Minimal Models with Light Sterile Neutrinos

P. Hernández

U. Valencia-IFIC

Based on A. Donini, P.H., J. López-Pavón, M. Maltoni, arXiv: 1106.0064

$S M+$ massive n_{s}

After the decennium mirabilis of neutrino physics:

Fogli et al (after T2K and MINOS)

CKM seems to work also for the leptons (although CP violation is still to be found !)

3n mixing: $\quad\left(\begin{array}{l}\nu_{e} \\ \nu_{\mu} \\ \nu_{\tau}\end{array}\right)=U_{P M N S}\left(\theta_{12}, \theta_{23}, \theta_{13}, \delta, \ldots\right)\left(\begin{array}{l}\nu_{1} \\ \nu_{2} \\ \nu_{3}\end{array}\right)$

Outlier I: LSND anomaly

LSND vs KARMEN

$$
\begin{array}{rll}
\pi^{+} \rightarrow & \mu^{+} & \nu_{\mu} \\
& \nu_{\mu} & \rightarrow \nu_{e} \operatorname{DIF}(28 \pm 6 / 10 \pm 2) \\
& \\
\mu^{+} \rightarrow & e^{+} & \nu_{e} \bar{\nu}_{\mu} \\
& \bar{\nu}_{\mu} & \rightarrow \bar{\nu}_{e} \operatorname{DAR}(64 \pm 18 / 12 \pm 3)
\end{array}
$$

Appearance signal with very different

$$
\left|\Delta m^{2}\right| \gg\left|\Delta m_{a t m}^{2}\right|
$$

$20 \mathrm{MeV} \leq \mathrm{E}_{\mathrm{n}} \leq 200 \mathrm{MeV}$

MiniBOONE-n

Neutrino run

```
200 MeV \leq En < 3 GeV
```


Low energy excess...but not expected if LSND right

MiniBOONE-n̄

In order to accommodate a new $\left|\Delta m_{L S N D}^{2}\right| \simeq \mathcal{O}(1 e V)$

- Need at least four ($n_{s} \geq 1$) distinct eigenstates
- Apparently CP violating effect needed (signal LSND/MB anti-n not MB n) $\mathrm{n}_{\mathrm{s}} \geq 2$

Sorel, Conrad, Shaevitz

- Tension appearance (signal) and disappearance (no signal) ?
- Tension with cosmology?

Outlier II: reactor anomaly

Re-calculation of reactor fluxes: old fluxes underestimated by 3% :
Mueller et al, ArXiv: 1101.2663

Outlier III: Cosmology

Hamann et al, ArXiv: 1006.5276
Sterile species favoured by LSS and CMB
Nucleosynthesis:

$$
N_{s}=0.68_{-0.70}^{+0.80}
$$

Izotov, Thuan

$3+2$ neutrino mixing model

Parametrized in terms of a general unitary 5×5 mixing matrix (9 angles, >6 phases physical)

$$
\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau} \\
\nu_{s} \\
\nu_{s}^{\prime}
\end{array}\right)=U_{5 \times 5}\left(\begin{array}{l}
\nu_{1} \\
\nu_{2} \\
\nu_{3} \\
\nu_{4} \\
\nu_{5}
\end{array}\right)
$$

> | | Δm_{41}^{2} | $\left\|U_{e 4}\right\|$ | $\left\|U_{\mu 4}\right\|$ | Δm_{51}^{2} | $\left\|U_{e 5}\right\|$ | $\left\|U_{\mu 5}\right\|$ | δ / π | $\chi^{2} /$ dof |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $3+2$ | 0.47 | 0.128 | 0.165 | 0.87 | 0.138 | 0.148 | 1.64 | $110.1 / 130$ |
| $1+3+1$ | 0.47 | 0.129 | 0.154 | 0.87 | 0.142 | 0.163 | 0.35 | $106.1 / 130$ |

Kopp, Maltoni, Schwetz (KMS) arXiv:1103.4570

	$3+1$	$3+2$
$\chi_{\min }^{2}$	100.2	91.6
NDF	104	100
GoF	59%	71%
$\Delta m_{41}^{2}\left[\mathrm{eV}^{2}\right]$	0.89	0.90
$\left\|U_{e 4}\right\|^{2}$	0.025	0.017
$\left\|U_{\mu 4}\right\|^{2}$	0.023	0.018
$\Delta m_{51}^{2}\left[\mathrm{eV}^{2}\right]$		1.60
$\left\|U_{e 5}\right\|^{2}$		0.017
$\left\|U_{\mu 5}\right\|^{2}$		0.0064
η		1.52π
$\Delta \chi_{\mathrm{PG}}^{2}$	24.1	22.2
NDF		
PGoF	6×10^{-6}	5×10^{-4}

Giunti, Laveder, (GL) arXiv:1107.1452

Significant improvement over 3n scenario, but tension appearance/disappearance remains

SM + massive ns

Neutrinos are massive \rightarrow need to add the other helicity states

New elementary dofs -> sterile n
or
Majorana mass terms

SM + massive ns

Majorana neutrinos + gauge invariance
Weinberg's operator ($d=5$)

$$
\begin{aligned}
& \text {-> new dofs at } L \\
& m_{\nu} \sim \lambda \frac{v^{2}}{\Lambda}
\end{aligned}
$$

But model dependent...

SM + sterile ns

Massive majorana singlet neutrinos

Many models (Type I Seesaw, Inverse Seesaw, Direct Seesaw) involve sterile n

Minkowski; Gell-Mann, Ramond Slansky; Yanagida, Glashow...

SM + sterile ns

Most general (renormalizable) Lagrangian compatible with SM gauge symmetries:

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{S M}-\sum_{i=1}^{n_{R}} \bar{l}_{L}^{\alpha} Y^{\alpha i} \tilde{\Phi} \nu_{R}^{i}-\sum_{i, j=1}^{n_{R}} \frac{1}{2} \bar{\nu}_{R}^{i c} M_{N}^{i j} \nu_{R}^{j}+\text { h.c. } \\
Y: 3 \times n_{\mathrm{R}} \quad M_{N}: n_{\mathrm{R}} \times \mathrm{n}_{\mathrm{R}} \quad M_{\nu}=\left(\begin{array}{ll}
0 & Y v \\
Y v & M_{N}
\end{array}\right)
\end{gathered}
$$

Phenomenology and cosmo implications strongly depend on n_{R}, M_{N} and global symmetries (patterns in Y and M_{N})

Type I seesaw: $M_{N} \gg Y v$

$\log \left(M_{N}(\mathrm{GeV})\right)$

Important to understand how data breaks this Y, M_{N} degeneracy

Type I + (approx) Lepton number

Wyler, Wolfenstein; Mohapatra, Valle;
Branco, Grimus, Lavoura, Malinsky, Romao,...

Y unsuppressed: $\quad \rightarrow$ LFV effects at LHC, large m-> e g, etc
\rightarrow heavier spectrum M_{N}, Y v
Cirigliano et al; Kersten,Smirnov; Abada et al; Gavela,et al

Most models of neutrino masses involve sterile neutrinos...

- what are the minimal models that can explain confirmed neutrino masses ie 3 nmixing scenario?
- what are those that can account for any of the neutrino anomalies eg. $3+2 \mathrm{n}$ mixing model ?

Minimal models

Most general (renormalizable) Lagrangian compatible with SM gauge symmetries:

$$
\mathcal{L}=\mathcal{L}_{S M}-\sum_{i=1}^{n_{R}} \bar{l}_{L}^{\alpha} Y^{\alpha i} \tilde{\Phi} \nu_{R}^{i}-\sum_{i, j=1}^{n_{R}} \frac{1}{2} \bar{\nu}_{R}^{i c} M_{N}^{i j} \nu_{R}^{j}+h . c .
$$

$$
Y: 3 \times n_{R} \quad M_{N}: n_{R} \times n_{R}
$$

Number of Physical Parameters

		n_{R}	L_{i}	\# zero modes	\# masses	\# angles	\# CP phases	$\xrightarrow{\rightarrow} 2 \text { Dirac }$
		1	$+1$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{array}{ll} \hline 0 \\ 0 \end{array}$	
		2	$\begin{aligned} & (+1,+1) \\ & (+1,-1) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \\ & 1 \\ & \hline \end{aligned}$	4	$\begin{array}{lr} 3 & \\ 1 & - \\ 1 & \end{array}$	
		3	$\begin{aligned} & (+1,+1,+1) \\ & (+1,-1,+1) \\ & (+1,-1,-1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 3 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 3 \\ & 6 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 1 \\ & 4 \\ & 1 \\ & \hline \end{aligned}$	

Minimal models

Most general (renormalizable) Lagrangian compatible with SM gauge symmetries:

$$
\mathcal{L}=\mathcal{L}_{S M}-\sum_{i=1}^{n_{R}} \bar{l}_{L}^{\alpha} Y^{\alpha i} \tilde{\Phi} \nu_{R}^{i}-\sum_{i, j=1}^{n_{R}} \frac{1}{2} \bar{\nu}_{R}^{i c} M_{N}^{i j} \nu_{R}^{j}+h . c .
$$

$$
Y: 3 \times n_{R}
$$

$$
M_{N}: n_{R} \times n_{R}
$$

Pheno $3+\mathrm{n}_{\mathrm{s}}$ mixing models ?

They assume a general mass matrix for $3+n_{s}$ neutrinos: what is that model?

Example 1:

$$
\left(\begin{array}{cc}
M_{L L} & \stackrel{M_{L R}}{ } \\
M_{L R}^{T} & M_{R R}
\end{array}\right)
$$

Pheno $3+\mathrm{n}_{\mathrm{s}}$ mixing models ?

They assume a general mass matrix for $3+n_{s}$ neutrinos:

Example 1: Gauge invariance

$$
\left(\begin{array}{cc}
M_{L} & M_{L R} \\
M_{L R}^{T} & M_{R R}
\end{array}\right)
$$

Effective theory: $M_{L L}$ parametrizes our ignorance about the underlying dynamics (eg. a model with $n_{R}>n_{s^{\prime}}$, where the heavier states are integrated out)

Pheno $3+n_{s}$ mixing models ?

Example 2: Dirac

$$
\left(\begin{array}{l}
0 \\
M_{L R}^{T}
\end{array}\right.
$$

requires to add $3+2 n_{s}$ Weyl sterile fermions to the $S M$, with specific lepton number assigments ($3+n_{s}:+1, n_{s}:-1$) !

These cannot be the minimal models...

$3+n_{s}$ pheno vs $3+n_{R}$ minimal

For the same $n_{s}=n_{R}$ many more parameters...less predictive

	\# Angles	\# CP Phases	\# Dm 2
$3+1$ pheno	6	3	3
$3+1$ minimal	2	0	2
$3+2$ pheno	9	6	4
$3+2$ minimal	4	3	4

This work: Minimal $3+1,3+2$ confronted with data (neutrino experiments)
Earlier work: De Gouvea, hep-ph/0501039
De Gouvea, J. Jenkins, Vasudevan hep-ph/0608147

On parametrizations

$$
\begin{aligned}
& \mathcal{M}_{\nu}=\left(\begin{array}{ll}
0 & m_{D} \\
m_{D}^{T} & M_{N}
\end{array}\right) \\
& \text {-Physical parameters only } \\
& \text { - Convenient to impose existing constraints } \\
& M_{N}=\operatorname{diag}\left(M_{1}, M_{2}, \ldots\right) \\
& \text { Casas-Ibarra }\left(m_{D} \ll M_{N}\right) \\
& 3+2 \\
& { }^{3+1} m_{D}=U^{*}\left(\theta_{13}, \theta_{23}\right)\left(\begin{array}{l}
0 \\
0 \\
m
\end{array}\right) \\
& \mathcal{M}_{\nu}=\left(\begin{array}{cc}
U & \epsilon \\
-\epsilon^{\dagger} U & 1
\end{array}\right) \operatorname{Diag}\left(0, m_{2}, m_{3}, M_{1}, M_{2}\right)\left(\begin{array}{cc}
U & \epsilon \\
-\epsilon^{\dagger} U & 1
\end{array}\right)^{T} \\
& \begin{array}{c}
3+2 \\
m_{D}=U^{*}\left(\theta_{12}, \theta_{13}, \theta_{23}, \delta\right) \\
\downarrow
\end{array} \\
& \epsilon=U\left(\begin{array}{ll}
0 & 0 \\
m_{2}^{1 / 2} & 0 \\
0 & m_{3}^{1 / 2}
\end{array}\right) R^{\dagger}\left(\theta_{45}\right) M_{N}^{-1 / 2} \\
& \text { standard PMNS } \\
& \text { Standard PMNS only if Dirac/degenerate } \mathrm{N}
\end{aligned}
$$

Minimal 3+1

Two massless +two massive eigenstates, only two physical angles, no CP violation

Strong incompatibility between Chooz+KamLAND vs Chooz+MINOS

Minimal 3+2

Parameters: 1 massless, 4 massive eigenstates, 4 angles, 2 CP phases Simplification: degenerate case $M_{1}=M_{2}=M, 3$ angles, no $C P$ violation

$$
\left|\lambda_{i}^{2}-\lambda_{j}^{2}\right|=\Delta m_{a t m}^{2},\left|\lambda_{k}^{2}-\lambda_{l}^{2}\right|=\Delta m_{s o l}^{2}, i, j, k, l=0, \ldots, 4
$$

Type IV-b

MINOS+KamLAND+CHOOZ

SOLAR data

Excludes all exotic Type III, IV, V solutions

Excludes all the intermediate Type I solutions

SOLAR data: $M^{Q D}$

Impressive sensitivity of solar neutrinos to tiny departures from diracness!

See also De Gouvea, Huang, Jenkins arXiv: 0906.1611

SOLAR data: MQD

Adiabaticity limit:

$$
M(\mathrm{eV})< \begin{cases}10^{-7} \times E_{\nu}(\mathrm{MeV}) & \mathrm{NH} \\ 2 \times 10^{-8} \times E_{\nu}(\mathrm{MeV}) & \mathrm{IH}\end{cases}
$$

Vaccuum oscillations: $\quad L_{o s c} \sim \frac{E_{\nu}}{M m_{D^{-}}}$

LBL data: $M^{\text {SS }}$
 min

$M>0.6 \mathrm{eV}(\mathrm{NH}), 1.4 \mathrm{eV}$ (IH) as good fits as $3 n$ scenario

Other constraints on $M^{\text {ss }}$ min ?

Neutrinoless double-beta decay: $m_{e e}=0(M \ll 100 \mathrm{MeV})$
Tritium: presently no constraint (small mixing of heavy states)
SBL reactor:

LSND/MB + reactor anomaly ?

Matching to $3+2$ pheno model:

NH:

$$
\begin{aligned}
& \left(U_{\text {mix }}\right)_{e 4}=s_{13} s_{34}, \\
& \left(U_{\text {mix }}\right)_{e 5}=c_{13} s_{12} s_{25}, \\
& \left(U_{\text {mix }}\right)_{\mu 4}=c_{13} s_{23} s_{34}, \\
& \left(U_{\text {mix }}\right)_{\mu 5}=\left(c_{12} c_{23}-s_{12} s_{13} s_{23} s_{25},\right.
\end{aligned}
$$

U 0.1 (right ballpark for IH)!

	$\Delta m_{41}^{2}\left\|U_{e 4}\right\|$	$\left\|U_{\mu 4}\right\| \Delta m_{51}^{2}$	$\left\|U_{e 5}\right\|\left\|U_{\mu 5}\right\| \delta / \pi$	$\chi^{2} /$ dof	
$3+2$	0.47	0.128	0.165	0.87	0.138
	0.148	1.64	$110.1 / 130$		
$1+3+1$	0.47	0.129	0.154	0.87	0.142

$$
s_{25} \approx m_{D^{-}} / M, \quad s_{34} \approx-m_{D^{+}} / M
$$

No, for degenerate case

Beyond the degenerate case

In Casas\&Ibarra parametrization: $\left(q_{13}, q_{23}, q_{12}, d_{1}, m_{1}=0, m_{2}, m_{3}, q_{45}{ }^{r}, q_{45}{ }^{i}, M_{1}, M_{2}\right)$
Eg: NH $\quad\left|U_{e 4}\right| \simeq\left|\sqrt{\frac{m_{2}}{M_{1}}} s_{12} c_{13} \cos \left(\theta_{45}^{r}-i \theta_{45}^{i}\right)+\sqrt{\frac{m_{3}}{M_{1}}} e^{-i \delta} s_{13} \sin \left(\theta_{45}^{r}-i \theta_{45}^{i}\right)\right| \quad \Delta m_{41}^{2} \simeq M_{1}^{2}$

$$
\left|U_{e 5}\right| \simeq\left|-\sqrt{\frac{m_{2}}{M_{2}}} s_{12} c_{13} \sin \left(\theta_{45}^{r}-i \theta_{45}^{i}\right)+\sqrt{\frac{m_{3}}{M_{2}}} e^{-i \delta} s_{13} \cos \left(\theta_{45}^{r}-i \theta_{45}^{i}\right)\right| \quad \Delta m_{51}^{2} \simeq M_{2}^{2}
$$

	\mid Ue4 \mid	\mid Um4 \mid	\mid Ue5 \mid	\mid Um5 \mid	f
$3+2$ KMS	0.128	0.165	0.138	0.148	1.62 p
$3+2$ (IH)	0.136	0.20	0.162	0.14	1.59 p
$3+2$ (NH)	0.095	0.17	0.082	0.149	1.74 p

$3+2$ GL	$\mathbf{0 . 1 3 0}$	$\mathbf{0 . 1 3 4}$	$\mathbf{0 . 1 3 0}$	$\mathbf{0 . 0 8}$	$\mathbf{1 . 5 2 p}$
$3+2(I H)$	0.133	0.137	0.167	0.09	1.44 p

$3+2$ minimal (IH) vs KMS/GL best fits

Conclusions

- Most models of neutrino masses add sterile Weyl fermions to the SM (seesaw type I, inverse, direct...)
- Complexity/predictivity of those models depend on n_{R} and global (e.g. lepton number) symmetry
- $n_{R}=1$ excluded by reactor and accelerator LBL data
- $n_{R}=2$ (in degenerate limit), excluded for

$$
10^{-9}\left(10^{-11}\right) \mathrm{eV}<M<1.4 \mathrm{eV} \quad \mathrm{NH} \text { (IH) }
$$

- $n_{R}=2$ with two masses $\sim \mathrm{eV}$ could explain LSND/MiniBOONE at similar level as $3+2$ pheno (if IH !) with less free parameters ? (all mixingsdetermined in terms of one complex angle andd)
- It is important to exclude simpler models before going to more complex ones...

