generate see-saw scale through

L ⊃
√
−g S2

1 R

L ⊃ λMνR(νR)c
S2 + H.c.

Scalar masses: m2
S = 2(λ1 − λ3)v2 where S ≡ sin ωS�

1 − cos ωS�
2

(primes denote shifted fields)

s ≡ cos ωS�
1 + sinωS�

2 is PGB for scale invariance.

Fine-tuning the CC to zero requires: m4
S � 2

3�

i=1

M4
νiR

C2−loop =
3λ1λ2

2

128π4

�
2− y + (1− y)

y√
6

�
Compute

y ≡
6M4

νR

m4
S

� 1
(degen. νR )

so C(2−loop) > 0
This model is OK

Saturday, 1 October 2011



V

r
}

to cancel −Λ4
QCD

False vacuum

Most estimates of QCD
contribution to vacuum

energy give negative value
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3. Conclusions

•Realistic models with classical 
scale invariance are feasible

•Hierarchies of scales can be 
generated in technically-natural 
way (modulo quantum gravity 
uncertainties)

•CC fine-tuning is a non-trivial 
constraint on such models
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