Minimal Models with Light Sterile Neutrinos

P. Hernández U. Valencia–IFIC

Based on A. Donini, P.H., J. López-Pavón, M. Maltoni, arXiv: 1106.0064

SM + massive n_s

After the decennium mirabilis of neutrino physics:

Fogli et al (after T2K and MINOS)

CKM seems to work also for the leptons (although CP violation is still to be found !)

3n mixing:
$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U_{PMNS}(\theta_{12}, \theta_{23}, \theta_{13}, \delta, ...) \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Outlier I: LSND anomaly

LSND vs KARMEN

$$\pi^{+} \rightarrow \mu^{+} \quad \nu_{\mu}$$

$$\nu_{\mu} \rightarrow \nu_{e} \text{ DIF } (28 \pm 6/10 \pm 2)$$

$$\mu^{+} \rightarrow e^{+} \quad \nu_{e} \ \bar{\nu}_{\mu}$$

$$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \text{ DAR } (64 \pm 18/12 \pm 3)$$

Appearance signal with very different

$$|\Delta m^2| \gg |\Delta m^2_{atm}$$

20 MeV \leq E_n \leq 200 MeV

MiniBOONE-n

Neutrino run

200 MeV $\leq E_n \leq 3$ GeV

Low energy excess...but not expected if LSND right

MiniBOONE-n

In order to accommodate a new $|\Delta m^2_{LSND}| \simeq \mathcal{O}(1eV)$

- Need at least four $(n_s \ge 1)$ distinct eigenstates
- Apparently CP violating effect needed (signal LSND/MB anti-n not MB n) $n_s \ge 2$ Sorel, Conrad, Shaevitz
- Tension appearance (signal) and disappearance (no signal) ?
- Tension with cosmology ?

Outlier II: reactor anomaly

Re-calculation of reactor fluxes: old fluxes underestimated by 3%:

Mueller et al, ArXiv: 1101.2663

Outlier III: Cosmology

Hamann et al, ArXiv: 1006.5276

Sterile species favoured by LSS and CMB

Nucleosynthesis:

$$N_s = 0.68^{+0.80}_{-0.70}$$

Izotov, Thuan

3+2 neutrino mixing model

Parametrized in terms of a general unitary 5x5 mixing matrix (9 angles, >6 phases physical)

($ u_e$		($ u_1$	
	$ u_{\mu}$			ν_2	
	ν_{τ}	$=U_{5\times 5}$		ν_3	
	ν_s			ν_4	
	ν'_s			ν_5	Ϊ

	Δm^2_{41}	$ U_{e4} $	$ U_{\mu4} $	Δm_{51}^2	$ U_{e5} $	$ U_{\mu 5} $	δ/π	χ^2/dof
3+2	0.47	0.128	0.165	0.87	0.138	0.148	1.64	110.1/130
1 + 3 + 1	0.47	0.129	0.154	0.87	0.142	0.163	0.35	106.1/130

	3 + 1	3+2
$\chi^2_{ m min}$	100.2	91.6
NDF	104	100
GoF	59%	71%
$\Delta m_{41}^2 [\mathrm{eV}^2]$	0.89	0.90
$ U_{e4} ^2$	0.025	0.017
$ U_{\mu 4} ^2$	0.023	0.018
$\Delta m_{51}^2 [\mathrm{eV}^2]$		1.60
$ U_{e5} ^2$		0.017
$ U_{\mu 5} ^2$		0.0064
η		1.52π
$\Delta\chi^2_{ m PG}$	24.1	22.2
$\mathrm{NDF}_{\mathrm{PG}}$	2	5
PGoF	6×10^{-6}	5×10^{-4}

Kopp, Maltoni, Schwetz (KMS) arXiv:1103.4570

Giunti, Laveder, (GL) arXiv:1107.1452

Significant improvement over 3n scenario, but tension appearance/disappearance remains

SM + massive ns

Neutrinos are massive -> need to add the other helicity states

SM + massive ns

Majorana neutrinos + gauge invariance

Weinberg's operator (d=5)

But model dependent...

SM + sterile ns

Massive majorana singlet neutrinos

Many models (Type I Seesaw, Inverse Seesaw, Direct Seesaw) involve sterile n

Minkowski; Gell-Mann, Ramond Slansky; Yanagida, Glashow...

SM + sterile ns

Most general (renormalizable) Lagrangian compatible with SM gauge symmetries:

$$\mathcal{L} = \mathcal{L}_{SM} - \sum_{i=1}^{n_R} \bar{l}_L^{\alpha} Y^{\alpha i} \tilde{\Phi} \nu_R^i - \sum_{i,j=1}^{n_R} \frac{1}{2} \bar{\nu}_R^{ic} M_N^{ij} \nu_R^j + h.c.$$

Y: 3 x n_R M_N: n_Rx n_R M_{\nu} = $\begin{pmatrix} 0 & Yv \\ Yv & M_N \end{pmatrix}$

Phenomenology and cosmo implications strongly depend on $n_{R_{\rm r}} M_{\rm N}$ and global symmetries (patterns in Y and $M_{\rm N}$)

Important to understand how data breaks this Y, M_N degeneracy

Type I + (approx) Lepton number

Cirigliano et al; Kersten, Smirnov; Abada et al; Gavela, et al

Most models of neutrino masses involve sterile neutrinos...

- what are the minimal models that can explain confirmed neutrino masses ie 3nmixing scenario ?
- what are those that can account for any of the neutrino anomalies eg. 3+2 n mixing model ?

Minimal models

Most general (renormalizable) Lagrangian compatible with SM gauge symmetries:

$$\mathcal{L} = \mathcal{L}_{SM} - \sum_{i=1}^{n_R} \bar{l}_L^{\alpha} Y^{\alpha i} \tilde{\Phi} \nu_R^i - \sum_{i,j=1}^{n_R} \frac{1}{2} \bar{\nu}_R^{ic} M_N^{ij} \nu_R^j + h.c.$$

Y: 3 \times n_R

Number of Physical Parameters

	٨		n_R	L_i	# zero modes	# masses	# angles	# CP phases	
2	T	ſ	1	-	2	2	2	0	
exit	it∕			+1	2	1	2	0	→ 1 Dirac
đ	Ę		2	-	1	4	4	3	
b	dic			(+1,+1)	1	2	3	1	→ 2 Dirac
U	pre			(+1,-1)	3	1	3	1	
		ſ	3	-	0	6	6	6	
				(+1,+1,+1)	0	3	3	1	→ 3 Dirac
				(+1,-1,+1)	2	2	6	4	
				(+1,-1,-1)	4	1	4	1	

Minimal models

Most general (renormalizable) Lagrangian compatible with SM gauge symmetries:

$$\mathcal{L} = \mathcal{L}_{SM} - \sum_{i=1}^{n_R} \bar{l}_L^{\alpha} Y^{\alpha i} \tilde{\Phi} \nu_R^i - \sum_{i,j=1}^{n_R} \frac{1}{2} \bar{\nu}_R^{ic} M_N^{ij} \nu_R^j + h.c.$$

Y: 3 x n_R

Complexity

Pheno $3+n_s$ mixing models ?

They assume a general mass matrix for 3+n_s neutrinos: what is that model ?

ple 1: $3xn_s$ $\begin{pmatrix} M_{LL} & M_{LR} \\ M_{LR}^T & M_{RR} \end{pmatrix}$ Example 1:

Pheno $3+n_s$ mixing models ?

They assume a general mass matrix for $3+n_s$ neutrinos:

Example 1: Gauge invariance

Effective theory: M_{LL} parametrizes our ignorance about the underlying dynamics (eg. a model with $n_R > n_s$, where the heavier states are integrated out)

Pheno $3+n_s$ mixing models ?

Example 2: Dirac

 $\begin{pmatrix} 0 & M_{LR} \\ M_{LR}^T & 0 \end{pmatrix}$

requires to add $3+2 n_s$ Weyl sterile fermions to the SM, with specific lepton number assigments $(3+n_s:+1, n_s:-1)$!

These cannot be the minimal models...

3+n_s pheno vs 3+n_R minimal ?

For the same $n_s = n_R$ many more parameters...less predictive

	# Angles	# CP Phases	# Dm ²	
3+1 pheno	6	3	3	
3+1 minimal	2	0	2	
3+2 pheno	9	6	4	
3+2 minimal	4	3	4	

This work: Minimal 3+1, 3+2 confronted with data (neutrino experiments)

Earlier work: De Gouvea, hep-ph/0501039 De Gouvea, J. Jenkins, Vasudevan hep-ph/0608147

On parametrizations

$$\mathcal{M}_{\nu} = \left(\begin{array}{cc} 0 & m_D \\ m_D^T & M_N \end{array}\right)$$

 $m_D = U^*(\theta_{13}, \theta_{23}) \begin{pmatrix} 0 \\ 0 \\ m \end{pmatrix}$

•Physical parameters only •Convenient to impose existing constraints

Casas-Ibarra (m. << M.)

 $M_N = diag(M_1, M_2, ...)$

General

3+1

3+2

Standard PMNS only if Dirac/degenerate N

standard PMNS

Minimal 3+1

Two massless +two massive eigenstates, only two physical angles, no CP violation

Strong incompatibility between Chooz+KamLAND vs Chooz+MINOS

Minimal 3+2

Parameters: 1 massless, 4 massive eigenstates, 4 angles, 2 CP phases Simplification: degenerate case $M_1 = M_2 = M$, 3 angles, no CP violation

$$|\lambda_{i}^{2} - \lambda_{j}^{2}| = \Delta m_{atm}^{2}, |\lambda_{k}^{2} - \lambda_{l}^{2}| = \Delta m_{sol}^{2}, \ i, j, k, l = 0, ..., 4$$

MINOS+KamLAND+CHOOZ

SOLAR data

Excludes all exotic Type III, IV, V solutions

Excludes all the intermediate Type I solutions

Impressive sensitivity of solar neutrinos to tiny departures from diracness!

See also De Gouvea, Huang, Jenkins arXiv: 0906.1611

SOLAR data: MQD max

Adiabaticity limit:

$$M(\text{eV}) < \begin{cases} 10^{-7} \times E_{\nu}(\text{MeV}) & \text{NH}, \\ 2 \times 10^{-8} \times E_{\nu}(\text{MeV}) & \text{IH}. \end{cases}$$

Vaccuum oscillations: $L_{osc} \sim \frac{E_{\nu}}{Mm_{D^-}}$

LBL data: M^{SS}_{min}

M > 0.6 eV (NH), 1.4eV (IH) as good fits as 3n scenario

Other constraints on M^{SS}_{min ?}

Neutrinoless double-beta decay: $m_{ee} = 0$ (M << 100MeV)

Tritium: presently no constraint (small mixing of heavy states) SBL reactor:

LSND/MB + reactor anomaly ?

Matching to 3+2 pheno model:

NH: $(U_{\text{mix}})_{e4} = s_{13}s_{34},$ $(U_{\text{mix}})_{e5} = c_{13}s_{12}s_{25},$ $(U_{\text{mix}})_{\mu 4} = c_{13}s_{23}s_{34},$ $(U_{\text{mix}})_{\mu 5} = (c_{12}c_{23} - s_{12}s_{13}s_{23})s_{25},$

	Δm^2_{41}	$ U_{e4} $	$ U_{\mu4} $	Δm^2_{51}	$ U_{e5} $	$ U_{\mu 5} $	δ/π	$\chi^2/{ m dof}$
3+2	0.47	0.128	0.165	0.87	0.138	0.148	1.64	110.1/130
1 + 3 + 1	0.47	0.129	0.154	0.87	0.142	0.163	0.35	106.1/130

Kopp, Maltoni, Schwetz

$$s_{25} \approx m_{D^-}/M, \quad s_{34} \approx -m_{D^+}/M,$$

No, for degenerate case

Beyond the degenerate case

In Casas&Ibarra parametrization: $(q_{13}, q_{23}, q_{12}, d, m_1 = 0, m_2, m_3, q_{45}^r, q_{45}^i, M_1, M_2)$

Eg: NH
$$|U_{e4}| \simeq \left| \sqrt{\frac{m_2}{M_1}} s_{12} c_{13} \cos(\theta_{45}^r - i\theta_{45}^i) + \sqrt{\frac{m_3}{M_1}} e^{-i\delta} s_{13} \sin(\theta_{45}^r - i\theta_{45}^i) \right| \quad \Delta m_{41}^2 \simeq M_1^2$$

$$|U_{e5}| \simeq \left| -\sqrt{\frac{m_2}{M_2}} s_{12} c_{13} \sin(\theta_{45}^r - i\theta_{45}^i) + \sqrt{\frac{m_3}{M_2}} e^{-i\delta} s_{13} \cos(\theta_{45}^r - i\theta_{45}^i) \right| \quad \Delta m_{51}^2 \simeq M_2^2$$

	Ue4	Um4	Ue5	Um5	f	
3+2 KMS	0.128	0.165	0.138	0.148	1.62 p	
3+2 (IH)	0.136	0.20	0.162	0.14	1.59 p	
3+2 (NH)	0.095	0.17	0.082	0.149	1.74 p	
3+2 GL	0.130	0.134	0.130	0.08	1.52 p	_
3+2 (IH)	0.133	0.137	0.167	0.09	1.44 p	

A detailed fit to the data is underway...

3+2 minimal (IH) vs KMS/GL best fits

Conclusions

- Most models of neutrino masses add sterile Weyl fermions to the SM (seesaw type I, inverse, direct...)
- Complexity/predictivity of those models depend on $n_{\rm R}$ and global (e.g. lepton number) symmetry
- n_R=1 excluded by reactor and accelerator LBL data
- n_R=2 (in degenerate limit), excluded for 10⁻⁹ (10⁻¹¹) eV < M < 1.4 eV NH (IH)
- n_R=2 with two masses ~eV could explain LSND/MiniBOONE at similar level as 3+2 pheno (if IH !) with less free parameters ? (all mixings determined in terms of one complex angle and d)
- It is important to exclude simpler models before going to more complex ones...