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• Existence of dark matter firmly established 
through observing its gravitational interaction, on a 
variety of length scales from galaxy to Hubble

• No SM particle candidate for dark matter       solid 
observational evidence for BSM physics!

• Thermal relic with ~weak-scale mass and ~weak 
annihilation cross section (WIMP) naturally fits the 
observed dark matter abundance

• BS Models naturally contain WIMPs (e.g. SUSY 
with R-parity - stable neutralino LSP)

Introduction/Motivation
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• Direct searches for WIMP dark matter have seen 
significant improvements recently, e.g. XENON100

XENON-100, arXiv:1104.2549[astro-ph.CO]

“DD cross section”=
spin-independent, elastic 
DM-proton scattering
at zero mom. exchange

[See e.g. B. Sadoulet’s 
talk this morning]
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• Direct searches for WIMP dark matter have seen 
significant improvements recently, e.g. XENON100

XENON-100, arXiv:1104.2549[astro-ph.CO]

Confusion below 15 GeV: 
contradictory (within 

minimal WIMP framework) 
claims

Clean exclusion 
bound in 15 GeV - 

1 TeV range 
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• Generic problem with MSSM predictions: large 
number (~100) of free parameters, allowed ranges 
are highly uncertain (esp. upper bounds on soft 
masses?)

• Standard approach: reduce parameter space by 
assuming high-scale unification, specific SUSY 
breaking model, etc.

• Most studied example, mSUGRA, has 5 parameters 
(and very serious issues with FCNC constraints!)

MSSM Predictions for Direct 
Detection Cross Section
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• Even then, the predictions span several orders of 
magnitude

XENON-100, arXiv:1104.2549[astro-ph.CO]

“MSSM 
predictions” 
(mSUGRA 

scatter plot)
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Our Approach

• Work with the MSSM defined in terms of weak-
scale parameters, treat all of them as independent 
(as in pMSSM, “SUSY without prejudice”, etc.)

• Reduce # of parameters by assuming absence of 
accidental cancellations in the DD cross section

• Look for correlations between DD cross section 
and other physical quantities

• Main question:  What’s special about points with 
low DD cross section?
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Define “Accidental”?

• Intuitive definition:

• More general definition:

• Disclaimer: this definition depends on which parameters are treated as 
“input”. A specific model of SUSY breaking may in fact predict relations that 
seem accidental from our (low-energy) point of view. It is however VERY 
hard to imagine this for the particular examples where we use this rule!

Friday, September 9, 2011



Direct Detection in the MSSM
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Figure 1: Feynman diagrams contributing to spin-independent elastic scattering of the neu-
tralino dark matter particle on a nucleon in the MSSM.

or some lower future bound? This will be the main focus of this paper. In particular, we
will demonstrate a correlation between the direct detection cross section and the amount
of fine-tuning in the electroweak sector: roughly speaking, model points with lower direct
detection cross sections are more fine-tuned.

In order to be as general as possible, we will treat all weak-scale MSSM parameters as in-
dependent, without assuming any relations among them. The tree-level processes contribut-
ing to the direct detection cross section are shown in Fig. 1. The key assumption underlying
our analysis is that no accidental cancellations take place among various contributions to
the direct detection cross section in the MSSM. By “accidental”, we mean a cancellation
which is exact only on a measure-zero hypersurface inside the full MSSM parameter space.
Equivalently, an accidental cancellation is indicated by an anomalous sensitivity of the cross
section to the MSSM parameters (measured, for example, by its logarithmic derivative) along
at least one direction in the parameter space. In particular, any cancellation between the s-
and t-channel diagrams in Fig. 1 would be accidental, since they depend on different sets of
MSSM parameters.3 Thus, for making qualitative statements, it is sufficient to consider only
one of the diagram classes; the other one will, at worst, produce an order-one correction to
the cross section. We will focus on the t-channel diagrams, Fig. 1 (a). We make this choice
because three of the five MSSM parameters which enter these diagrams, µ, tan β, and mA,
also enter the tree-level prediction for the Z mass. In this way, the direct detection cross
section is connected to electroweak symmetry breaking.

3Of course, different MSSM parameters may be related once the SUSY-breaking sector is understood,
so that a cancellation that appears accidental from the weak-scale point of view may in fact be natural in
the full theory. Such a situation, however, appears extremely unlikely in the particular situations where we
apply the “no accidental cancellation rule” in this study. For example, a cancellation between the s- and
t-channel diagrams in Fig. 1 would require a complicated relation involving squark and gaugino soft masses,
the µ parameter, tanβ, and the Higgs mass terms. It is very difficult to imagine a SUSY-breaking model
producing such a relation.

2

With no accidental cancellations, sufficient to 
consider only one diagram class. Choose (a).   
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EWSB Fine-Tuning in the MSSM
• Z mass at the tree level in the MSSM:

• Unless all terms on the r.h.s. are of order 100 
GeV, cancellations are required to make it work

• Measure of fine-tuning: sensitivity of mZ to 
Lagrangian parameters (a la Barbieri-Giudice, but 
at the weak scale):

• A useful approximation                   :

where M1, M2, and µ appear in Eq. (6) implicitly via the neutralino mixing matrix elements.
These parameters will always be defined at the weak scale; since no unification or any other
relation among the parameters is assumed, we do not need to consider their renormalization
group evolution. In general, the parameters pi are complex; however it can be shown (see,
for example, Ref. [26]) that only two phases are physical:

ϕ1 = arg(µM1 sin 2β), ϕ2 = arg(µM2 sin 2β) . (11)

These phases are constrained by measurements of electric dipole moments (EDMs) [17],
although maximal phases are allowed if squarks and sleptons are very heavy [18]. The light
Higgs mass mh can be expressed in terms of the parameters in (10) at tree level. It is of
course well known that a large loop correction is required to satisfy the LEP-2 lower bound
on mh; this correction is dominated by the top and stop loops and including it would bring
in a few additional MSSM parameters into the game. In this study, we avoid doing this by
simply fixing mh at a fixed value consistent with LEP-2, mh = 120 GeV. (In the MSSM, the
upper bound on mh is about 135 GeV; a variation of mh in the allowed range does not have
a strong effect on the direct detection cross section.) In other words, we assume that for any
set of pi’s, the other MSSM parameters can be chosen so that mh = 120 GeV.

The other quantity of interest for us is the amount of fine-tuning in the electroweak
symmetry breaking (EWSB) sector of the model. A tree-level analysis will suffice. (The
discussion below is taken from Ref. [19].) The key formula is the relation of the Z boson
mass to the MSSM Lagrangian parameters:

m2
Z = −m2
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(

1− 1

cos 2β

)

−m2
d

(

1 +
1

cos 2β

)

− 2|µ|2 , (12)
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and

sin 2β =
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m2
u + m2

d + 2|µ|2 . (13)

We quantify fine-tuning by computing

δ(ξ) =

∣∣∣∣∣
∂ log m2

Z

∂ log ξ

∣∣∣∣∣ , (14)

where ξ = m2
u, m

2
d, b, µ are the relevant Lagrangian parameters. (This is analogous to the

fine-tuning measure introduced by Barbieri and Guidice [20], although here it is applied to
weak-scale, rather than Planck/GUT-scale, MSSM parameters.) Using the well-known tree-
level relations to express m2

u and m2
d in terms of the parameters listed in (10), we obtain [19]

δ(µ) =
4µ2

m2
Z

(

1 +
m2

A + m2
Z

m2
A

tan2 2β

)

,

δ(b) =

(

1 +
m2
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Z
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tan2 2β,
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where we assumed tanβ > 1. The overall fine-tuning ∆ is defined by adding the four δ’s
in quadruture; values of ∆ far above 1 indicate fine-tuning. The qualitative behavior of
fine-tuning is easy to understand by taking the limit of large tanβ, where the parameters
δ(m2

u) and δ(m2
d) are small, and

δ(µ) ≈ 4µ2

m2
Z

, δ(b) ≈ 4m2
A

m2
Z tan β

. (16)

Thus, increasing µ, and to a lesser extent mA, requires fine-tuning. On the other hand, as
β approaches π/4, the factors of 1/ cos 2β and tan 2β, present in all four δ’s, become large,
and as a result the model is always fine-tuned for tanβ <∼ 2.

Our strategy for the rest of the paper is as follows: We will perform scans over the five
parameters pi, computing the direct detection cross section and the fine-tuning measure
discussed above for each point, and study the correlation between these two quantities as
well as with other relevant parameters such as the LSP mass, Higgsino/gaugino fractions,
etc. We will then explain physical reasons for each observed interesting correlation.

3 Results: Real, Positive Parameters

We begin by performing a restricted scan in which we assume that all five pi parameters
are real and positive. All the correlations that we found show up most clearly in this scan,
making it a good place to start the discussion. In more complete scans, the correlations
persist, but are somewhat obscured by the possibility of accidental cancellations within the
t-channel contribution to the direct detection cross section. This will be discussed in detail
in the next section.

A set of 105 MSSM points was generated, distributed randomly, uniformly in log M1,
log M2, log µ, log mA, and tan β, within the following scan boundaries:

M1 ∈ [10, 104] GeV; M2 ∈ [80, 104] GeV;

µ ∈ [80, 104] GeV; mA ∈ [100, 104] GeV;

tan β ∈ [2, 50] . (17)

We compute the neutralino and chargino masses for each point in the scan, and exclude
points with at least one chargino below 100 GeV (excluded by LEP-2), as well as those
where the lightest chargino mass is below the lightest neutralino mass. We do not impose
any other experimental constraints, since they depend on the MSSM parameters beyond the

6

Same pars. as 
the t-channel 

direct det. 
diagram!
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Figure 1: Contours of 1% fine-tuning in the (µ, tanβ) plane. The black (solid) contour
corresponds to mA = 100 GeV, but remains essentially unchanged for any value of mA in the
range between 100 and 1000 GeV. The red (dashed) and blue (dotted) contours correspond
to mA = 1.5 and 2 TeV, respectively.

same definition can be made for Mb̃ if sbottoms are non-degenerate.) For a wide range of
sensible superpartner spectra, these corrections are subdominant: this is the case if

M1/Mt̃
<∼ 4, M2/Mt̃

<∼ 2, M3/Mt̃
<∼ 10, Mb̃

<∼
35Mt̃

tanβ
. (7)

The following discussion is valid for spectra obeying these constraints. If some of the above
inequalities are violated, the analysis could be easily extended to include the corresponding
effects; however, little additional insight would be gained.

2.1 Constraints on the Higgs Sector

At tree level, the Z mass in the MSSM is given by

m2
Z = −m2

u

(

1 −
1

cos 2β

)

− m2
d

(

1 +
1

cos 2β

)

− 2|µ|2 , (8)

where

sin 2β =
2b

m2
u + m2

d + 2|µ|2
. (9)

Following Barbieri and Guidice [13], we quantify fine-tuning by computing

A(ξ) =

∣

∣

∣

∣

∣

∂ log m2
Z

∂ log ξ

∣

∣

∣

∣

∣

, (10)

4

[from MP, Spethmann, hep-ph/0702038]
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Fine-Tuning Beyond Tree Level
• Consider once again the Z mass formula:

• At loop level, the Higgs mass par’s. receive quadratically divergent corrections, cut 
off by superpartner masses (“SUSY solves the hierarchy problem”)

• While a large number of parameters enter, the “hierarchy of couplings” in the SM/
MSSM simplifies the problem:

where M1, M2, and µ appear in Eq. (6) implicitly via the neutralino mixing matrix elements.
These parameters will always be defined at the weak scale; since no unification or any other
relation among the parameters is assumed, we do not need to consider their renormalization
group evolution. In general, the parameters pi are complex; however it can be shown (see,
for example, Ref. [26]) that only two phases are physical:

ϕ1 = arg(µM1 sin 2β), ϕ2 = arg(µM2 sin 2β) . (11)

These phases are constrained by measurements of electric dipole moments (EDMs) [17],
although maximal phases are allowed if squarks and sleptons are very heavy [18]. The light
Higgs mass mh can be expressed in terms of the parameters in (10) at tree level. It is of
course well known that a large loop correction is required to satisfy the LEP-2 lower bound
on mh; this correction is dominated by the top and stop loops and including it would bring
in a few additional MSSM parameters into the game. In this study, we avoid doing this by
simply fixing mh at a fixed value consistent with LEP-2, mh = 120 GeV. (In the MSSM, the
upper bound on mh is about 135 GeV; a variation of mh in the allowed range does not have
a strong effect on the direct detection cross section.) In other words, we assume that for any
set of pi’s, the other MSSM parameters can be chosen so that mh = 120 GeV.

The other quantity of interest for us is the amount of fine-tuning in the electroweak
symmetry breaking (EWSB) sector of the model. A tree-level analysis will suffice. (The
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2
d, b, µ are the relevant Lagrangian parameters. (This is analogous to the

fine-tuning measure introduced by Barbieri and Guidice [20], although here it is applied to
weak-scale, rather than Planck/GUT-scale, MSSM parameters.) Using the well-known tree-
level relations to express m2

u and m2
d in terms of the parameters listed in (10), we obtain [19]
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5

3rd Gen. (s)quarks

HIGGS

1st/2nd Gen. (s)quarks,
(s)Leptons

SU(2)xU(1) 
Gauge Bosons/inos

SU(3) 
Gluons/gluinos

(SM) (SUSY)
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Fine-Tuning Beyond Tree Level

• So: 3rd gen. squark loops are the most important quantitatively 

• Other superpartners may be a factor of 5 or more heavier than the 3rd gen 
squarks with no effect on fine-tuning

• Gluino first appears at 2 loops - additional suppression of its effect on fine-
tuning

• Assuming moderate         , top/stop dominates over bottom/sbottom, giving

• Quantify fine-tuning:

where ξ = m2
u, m

2
d, b, µ are the relevant Lagrangian parameters. In terms of the physical

parameters (5), we obtain

A(µ) =
4µ2

m2
Z

(

1 +
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∣
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∣
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Z
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∣

∣

∣

∣

∣

,

(11)

where we assumed tanβ > 1. The overall fine-tuning ∆ is defined by adding the four A’s
in quadruture; values of ∆ far above one indicate fine-tuning. For concreteness, we will
require ∆ ≤ 100, corresponding to fine tuning of 1% or better. This requirement maps out
the golden region in the space of (tanβ, µ, MA), as illustrated in figure 1. (We do not plot
µ < 100 GeV, since this region is ruled out by LEP2 chargino searches.) The shape of this
region is easily understood. In the limit of large tanβ, the parameters A(m2

u) and A(m2
d)

are small, and A(µ) and A(b) (considered separately) lead to constraints

µ

mZ
<

∆1/2
max

2
,

mA

mZ
<

∆1/2
max

2
tan β , (12)

which are clearly reflected in Fig. 1. As β approaches π/4, the factors of 1/ cos 2β and
tan 2β, present in all four A parameters, become large, and as a result the model is always
fine-tuned for tanβ <∼ 2.

2.2 Constraints on the Top Sector

Naturalness also constrains the size of the quantum corrections to the parameters in Eq. (8).
The largest correction in the MSSM is the one-loop contribution to the m2

u parameter from
top and stop loops:

δm2
Hu

≈
3

16π2

(

y2
t

(

m̃2
Q3

+ m̃2
tc

)

+ y2
t (At sin β − µ cosβ)2

)

log
2Λ2

m̃2
Q3

+ m̃2
tc

≈
3

16π2

(

y2
t

(

m̃2
1 + m̃2

2 − 2m2
t

)

+
(m̃2

2 − m̃2
1)

2

4v2
sin2 2θt

)

log
2Λ2

m̃2
1 + m̃2

2

, (13)

where mt is the top mass, Λ is the scale at which the logarithmic divergence is cut off, and
finite (matching) corrections have been ignored. The correction induced by this effect in the
Z mass is

δtm
2
Z ≈ −δm2

Hu

(

1 −
1

cos 2β

)

, (14)

5

where we ignored the renormalization of the angle β by top/stop loops: the contribution of
this effect scales as 1/ tan2 β and is subdominant for tanβ >∼ 2. To measure the fine-tuning
between the bare (tree-level) and one-loop contributions, we introduce

∆t =

∣

∣

∣

∣

∣

δtm2
Z

m2
Z

∣

∣

∣

∣

∣

. (15)

Choosing the maximum allowed value of ∆t selects a region in the stop sector parameter
space, (m̃1, m̃2, θt), whose shape is approximately independent of the other parameters.5

This constraint is shown by the black (dashed) lines in Figs. 2, where we plot 5%, 3%, 1%
and 0.5% tuning contours (corresponding to ∆t = 20, 33.3, 100, and 200, respectively) in the
stop mass plane for several values of θt and tan β = 10. Note that the particular values of
∆t depend on the scale Λ; we choose it to be 100 TeV in this figure. However, the shape
of the contours and the obvious trend for tuning to increase with the two stop masses is
independent of Λ.

The second constraint that determines the shape of the golden region is the LEP2 lower
bound on the Higgs mass [14]. For generic MSSM parameter values, the limit on the lightest
CP-even Higgs is very close to that for the SM Higgs:

m(h0) >∼ 114 GeV. (16)

It is possible for a lighter Higgs (down to about 90 GeV) to be consistent with the negative
results of the LEP2 searches; however, this requires precise coincidence between m(h0) and
mA, which should be regarded as additional source of fine-tuning. Thus, we will use the LEP2
bound for the SM Higgs [15], 114.4 GeV, as the lower bound on m(h0) in this analysis. At
tree level, the MSSM predicts m(h0) ≤ mZ | cos 2β|, and large loop corrections are required
to satisfy this bound. Extensive calculations of these corrections have been performed in the
literature (for a recent summary of the status of these calculations, see Ref. [16]). Complete
one-loop corrections within the MSSM are known. The dominant one-loop contribution is
from top and stop loops; for tanβ >∼ 35, the sbottom loop contribution is also important.
The two-loop corrections to these contributions from strong and Yukawa interactions are
also known. Numerical packages incorporating these results are available [17, 18]. For our
purposes here, however, it is convenient to use a simple analytic approximation, due to
Carena et. al. [19], which includes the one-loop and leading-log two-loop contributions from
top and stop loops:

m2(h0) = m2
Z cos2 2β

(

1 −
3

8π2

m2
t

v2
t

)

+
3

4π2

m4
t

v2

[

1

2
Xt + t +

1

16π2

(

3

2

m2
t

v2
− 32πα3

)

(

Xtt + t2
)

]

, (17)

5Note that we choose not to combine the tree-level and quantum fine-tuning measures into a single tuning
parameter; doing so would make the analysis less transparent without producing additional physical insights.
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where ξ = m2
u, m

2
d, b, µ are the relevant Lagrangian parameters. In terms of the physical

parameters (5), we obtain

A(µ) =
4µ2
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∣
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×
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∣

1 +
1

cos 2β
+
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Z
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A
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∣

∣

∣

∣

∣

,

(11)

where we assumed tanβ > 1. The overall fine-tuning ∆ is defined by adding the four A’s
in quadruture; values of ∆ far above one indicate fine-tuning. For concreteness, we will
require ∆ ≤ 100, corresponding to fine tuning of 1% or better. This requirement maps out
the golden region in the space of (tanβ, µ, MA), as illustrated in figure 1. (We do not plot
µ < 100 GeV, since this region is ruled out by LEP2 chargino searches.) The shape of this
region is easily understood. In the limit of large tanβ, the parameters A(m2

u) and A(m2
d)

are small, and A(µ) and A(b) (considered separately) lead to constraints

µ

mZ
<

∆1/2
max

2
,

mA

mZ
<

∆1/2
max

2
tan β , (12)

which are clearly reflected in Fig. 1. As β approaches π/4, the factors of 1/ cos 2β and
tan 2β, present in all four A parameters, become large, and as a result the model is always
fine-tuned for tanβ <∼ 2.

2.2 Constraints on the Top Sector

Naturalness also constrains the size of the quantum corrections to the parameters in Eq. (8).
The largest correction in the MSSM is the one-loop contribution to the m2

u parameter from
top and stop loops:

δm2
Hu

≈
3

16π2

(

y2
t

(

m̃2
Q3

+ m̃2
tc

)

+ y2
t (At sin β − µ cosβ)2

)

log
2Λ2

m̃2
Q3

+ m̃2
tc

≈
3

16π2

(

y2
t

(

m̃2
1 + m̃2

2 − 2m2
t

)

+
(m̃2

2 − m̃2
1)

2

4v2
sin2 2θt

)

log
2Λ2

m̃2
1 + m̃2

2

, (13)

where mt is the top mass, Λ is the scale at which the logarithmic divergence is cut off, and
finite (matching) corrections have been ignored. The correction induced by this effect in the
Z mass is

δtm
2
Z ≈ −δm2

Hu

(

1 −
1

cos 2β

)

, (14)
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[plot from MP, Spethmann, hep-ph/0702038]

1% tuning

Figure 2: Fine-tuning (black/dashed contours), Higgs mass bound (red/colid contours), and
ρ-parameter (blue/dotted contours) constraints in the (m̃1, δm) plane. The six panels corre-
spond to (starting from the upper-left corner, clockwise): θt = 0, π/25, π/15, π/6, π/4, π/3.
In all panels tanβ = 10. The yellow/shaded intersection of the regions allowed by the three
constraints is the MSSM “golden” region.

where α3 is the strong coupling constant evaluated at the pole top quark mass Mt; mt =
Mt/(1 + 4

3πα3) is the on-shell top mass; and

Xt =
2(At − µ cotβ)2

M2
susy

(

1 −
(At − µ cotβ)2

12M2
susy

)

,

t = log
M2

susy

M2
t

. (18)

The scale M2
susy is defined as the arithmetical average of the diagonal elements of the stop

mass matrix. The expression (17) is valid when the masses of all superparticles, as well as
the CP-odd Higgs mass mA, are of order Msusy. Additional threshold corrections may be
required, for example, if mA < Msusy; for simplicity, we will ignore such corrections here.
Eq. (17) agrees with the state-of-the-art calculations to within a few GeV for typical MSSM
parameters [16]; while such accuracy is clearly inadequate for precision studies, it is sufficient

7

The “Golden Region”
• At tree level, mh>mZ, while LEP-2 requires mh > 114 GeV

• Solution: large loop corrections          tension with fine-tuning! (“little 
hierarchy problem”)
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What About the LHC?
8/31/11 1:43 PMBBC News - LHC results put supersymmetry theory 'on the spot'
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SCIENCE & ENVIRONMENT

27 August 2011 Last updated at 02:41 ET

LHC results put supersymmetry theory 'on the
spot'

Results from the Large Hadron Collider (LHC) have all but killed the simplest version of

an enticing theory of sub-atomic physics.

Researchers failed to find evidence of so-called "supersymmetric" particles, which many

physicists had hoped would plug holes in the current theory.

Theorists working in the field have told BBC News that they may have to come up with a

completely new idea.

Data were presented at the Lepton Photon science meeting in Mumbai.

They come from the LHC Beauty (LHCb) experiment, one of the four main detectors situated

By Pallab Ghosh
Science correspondent, BBC News

Friday, September 9, 2011



What About the LHC?
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All searches so far rely on 
producing gluinos and/or 

1st, 2nd gen. squarks, 
different decay channels

at 500 GeV

Chargino/neutralino (e.g. higgsino) 
cross sections are also small

Plot credit: H. Bachacou talk at LP-11
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What About the LHC?
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BOTTOM LINE: So far the LHC has had NO* impact on fine-tuning in the MSSM
[Not so in specific SUSY breaking models, e.g. where three gen. of squarks have 

common mass term at some scale]
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Now, Back to Dark 
Matter
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Procedure: Parameter Scans
• Generate ~100000 random points in the 5-dim. 

parameter space                               [all real, >0!]  

• Uniformly distributed in 

• Scan boundaries:

• Require: neutral LSP, no charginos below 100 GeV. 
Note: we do not require correct relic density!

• Fix mh=120 GeV (assume top/stop loops fix it)

δ(m2
u) =

∣∣∣∣∣
1

2
cos 2β +

m2
A

m2
Z

cos2 β − µ2

m2
Z

∣∣∣∣∣×
(

1− 1

cos 2β
+

m2
A + m2

Z

m2
A

tan2 2β

)

,

δ(m2
d) =

∣∣∣∣∣−
1

2
cos 2β +

m2
A

m2
Z

sin2 β − µ2

m2
Z

∣∣∣∣∣×
∣∣∣∣∣1 +

1

cos 2β
+

m2
A + m2

Z

m2
A

tan2 2β

∣∣∣∣∣ ,

(15)

where we assumed tanβ > 1. The overall fine-tuning ∆ is defined by adding the four δ’s
in quadruture; values of ∆ far above 1 indicate fine-tuning. The qualitative behavior of
fine-tuning is easy to understand by taking the limit of large tanβ, where the parameters
δ(m2

u) and δ(m2
d) are small, and

δ(µ) ≈ 4µ2

m2
Z

, δ(b) ≈ 4m2
A

m2
Z tan β

. (16)

Thus, increasing µ, and to a lesser extent mA, requires fine-tuning. On the other hand, as
β approaches π/4, the factors of 1/ cos 2β and tan 2β, present in all four δ’s, become large,
and as a result the model is always fine-tuned for tanβ <∼ 2.

Our strategy for the rest of the paper is as follows: We will perform scans over the five
parameters pi, computing the direct detection cross section and the fine-tuning measure
discussed above for each point, and study the correlation between these two quantities as
well as with other relevant parameters such as the LSP mass, Higgsino/gaugino fractions,
etc. We will then explain physical reasons for each observed interesting correlation.

3 Results: Real, Positive Parameters

We begin by performing a restricted scan in which we assume that all five pi parameters
are real and positive. All the correlations that we found show up most clearly in this scan,
making it a good place to start the discussion. In more complete scans, the correlations
persist, but are somewhat obscured by the possibility of accidental cancellations within the
t-channel contribution to the direct detection cross section. This will be discussed in detail
in the next section.

A set of 105 MSSM points was generated, distributed randomly, uniformly in log M1,
log M2, log µ, log mA, and tan β, within the following scan boundaries:

M1 ∈ [10, 104] GeV; M2 ∈ [80, 104] GeV;

µ ∈ [80, 104] GeV; mA ∈ [100, 104] GeV;

tan β ∈ [2, 50] . (17)

We compute the neutralino and chargino masses for each point in the scan, and exclude
points with at least one chargino below 100 GeV (excluded by LEP-2), as well as those
where the lightest chargino mass is below the lightest neutralino mass. We do not impose
any other experimental constraints, since they depend on the MSSM parameters beyond the

6
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DD Cross Section

When comparing with experimental data, we will assume that the local dark matter
density is at its canonical value, 0.3 GeV/cm3, and that dark matter is made entirely out of
the MSSM neutralinos. However, the main results of the paper concern theoretical predic-
tions for direct detection cross section and are independent of this assumption. Moreover,
in most of the analysis, we will not impose the constraint that the neutralino relic density
predicted by the standard thermal decoupling calculation be consistent with observations.
This is motivated partly by the desire to keep the analysis as general as possible: Statements
made without the relic density constraint would be applicable even if there is non-thermal
production of neutralinos, late inflation, other deviations from standard FRW cosmological
evolution, etc. More technically, it is motivated by the fact that the object we focus on,
the t-channel direct detection cross section, depends on just five MSSM parameters, while
the relic density is a function of many more. Imposing this constraint would thus greatly
complicate the analysis. (As an exception, we will impose a mild version of the relic density
constraint in the part of the analysis dealing with Higgsino dark matter, where this will be
required to make an interesting statement about fine-tuning.)

Before we proceed, let us remark on a few related analyses in the literature. The con-
nection between direct detection cross section and fine-tuning in the electroweak sector was
noted, in the mSUGRA context, in Ref. [9] (see also [10]). A recent study of “generic” di-
rect detection cross sections in a more general MSSM framework was presented in Ref. [11].
While our approach is similar, our setup is even more general: in particular, we do not
require gaugino mass unification, and (for the most part) do not impose the thermal relic
density constraint. Electroweak fine-tuning, which did not enter the analysis of [11], plays
the central role in our discussion. We also discuss the impact of the recent XENON100
bound in the general MSSM framework, with the main assumption being the absence of
accidental cancellations. This discussion complements Refs. [12, 13] which interpreted the
XENON100 result within mSUGRA and other constrained MSSM frameworks.

The rest of the paper is organized as follows. In section 2, we set the notation and collect
the main formulas used in the analysis. The main results of the paper are contained in sec-
tion 3, where we present a set of scatter plots demonstrating correlations between the direct
detection cross section and physical quantities such as Higgsino fraction of the neutralino
and the amount of fine-tuning in the electroweak symmetry breaking. These plots assume
real, positive MSSM parameters. This assumption is lifted in section 4, where negative and
complex soft masses are considered, and it is shown that the interesting correlations persist
once the points with accidental cancellations in the cross section are eliminated. Finally, we
conclude in section 5.

2 Analysis Setup

The direct detection cross section has the form [2]

σ =
4m2

rf
2
p

π
, (1)

3

where mr is the neutralino-proton reduced mass and

fp

mp
=

∑

q=u,d,s

f (p)
Tq

Aq +
2

27
f (p)

TG

∑

q=c,b,t

Aq. (2)

The nuclear formfactors are defined by

f (p)
Tq

=
〈mq q̄q〉

mp
, (3)

and
f (p)

TG = 1 −
∑

q=u,d,s

f (p)
Tq

. (4)

In our numerical work, we will use the following values [14]:

f (p)
Tu = 0.08, f (p)

Td = 0.037, f (p)
Ts = 0.34. (5)

It is well known that there is a significant uncertainty on these formfactors, in particular
fs [14]. The uncertainty could easily be incorporated in our study; however, since our main
interest is in qualitative trends rather than precise quantitative statements, we will not
do so here. The dependence of the cross section on the underlying particle physics model
is contained in the coefficients Aq, which in the MSSM at tree level are computed with the
Feynman diagrams in Fig. 1. As explained above, we will focus on the t-channel contribution,
given by [15]

Ai = − g

4mW Bi

[(D2
i

m2
h

+
C2

i
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H

)

Re [δ2i(gZχ2 − g′Zχ1)]
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(
1

m2
h

− 1

m2
H

)

Re [δ1i(gZχ2 − g′Zχ1)]
]
, (6)

where for up-type quarks

Bu = sin β , Cu = sin α , Du = cos α , δ1u = Zχ3 , δ2u = Zχ4 ; (7)

while for down-type quarks

Bd = cos β , Cd = cos α , Dd = − sin α , δ1d = Zχ4 , δ2d = −Zχ3 . (8)

The notation here is consistent with that used, for example, in Martin’s review [16]; in
particular, the lightest neutralino is

χ̃0
1 = Zχ1B̃ + Zχ2W̃

3 + Zχ3H̃
0
d + Zχ4H̃

0
u , (9)

and h and H are the two CP-even Higgs bosons (mh < mH). The coefficients Ai can be
expressed in terms of only five MSSM parameters:

pi = (M1, M2, µ, tan β, mA) , (10)
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Results: Higgsino Fraction

Figure 2: Left panel: Direct detection cross section vs. Higgsino fraction of the neu-
tralino. Right panel: Direct detection cross section vs. the dark matter particle mass,
for points with purity above 0.2 (red), between 0.1 and 0.2 (orange), 0.01 and 0.1 (green),
and 10−3 and 0.01 (cyan). The lines correspond to the XENON100 100 days exclusion
limit [6] (black/solid), and the projected sensitivities of the XENON100 upgrade [21, 22]
(blue/dotted) and XENON-1T [22] (red/dashed). Real, positive values of the scanned MSSM
parameters are assumed.

five pi being scanned here, and thus generically can be satisfied by varying those parameters
for any given pi. The scatter plots in this section are based on the 73064 points that pass
these constraints.

3.1 Higgsino Fraction Constraint

Our first result concerns the correlation between the direct detection cross section and the
Higgsino fraction of the neutralino, defined as

FH = |Zχ3|2 + |Zχ4|2 . (18)

As is clear in Fig. 2, a direct detection cross section limit below (a few)×10−44 cm2 puts a
constraint on the Higgsino fraction, requiring that it be close to either 0 (the “pure gaugino”
case) or 1 (the “pure Higgsino” case). It is convenient to define “neutralino purity” p as

p = min(FH , 1− FH). (19)

The bound placed by the XENON100 experiment [6] already rules out essentially all MSSM
dark matter models with p > 0.2, and most models with p > 0.1, especially for the LSP mass
above 50 GeV. 4 The proposed XENON100 upgrade [21, 22] will be able to probe values of p

4A well-known example of such a model is the “well-tempered neutralino” scenario [26]. The fact that
this scenario is disfavored by XENON100 has already been noted in Ref. [12].
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where mr is the neutralino-proton reduced mass and

fp

mp
=

∑

q=u,d,s

f (p)
Tq

Aq +
2

27
f (p)

TG

∑

q=c,b,t

Aq. (2)

The nuclear formfactors are defined by

f (p)
Tq

=
〈mq q̄q〉

mp
, (3)

and
f (p)

TG = 1 −
∑

q=u,d,s

f (p)
Tq

. (4)

In our numerical work, we will use the following values [14]:

f (p)
Tu = 0.08, f (p)

Td = 0.037, f (p)
Ts = 0.34. (5)

It is well known that there is a significant uncertainty on these formfactors, in particular
fs [14]. The uncertainty could easily be incorporated in our study; however, since our main
interest is in qualitative trends rather than precise quantitative statements, we will not
do so here. The dependence of the cross section on the underlying particle physics model
is contained in the coefficients Aq, which in the MSSM at tree level are computed with the
Feynman diagrams in Fig. 1. As explained above, we will focus on the t-channel contribution,
given by [15]

Ai = − g

4mW Bi

[(D2
i

m2
h

+
C2

i

m2
H

)

Re [δ2i(gZχ2 − g′Zχ1)]

+CiDi

(
1

m2
h

− 1

m2
H

)

Re [δ1i(gZχ2 − g′Zχ1)]
]
, (6)

where for up-type quarks

Bu = sin β , Cu = sin α , Du = cos α , δ1u = Zχ3 , δ2u = Zχ4 ; (7)

while for down-type quarks

Bd = cos β , Cd = cos α , Dd = − sin α , δ1d = Zχ4 , δ2d = −Zχ3 . (8)

The notation here is consistent with that used, for example, in Martin’s review [16]; in
particular, the lightest neutralino is

χ̃0
1 = Zχ1B̃ + Zχ2W̃

3 + Zχ3H̃
0
d + Zχ4H̃

0
u , (9)

and h and H are the two CP-even Higgs bosons (mh < mH). The coefficients Ai can be
expressed in terms of only five MSSM parameters:

pi = (M1, M2, µ, tan β, mA) , (10)

4
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Results: Higgsino Fraction

Figure 2: Left panel: Direct detection cross section vs. Higgsino fraction of the neu-
tralino. Right panel: Direct detection cross section vs. the dark matter particle mass,
for points with purity above 0.2 (red), between 0.1 and 0.2 (orange), 0.01 and 0.1 (green),
and 10−3 and 0.01 (cyan). The lines correspond to the XENON100 100 days exclusion
limit [6] (black/solid), and the projected sensitivities of the XENON100 upgrade [21, 22]
(blue/dotted) and XENON-1T [22] (red/dashed). Real, positive values of the scanned MSSM
parameters are assumed.

five pi being scanned here, and thus generically can be satisfied by varying those parameters
for any given pi. The scatter plots in this section are based on the 73064 points that pass
these constraints.

3.1 Higgsino Fraction Constraint

Our first result concerns the correlation between the direct detection cross section and the
Higgsino fraction of the neutralino, defined as

FH = |Zχ3|2 + |Zχ4|2 . (18)

As is clear in Fig. 2, a direct detection cross section limit below (a few)×10−44 cm2 puts a
constraint on the Higgsino fraction, requiring that it be close to either 0 (the “pure gaugino”
case) or 1 (the “pure Higgsino” case). It is convenient to define “neutralino purity” p as

p = min(FH , 1− FH). (19)

The bound placed by the XENON100 experiment [6] already rules out essentially all MSSM
dark matter models with p > 0.2, and most models with p > 0.1, especially for the LSP mass
above 50 GeV. 4 The proposed XENON100 upgrade [21, 22] will be able to probe values of p

4A well-known example of such a model is the “well-tempered neutralino” scenario [26]. The fact that
this scenario is disfavored by XENON100 has already been noted in Ref. [12].

7

(Roughly) 
XENON-100

bound

Low DD cross section                 pure gaugino OR pure Higgsino LSP

Friday, September 9, 2011



Results: Higgsino Fraction

XENON-100: current

XENON-100:upgrade

XENON-1T

Color-code: “purity”

Figure 2: Left panel: Direct detection cross section vs. Higgsino fraction of the neu-
tralino. Right panel: Direct detection cross section vs. the dark matter particle mass,
for points with purity above 0.2 (red), between 0.1 and 0.2 (orange), 0.01 and 0.1 (green),
and 10−3 and 0.01 (cyan). The lines correspond to the XENON100 100 days exclusion
limit [6] (black/solid), and the projected sensitivities of the XENON100 upgrade [21, 22]
(blue/dotted) and XENON-1T [22] (red/dashed). Real, positive values of the scanned MSSM
parameters are assumed.
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constraint on the Higgsino fraction, requiring that it be close to either 0 (the “pure gaugino”
case) or 1 (the “pure Higgsino” case). It is convenient to define “neutralino purity” p as

p = min(FH , 1− FH). (19)

The bound placed by the XENON100 experiment [6] already rules out essentially all MSSM
dark matter models with p > 0.2, and most models with p > 0.1, especially for the LSP mass
above 50 GeV. 4 The proposed XENON100 upgrade [21, 22] will be able to probe values of p

4A well-known example of such a model is the “well-tempered neutralino” scenario [26]. The fact that
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Understanding H-Fraction Bound

χ̃0
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1

q

q̃
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Figure 1: Feynman diagrams contributing to spin-independent elastic scattering of the neu-
tralino dark matter particle on a nucleon in the MSSM.

or some lower future bound? This will be the main focus of this paper. In particular, we
will demonstrate a correlation between the direct detection cross section and the amount
of fine-tuning in the electroweak sector: roughly speaking, model points with lower direct
detection cross sections are more fine-tuned.

In order to be as general as possible, we will treat all weak-scale MSSM parameters as in-
dependent, without assuming any relations among them. The tree-level processes contribut-
ing to the direct detection cross section are shown in Fig. 1. The key assumption underlying
our analysis is that no accidental cancellations take place among various contributions to
the direct detection cross section in the MSSM. By “accidental”, we mean a cancellation
which is exact only on a measure-zero hypersurface inside the full MSSM parameter space.
Equivalently, an accidental cancellation is indicated by an anomalous sensitivity of the cross
section to the MSSM parameters (measured, for example, by its logarithmic derivative) along
at least one direction in the parameter space. In particular, any cancellation between the s-
and t-channel diagrams in Fig. 1 would be accidental, since they depend on different sets of
MSSM parameters.3 Thus, for making qualitative statements, it is sufficient to consider only
one of the diagram classes; the other one will, at worst, produce an order-one correction to
the cross section. We will focus on the t-channel diagrams, Fig. 1 (a). We make this choice
because three of the five MSSM parameters which enter these diagrams, µ, tan β, and mA,
also enter the tree-level prediction for the Z mass. In this way, the direct detection cross
section is connected to electroweak symmetry breaking.

3Of course, different MSSM parameters may be related once the SUSY-breaking sector is understood,
so that a cancellation that appears accidental from the weak-scale point of view may in fact be natural in
the full theory. Such a situation, however, appears extremely unlikely in the particular situations where we
apply the “no accidental cancellation rule” in this study. For example, a cancellation between the s- and
t-channel diagrams in Fig. 1 would require a complicated relation involving squark and gaugino soft masses,
the µ parameter, tanβ, and the Higgs mass terms. It is very difficult to imagine a SUSY-breaking model
producing such a relation.

2

down to 0.01 for the LSP masses above 50 GeV, while a 1-ton upgrade [22] will have a reach
down to p ≈ 10−3 through most of the mass range.5 If the dark matter is not discovered
at that stage, the only possibility in the MSSM would be a pure gaugino or Higgsino with
< 0.1% admixture of the other components.

The physical origin of this constraint is easy to understand. In the gauge eigenbasis for
neutralinos, the neutralino-neutralino-Higgs couplings have the form (gW̃ 3 +g′B̃)H̃H; there
are no gaugino-gaugino-Higgs or Higgsino-Higgsino-Higgs couplings in the MSSM. In the
mass basis, the couplings have the form

χ̃0χ̃0h : (gZχ2 − g′Zχ1)(cos αZχ4 + sin αZχ3) ,

χ̃0χ̃0H : (gZχ2 − g′Zχ1)(sin αZχ4 − cos αZχ3) . (20)

If the χ̃0χ̃0h is of its natural size (i.e. no accidental cancellations or small mixing angles
are present), the direct detection cross section from t-channel Higgs exchange is of order (a
few)×10−44 cm2 or above. Barring accidental cancellations, the only way to obtain a smaller
cross section is to suppress this coupling by choosing the LSP to be an almost pure gaugino
or Higgsino, which is precisely what is seen in Fig. 2.

3.2 Gaugino Dark Matter and Electroweak Fine-Tuning

To discuss the connection between direct detection cross section and EWSB fine-tuning, it is
useful to divide the scan points into two sets: the points where µ < M1 and µ < M2, and the
rest. We will refer to the first set of points as the “Higgsino LSP” sample, while the second
set will be called “gaugino LSP” sample. Of course, these names are not precise, since each
sample contains points with µ ∼M1,2 where the LSP is a roughly equal mixture of the two;
however, as we saw above, such points always have high direct detection cross sections and
will not influence the fine-tuning discussion. (Most of these points are in any case already
ruled out by XENON100, though for simplicity we will not impose this constraint here.)

Let us first consider the gaugino LSP sample. The correlation between the direct detec-
tion cross section and the amount of fine-tuning in the EWSB sector (quantified by ∆ defined
in Sec. 2) in this sample is shown in Fig. 3. For a given amount of fine-tuning, the direct
detection cross section cannot be reduced below a certain lower bound, with smaller cross
sections possible only for more finely-tuned models. The physical origin of this correlation
is again simple: as we saw above, the cross section can only be reduced by reducing the
Higgsino admixture in the LSP, and the only way to achieve this is to raise µ. But doing so
increases the fine-tuning, as is easily seen from Eq. (12) or Eq. (16).

Also plotted in Fig. 3 is an analytic expression for the minimal direct detection cross
cross section possible for a given amount of fine-tuning. For a given tanβ and LSP mass, it

5Many next-generation direct dark matter searches have been proposed, such as XMASS [23], LUX [24],
and superCDMS [25]. Needless to say, we use projections from the XENON collaboration simply as a
benchmark, and do not mean to endorse or express a preference for a particular technology or experimental
proposal. Projected sensitivities of any proposed experiment can be easily superimposed on our plots.
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Higgsino Fraction Summary
• Generic DD cross section from light Higgs 

exchange is                                  , already being 
explored by XENON-100 and others

• Pure-gaugino or pure-higgsino LSP is required to 
suppress the cross section below this level

• Current bounds: p>0.2 for any mLSP, and p>0.1 for 
mLSP>50 GeV, is ruled out

• In the rest of the talk, we consider the “gaugino 
LSP sample”,                                  , and “Higgsino 
LSP sample”,                             , separately
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EWSB Fine-Tuning: Gaugino LSP

XENON-100: current

XENON-100:upgrade

XENON-1T

Color-code:  EWSB fine-tuning Red
Green
Cyan

Lower DD cross section
means                

MORE FINE-TUNING!
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• This correlation is easy to understand: Smaller DD cross section       purer 
gaugino LSP        larger             more severe EWSB fine-tuning

• Minimal DD cross section consistent with given fine-tuning*:

✴ Positive, real parameters are required! (more general case - discuss later)

EWSB Fine-Tuning: Gaugino LSP
Figure 3: Direct detection cross section vs. fine-tuning of electroweak symmetry breaking, for
gaugino-like neutralino (real, positive values of pi, i = 1 . . . 5, are assumed). Cyan, green and
red points correspond to the dark matter particle mass in the intervals [10, 100), [100, 1000),
and [1000, 104] GeV, respectively. The cyan, green and red lines show the analytic lower
bound in Eq. (21), with MLSP = 10, 100, 1000 GeV, respectively. Real, positive values of the
MSSM parameters are assumed.

is given by (for derivation, see Appendix A):

σmin = (1.2× 10−42 cm2)
(

120 GeV

mh

)4 1

∆

(
1

tan β
+

1√
∆

MLSP

mZ

)2

. (21)

It is clear that the lowest possible cross section for fixed ∆ requires the highest possible tanβ
and the lowest possible MLSP. In the plot in Fig. 3, we used tanβ = 50, corresponding to the
upper boundary of the scan. Another noteworthy feature is that the lowest possible direct
detection cross sections occur in the Higgs decoupling limit, mA # mZ .

The practical implication of the correlation in Fig. 3 is clear: in the gaugino LSP scenario,
a sufficiently strong bound on direct detection cross section implies a non-trivial fine-tuning
in the EWSB sector of the MSSM. The precise level where the cross section bounds become
relevant for fine-tuning depends on the LSP mass. This is illustrated in Fig. 4. The current
XENON100 bound is already relevant: for example, fine-tuning of 1 part in 10 or less is
only possible for LSP masses below about 70 GeV. Null result of the proposed XENON100
upgrade [21, 22] would imply at least 1% fine-tuning for WIMPs at 100 GeV or above.
This level of fine-tuning is similar to what is required to accommodate the non-observation
of the Higgs boson at LEP-2, the famous “little hierarchy problem” [27] of the MSSM. A
XENON-1T upgrade [22] would be able to probe all models fine-tuned at 1% level or better,

9

Color-code: LSP mass
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• Observed an inverse correlation between 
DD cross section and EWSB fine-tuning

• Obtained a simple analytic formula for 
minimal DD cross section consistent with 
given FT

• Current bounds already relevant: 
XENON-100 implies FT worse that 1/10 
for mLSP>70 GeV

• XENON-1T will probe down to FT~1%!

Gaugino LSP Summary

Friday, September 9, 2011



Higgsino LSP
• No correlation between DD cross section and FT 

in this case: 

• Add a relic density constraint:

• For fixed MSSM parameters, relic density uniquely 
predicted (assuming standard FRW cosmology up 
to               ): 

• Higgsino (co-)annihilation channels: W/Zs, quarks 
(predominantly 3rd gen.)

• Our approach: ignore quark final states, impose a 
“one-sided” RD constraint 

Figure 5: Direct detection cross section vs. fine-tuning of electroweak symmetry breaking,
for higgsino-like neutralino. Real, positive values of the MSSM parameters are assumed, and
a one-sided thermal relic density constraint, Ωpred ≥ Ωobs, is imposed, as explained in the
text.

To make an interesting statement in this situation, we need to make an additional as-
sumption. An obvious one is to demand that the LSP has the correct relic density, assuming
conventional FRW cosmology and no non-thermal production. The relic density is typically
determined by the LSP annihilation cross section. In the limit of pure Higgsino LSP, the
next-to-lightest neutralino and the lightest chargino are quasi-degenerate with the LSP, and
co-annihilations among these states need to be taken into account in the relic density cal-
culation [30]. The cross sections are typically dominated by annihilations into electroweak
gauge bosons, W ’s and Z’s. At tree level, these cross sections are completely determined
by the same five MSSM parameters, Eq. (10), that entered our analysis of direct detection.
There are, of course, other contributions to the annihilation cross section, such as the dia-
grams with top final states. Including these processes would introduce more parameters and
complexity into our analysis. To avoid this, while still keeping open the possibility that they
contribute significantly to the cross section, we impose a one-sided relic density constraint:
we demand that the cross section of (co)annihilation into W/Z final states be no larger than
what is required to obtain the observed relic density, Ωdmh2 = 0.110± 0.006 [29].

For each point in the Higgsino LSP sample, we performed the relic density calculation
using the numerical package DarkSUSY [31]. In DarkSUSY runs, all mass scales other
than those in the five input parameters in (10) were set to 10 TeV, effectively eliminating
annihilations into quarks and leptons. We require that the relic density calculated with
DarkSUSY not be lower than 2σ below the observed relic density. Once this constraint is

11
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Higgsino LSP

Conclusion: XENON-100 already implies FT>500, if the (one-sided) relic density 
constraint is assumed!
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Higgsino LSP Relic Density

Figure 1: The three bands show the contribution to Ωh2 from pure Bino LSP with 0.3 <
M1/mẽR

< 0.9 (red band), Higgsino LSP with 1.5 < mt̃/µ < ∞ (blue band) and Wino LSP
with 1.5 < m!̃L

/M2 < ∞ (green band).

but early enough not to upset the nucleosynthesis predictions. The final relic abundance will

of course depend on the initial gravitino density or, ultimately, on TRH .

1.3 Wino

The Wino can be the LSP in anomaly mediation [18, 19]. In the case of pure state, the

dominant annihilation is into gauge bosons, with a contribution from fermion–antifermion

channel through scalar exchange. Coannihilation among the different states in the Wino

weak triplet is important. In the limit in which the Wino mass M2 is larger than MW , the

effective annihilation cross section and the Wino contribution to Ω are well approximated

by (see appendix A)

〈σeffv〉 =
3g4

16πM2
2

, (6)

ΩW̃ h2 = 0.13
(

M2

2.5TeV

)2

. (7)

4

Higgsino LSP

Observed (or higher) relic density requires                           EWSB FINE-TUNING!

[Plot from Arkani-Hamed, Delgado, Giudice, hep-ph/0601041] 
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Including Signs/Phases
• While the Higgs/gauge sector of the MSSM has 5 

parameters,                               , only 2 phases are 
physical: 

• Repeat the scan, allowing both signs of 

• New feature: accidental cancellations within the t-
channel Higgs exchange amplitude are possible, 
lowering the cross section

• Quantify these cancellations:

imposed, a simple relation between fine-tuning and direct detection cross section emerges,
seen clearly in Fig. 5. If direct detection cross section is constrained to be below about
2 × 10−44 cm2, the LSP must be a pure Higgsino, as we saw in section 3.1. For pure
Higgsino, the annihilation cross section is too large, unless µ >∼ 1 TeV. But such large values
of µ require fine-tuing in the EWSB of at least about 0.25%, as is easily seen from Eq. (16).
Thus, a direct detection bound of about 10−44 cm2 for a 1 TeV LSP mass would imply a
“little hierarchy problem” for Higgsino LSP. The current XENON100 bound at 1 TeV mass
is about 8 × 10−44 cm2, so no such statement can yet be made. The proposed XENON100
upgrade [21, 22] should reach the required sensitivity. If no signal is discovered, the Higgsino
LSP scenario would be inconsistent with naturalness of EWSB at a sub-percent level.

4 Results: Full Scan

In this section, we remove the requirement of real, positive pi. Since complex phases of the
MSSM parameters are generally constrained by measurements of EDMs, we first remove the
condition pi > 0, but keep them real. Only two phases are physical, see Eq. (11), and we
choose the basis where µ and the Higgs vevs are positive but M1 and M2 can have either
sign. We generate a set of 105 MSSM points distributed randomly, uniformly in log |M1|,
log |M2|, log µ, log mA, and tan β, within the following scan boundaries:

|M1| ∈ [10, 104] GeV; |M2| ∈ [80, 104] GeV;

µ ∈ [80, 104] GeV; mA ∈ [100, 104] GeV;

tan β ∈ [2, 50] . (22)

The signs of M1 and M2 are chosen between + and − with equal probability. After imposing
the same requirements as in the positive-only scan of section 3, we are left with 76546 points,
which are included in the scatter plots below.

Fig. 6 demonstrates the correlation between the direct detection cross section and the
Higgsino fraction of the neutralino in this sample. The bulk of points show a correlation
similar to that in the real-only sample: Most points with very small direct-detection cross
sections are close to either pure-gaugino or pure-Higgsino limit. However, there are some
“outliers”, which have direct detection cross sections well below 10−44 cm2 in spite of having
order-one Higgsino and gaugino fractions. The reason for this is accidental cancellations
within the t-channel contribution to the cross section. An accidental cancellation in the
cross section at a particular point in the parameter space is characterized by its anomalous
sensitivity to the input Lagrangian parameters at that point. To quantify this, we introduce
the measure

∆acc ≡

√√√√
5∑

i=1

(
∂ log σ

∂ log pi

)2

, (23)

where pi = (M1, M2, µ, tan β, mA). The points in Fig. 6 are color-coded according to this
measure, making it clear that the outlier points are uniformly characterized by severe ac-
cidental cancellations. Thus, the conclusion of the analysis in the previous section remains

12

where M1, M2, and µ appear in Eq. (6) implicitly via the neutralino mixing matrix elements.
These parameters will always be defined at the weak scale; since no unification or any other
relation among the parameters is assumed, we do not need to consider their renormalization
group evolution. In general, the parameters pi are complex; however it can be shown (see,
for example, Ref. [26]) that only two phases are physical:

ϕ1 = arg(µM1 sin 2β), ϕ2 = arg(µM2 sin 2β) . (11)

These phases are constrained by measurements of electric dipole moments (EDMs) [17],
although maximal phases are allowed if squarks and sleptons are very heavy [18]. The light
Higgs mass mh can be expressed in terms of the parameters in (10) at tree level. It is of
course well known that a large loop correction is required to satisfy the LEP-2 lower bound
on mh; this correction is dominated by the top and stop loops and including it would bring
in a few additional MSSM parameters into the game. In this study, we avoid doing this by
simply fixing mh at a fixed value consistent with LEP-2, mh = 120 GeV. (In the MSSM, the
upper bound on mh is about 135 GeV; a variation of mh in the allowed range does not have
a strong effect on the direct detection cross section.) In other words, we assume that for any
set of pi’s, the other MSSM parameters can be chosen so that mh = 120 GeV.

The other quantity of interest for us is the amount of fine-tuning in the electroweak
symmetry breaking (EWSB) sector of the model. A tree-level analysis will suffice. (The
discussion below is taken from Ref. [19].) The key formula is the relation of the Z boson
mass to the MSSM Lagrangian parameters:

m2
Z = −m2

u

(

1− 1

cos 2β

)

−m2
d

(

1 +
1

cos 2β

)

− 2|µ|2 , (12)

where m2
u and m2

d are the Lagrangian masses for the up-type and down-type Higgs doublets,
and

sin 2β =
2b

m2
u + m2

d + 2|µ|2 . (13)

We quantify fine-tuning by computing

δ(ξ) =

∣∣∣∣∣
∂ log m2

Z

∂ log ξ

∣∣∣∣∣ , (14)

where ξ = m2
u, m

2
d, b, µ are the relevant Lagrangian parameters. (This is analogous to the

fine-tuning measure introduced by Barbieri and Guidice [20], although here it is applied to
weak-scale, rather than Planck/GUT-scale, MSSM parameters.) Using the well-known tree-
level relations to express m2

u and m2
d in terms of the parameters listed in (10), we obtain [19]

δ(µ) =
4µ2

m2
Z

(

1 +
m2

A + m2
Z

m2
A

tan2 2β

)

,

δ(b) =

(

1 +
m2

A

m2
Z

)

tan2 2β,
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Accidental Cancellations

Figure 10: Left panel: Scatter plot of direct detection cross section as a function of tanβ
and −M2, with M1 = −150 GeV, µ = 200 GeV, and mA = 500 GeV. Cyan, green, orange
and red points have log10 σcm2 > −45, log10 σcm2 ∈ (−46,−45), log10 σcm2 ∈ (−46,−47) and
log10 σcm2 < −47, respectively. Right panel: Same, as a function of µ and −M1, with
M2 = −200 GeV, tan β = 10, and mA = 500 GeV.

Once again, it is worth emphasizing that these conclusions are very general, and apply in
the full “phenomenological” MSSM, without undue theoretical prejudice [32]. The degree of
fine-tuning in the EWSB is a widely accepted quantitative “figure of merit” used to assess
relative theoretical attractiveness of various regions of the MSSM parameter space. We
established a clear correlation between this measure and the direct detection cross section.
The main conclusion of our analysis is that, if the MSSM is the true model of microscopic
physics and dark matter, and no fine-tuning at a sub-percent level is present, the direct dark
matter searches currently being conducted and designed should lead to a discovery.

A similar analysis could be performed in other models of electroweak symmetry breaking
with particle dark matter candidates. An interesting direction for future work is the so-called
next-to-minimal supersymmetric standard model (NMSSM), an MSSM with an additional
singlet field in the Higgs sector. This model significantly alleviates the fine-tuning due to
the Higgs mass lower bound, and the additional “singlino” admixture may be present in
the LSP, affecting the direct detection cross section. It would be interesting to see if the
correlations discussed here persist in the NMSSM.
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Results: Higgsino Fraction
Color-code: “Accidentality”

Red
Orange
Green

Low DD cross section                 pure gaugino OR pure Higgsino LSP
                                          OR accidental cancellations
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EWSB  Fine-Tuning for Gaugino LSP

[positive par’s only] [both signs allowed, all points]

[both signs allowed,               ]

Conclusion: the x-sec/FT correlation 
still holds, except for points with 
significant accidental cancellations 
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Conclusions
• “Generic” direct detection cross section (for order-one Higgsino/gaugino 

mixture LSP) is                         , ruled out by XENON-100 for most LSP 
masses

• Cross sections below                require the LSP to be pure gaugino or pure 
Higgsino, with lower cross sections corresponding to higher LSP purity

• In the gaugino LSP case, this implies that lower cross sections correspond to 
stronger fine-tuning in the EWSB sector

• Current XENON-100 bound implies FT of 10% or worse for mLSP>70 GeV

• XENON-1T will probe down to FT~1% for all LSP masses

• All these statements are true in the most general MSSM, assuming only the 
absence of accidental cancellations in the cross section, do not need to fix 
thermal relic abundance (e.g. non-standard cosmology is OK)

• In the higgsino LSP case, XENON-100 bound implies FT of 1/500 or worse 
IF one-sided relic density constraint is imposed
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