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Evidence for Dark Matter

• Multiple evidence of dark matter in various scales 

• Cosmological simulations also require dark matter 

• What is dark matter?

Rotation Curve Merging Cluster Cosmic Microwave Background



Dark Matter Candidates from Particle Physics
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Primordial Black Holes

• Gravitational collapse of the Hubble patch:  
M ~ 4π/3 ρH-3 ~ 1015 (t/10-23 s) g 

• PBH scenarios (e.g., Zel’dovich & Novikov ’67; Hawking ’71; Carr & Hawking ‘74; Harada+’16; 
Inomata+’16; and more) 

• See Sasaki, Suyama, Tanaka, & Yokoyama 1801.05235 for the latest review.
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FIG. 1. Black dashed line: the PBH mass spectra for parame-
ters given in Eq. (26) (ckin > 0). Cyan solid line: that for param-
eters given in Eq. (29) (ckin < 0). Observationally excluded regions
which do not depend on the production mechanism of PBHs are
represented by gray-shaded regions: extragalactic gamma rays
from Hawking radiation [49], femtolensing of known gamma ray
bursts [50], white dwarfs existing in our local galaxy [51], Kepler
micro/millilensing [52], EROS/MACHO microlensing [53], and
accretion constraints from CMB [54]. See also [8] for a recent sum-
mary of observational constraints on PBHs.a We then show the
constraints on inflationary PBHs in the orange and green shaded
regions: the secondary GW constraint with use of the EPTA exper-
iment [24] and the current µ distortion constraint |µ| < 9⇥ 10�5

by green- and orange-shaded regions for a monochromatic mass
spectrum. Note that the exact constraints depend on the shape
of the power spectrum and therefore the illustrated green/orange
constraints are just rough indicators. (See also discussion on un-
certainties at the end of Sec. III.) We have provided two sample pa-
rameter sets of the double inflation model as an example, which
will be discussed in Sec. IV. Both black dashed [Eq. (26)] and cyan
solid [Eq. (29)] PBH mass spectra seem to avoid these constraints
in this figure, but the black dashed one is actually disfavored by
PTA constraints as shown in Fig. 2.
a After the submission of this paper, Niikura et al. [55] has shown

significant microlensing constraints on 10�13M� ÆM Æ 10�6M� with
use of the Subaru Hyper Suprime-Cam.

III. PBH MERGERS AS LIGO EVENTS

In this section, we explore the possibilities to interpret
the LIGO events as mergers of PBHs which originate from
inflationary fluctuations. In particular, we point out that
the current PTA experiments and the µ distortion of CMB
already provide severe constraints at the mass scale rele-
vant to the LIGO events.

Event rate of PBH mergers. The LIGO-Virgo Collab-
oration estimated the event rate of BH-mergers as 9–
240 Gpc�3 yr�1 (90 % C.L.) [3]. As discussed in Ref. [6], the
required fraction of PBHs is around ⇠ 10�3–10�2 so as to
reproduce the estimated event rate, which is disfavored by
the CMB observation. However, note that there are sev-
eral uncertainties; for instance, the above fraction is an or-
der of magnitude estimation under several simplified as-
sumptions as mentioned in [6], and the FIRAS constraint
could be weaker if one assumes a smaller duty cycle pa-

rameter than that in [54] as discussed in [8] (though it has
been recently claimed that the WMAP3 constraints might
be stronger if Planck’s results are used instead [56]).5 Also
the observed number of GW events is still quite small.
Therefore, we cannot immediately exclude the possibilities
of the PBH-explanation for the LIGO events. In this sense,
it is of quite importance to test this scenario by combin-
ing other experiments. See Fig. 1 for the summary of PBH
constraints.

Induced GWs and PTA experiments. Here we summa-
rize the production of GWs via the second-order effects and
show that the PTA experiments could probe GWs associ-
ated with the PBHs for the LIGO events. For the sake of
completeness, we clarify the notation and conventions in
App. A, since there is confusion in the literature.

As pointed out in Refs. [17–20], a large curvature pertur-
bation can yield a significant amount of GWs that can ex-
ceed the usual vacuum contribution. This is because the
curvature perturbations act as a source term in the equa-
tion of motion for GWs. Importantly, those GWs are en-
hanced at the frequency where the curvature perturbation
becomes large. To understand this intuitively, let us briefly
sketch the production of GWs. GWs are generated when
such a large curvature perturbation reenters the horizon.
After the production, they are redshifted since they behave
as radiation, while the source term decreases much faster.
As a result, the production of GWs is dominated at the hori-
zon reentry of the perturbed region, and the peak of the
GWs corresponds to that of the curvature perturbation.

The current density parameter of GWs can be expressed
as
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time ⌦GW becomes constant respectively. ⌘c represents a
conformal time (before the matter-radiation equality ⌘eq)
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Note that the overline indicates the oscillation time aver-

5 Indeed after the submission of this paper, several authors [57–59]
reevaluate the constraints and find that the conservative ones should
be much weaker than [54].
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Constraints on Primordial Black Holes

• constraints on PBHs from various observations and theory.

and/or radiation or by merging with other PBHs. While
Hawking radiation is completely negligible for
intermediate-mass PBHs, their growth can be very impor-
tant in the matter-dominated epoch [47,179,180]. For
instance, it has been conjectured that PBHs with a mass
of 102–104M⊙ could provide seeds for the supermassive
black holes of up to 1010M⊙ in the centers of galaxies
[181]. However, this involves a growth of many orders of
magnitude and careful numerical integration is required to
study this, allowing for the dilution of the PBHs due to
cosmic expansion and the merger of the smaller ones
originating from critical collapse. The clustering of PBHs
will also have significant effects on their merger rates
[55,182,183]. In particular, Chisholm [175] showed that
the clustering would produce an inherent isocurvature
perturbation and used this to constrain the viability of
PBHs as dark matter. Later he studied the effect of
clustering on mergers [184] and found that these could
dominate over evaporation, causing PBHs with mass below
1015 g to combine and form heavier long-lived black holes
rather than evaporating. So far, no compelling study of this
effect has been carried out for a realistic mass spectrum, so
we will not include it in our discussion below.

V. SUMMARY OF CONSTRAINTS ON
MONOCHROMATIC NONEVAPORATED

BLACK HOLES

We now review the various constraints associated with
PBHs which are too large to have evaporated yet, updating
the equivalent discussion which appeared in Carr et al. [11].
All the limits assume that PBHs cluster in the Galactic halo
in the same way as other forms of CDM. In this case, the
fraction fðMÞ of the halo in PBHs is related to β0ðMÞ by
Eq. (8). Our limits on fðMÞ are summarized in Fig. 3,
which is an updated version of Fig. 8 of Ref. [11]. A list of
approximate formulas for these limits is given in Table I.
Both Fig. 3 and Table I are intended merely as an overview
and are not exact. A more precise discussion can be found
in the original references. Many of the constraints depend
on other physical parameters, not shown explicitly. In
general, we show only the most stringent constraints in
each mass range, although constraints are sometimes
omitted when they are contentious. Further details of these
limits and similar figures can be found in other papers:
for example, Table 1 of Josan, Green, and Malik [45], Fig. 4
of Mack, Ostriker, and Ricotti [185], Fig. 9 of Ricotti,
Ostriker, and Mack [15], Fig. 1 of Capela, Pshirkov, and
Tinyakov [36] and Fig. 1 of Clesse and Garcia-Bellido
[186]. We group the limits by type and discuss those within
each type in order of increasing mass. Since we are also
interested in the mass ranges for which the dark-matter
fraction is small, where possible we express each limit in
terms of an analytic function fmaxðMÞ over some mass
range. We do not cover Planck-mass relics, since the only

constraint on these is that they must have less than the
CDM density, but we do discuss them further in Sec. VI.

A. Evaporation constraints

A PBH of initial mass M will evaporate through the
emission of Hawking radiation on a time scale τ ∝ M3

which is less than the present age of the Universe forM less
than M# ≈ 5 × 1014 g [35]. PBHs with M > M# could still
be relevant to the dark-matter problem, although there is a
strong constraint on fðM#Þ from observations of the
extragalactic γ-ray background [4]. Those in the narrow
band M# < M < 1.005M# have not yet completed their
evaporation but their current mass is below the mass
Mq ≈ 0.4M# at which quark and gluon jets are emitted.
For M > Mc, there is no jet emission.
For M > 2M#, one can neglect the change of mass

altogether and the time-integrated spectrum dNγ=dE of
photons from each PBH is just obtained by multiplying the
instantaneous spectrum d _Nγ=dE by the age of the Universe
t0. From Ref. [11] this gives

FIG. 3. Constraints on fðMÞ for a variety of evaporation
(magenta), dynamical (red), lensing (cyan), large-scale structure
(green) and accretion (orange) effects associated with PBHs. The
effects are extragalactic γ-rays from evaporation (EG) [11],
femtolensing of γ-ray bursts (F) [187], white-dwarf explosions
(WD) [188], neutron-star capture constraints (NS) [36], Kepler
microlensing of stars (K) [189], MACHO/EROS/OGLE micro-
lensing of stars [27] and quasar microlensing (broken line) [190]
(ML), survival of a star cluster in Eridanus II (E) [191], wide binary
disruption (WB) [37], dynamical friction on halo objects (DF) [33],
millilensing of quasars (mLQ) [32], generation of large-scale
structure through Poisson fluctuations (LSS) [14] and accretion
effects (WMAP and FIRAS) [15]. Only the strongest constraint is
usually included in each mass range, but the accretion limits are
shown with broken lines since they are highly model dependent.
Where a constraint depends on some extra parameter which is not
well known, we use a typical value. Most constraints cut off at high
M due to the incredulity limit. See the original references for more
accurate forms of these constraints.

CARR, KÜHNEL, and SANDSTAD PHYSICAL REVIEW D 94, 083504 (2016)

083504-12

Carr et al. 2016



The GW150914 Event

©LIGO

• Binary black hole system with 
36 and 29 solar mass BHs. 

• 62 solar mass BH is formed. 

➡Evidence of intermediate 
mass BHs. 

• Why such massive?



Various Scenarios
• isolated binary (e.g. Belczynski et al. 2011; 

Kinugawa et. al. 2014) 

• Evolution from binary massive stars. 

• dense stellar system (e.g. Rodoriguez et al. 
2015) 

• Dynamical interaction between BH 
systems.  

• primordial black hole binary  
(e.g. Bird et al. 2016; Sasaki et al. 2016; Clesse & 
Garcia-Bellido 2017)



Closer Look at 1-103 Msun

• Lack of MACHO events  
(e.g.,  Tisserand et al. 2007) 

• wide binary star systems are 
not disrupted 
(e.g., Monroy-Rodoriguez & Allen 2014) 

• heating of primordial plasma 
due to accretion onto PBHs 

➡distortion in CMB  
(e.g., Ricotti et al. 2007, Ali-Hamoud & 
Kamionkowski 2017)

prior on the optical depth to reionization τreio ¼ τ0 " στ ≡
0.0596" 0.0089 as obtained by the latest Planck data
analysis [48]. This prior on τreio accounts approximately
for the large-scale temperature and polarization data (see
Refs. [49,50] for an analysis similar in spirit). Given the
relatively large effect of accreting PBHs on low-l polariza-
tion (see Fig. 13), a full data analysis might change the
constraints by order-unity factors; however this is below our
theoretical uncertainty. For a given set of cosmological
parameters ~θ ¼ ðH0;Ωbh2;Ωch2; As; ns; τreio; fpbhÞ, the χ2

is then

χ2ð~θÞ ¼ 1
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wherewe sumover repeated indices,X ∈ ðTT; TE; EEÞ, and
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l ð~θÞ are the theoretical power spectra obtainedwith our
modified HYREC and CLASS. Taylor-expanding about the
best-fit standard cosmological parameters ~θ0 given in
Ref. [48] (with fpbh;0 ¼ 0), we rewrite this as
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is the Fisher information or curvature matrix [51], for which
we have neglected the smaller term linear in ðCX

l ð~θ0Þ − ĈX
l Þ.

Maximizing this quadratic approximation of the χ2 allows us

to find the best-fit cosmological parameters ~̂θ, with their
covariance given by ðF−1Þij. We have checked that without
PBHs this simple analysis recovers very accurately the best-
fit standard six cosmological parameters obtained in
Ref. [47], with biases of at most 0.17σ. The variances we
derive match those of Ref. [24] for H0;Ωbh2;Ωch2 and ns
and those of Ref. [48] for As and τreio, as expected since we
are using the same high-l covariance as in the former
reference, and the prior on τreio (strongly degenerate with
As) from the latter.
We apply this analysis to derive the best-fit and 1 − σ

error on fpbh, as a function of Mpbh. We explicitly checked
that for the limits we obtain, the change in the anisotropy
power spectra is indeed linear in fpbh (ROM find an effect

that goes as f1=2pbh because they obtain a much larger effect
on the freeze-out free-electron abundance than we do).

Though we consider a limit on the normalization of a
Dirac-function mass distribution, this analysis can be gen-
eralized to any extended mass function [52], by replacing
fpbhLðMÞ=M →

R
dM dfpbh

dM LðMÞ=M, where dfpbh=dM is
the differential DM-PBH fraction.
For all PBH masses we consider, M ≤ 104 M⊙ (as the

steady-state approximation breaks down beyond that
mass), the best-fit f̂pbh is always less than a fraction of
standard deviation7 σfpbh . We show σfpbh in Fig. 14, as a
simple proxy for the upper limit on this parameter8 We see
that in the collisional ionization limit, CMB anisotropy
measurements by Planck exclude PBHs with masses
M ≳ 102 M⊙ as the dominant component of the dark

FIG. 14. Approximate CMB-anisotropy constraints on the
fraction of dark matter made of PBHs derived in this work (thick
black curves). The “collisional ionization” case assumes that the
radiation from the PBH does not ionize the local gas, which
eventually gets collisionally ionized. The “photoionization” case
assumes that the local gas is ionized due to the PBH radiation, up
to a radius larger than the collisional ionization region, yet
smaller than the Bondi radius. The former case is the most
conservative, as collisional ionization leads to a smaller temper-
ature near the black hole horizon, hence a smaller luminosity, and
weaker bounds. The correct result lies somewhere between these
two limiting cases. For comparison, we also show the CMB
bound previously derived by ROM (thin dashed curve), as well as
various dynamical constraints: microlensing constraints from the
EROS [15] (purple curve) and MACHO [14] (blue curve)
collaborations (but see Ref. [53] for caveats), limits from Galactic
wide binaries [17], and ultrafaint dwarf galaxies [54] (in all cases
we show the most conservative limits provided in the referenced
papers).

7The astute reader may wonder why even given several probed
PBH masses, some best-fit f̂pbh do not deviate by more than one
standard deviation from 0; the reason is that the effect of PBHs of
different masses on the CMB is very similar; hence, the best-fit
values are expected to be correlated.

8Strictly speaking, given the prior fpbh ≥ 0, defining the
68% confidence interval is a bit more subtle; given the large
uncertainties of the calculation, we shall not delve into such
technical details here.

YACINE ALI-HAÏMOUD and MARC KAMIONKOWSKI PHYSICAL REVIEW D 95, 043534 (2017)
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Another new constraint?

• All the constraints need 
assumptions. 

• complex accretion systems 

• complex IGM heating,,, 

• Constraints from X-ray 
observations 
(Carr 1979; Barrow & Silk 1979; Gaggero 
et al. 2017; Inoue & Kusenko 2017)

prior on the optical depth to reionization τreio ¼ τ0 " στ ≡
0.0596" 0.0089 as obtained by the latest Planck data
analysis [48]. This prior on τreio accounts approximately
for the large-scale temperature and polarization data (see
Refs. [49,50] for an analysis similar in spirit). Given the
relatively large effect of accreting PBHs on low-l polariza-
tion (see Fig. 13), a full data analysis might change the
constraints by order-unity factors; however this is below our
theoretical uncertainty. For a given set of cosmological
parameters ~θ ¼ ðH0;Ωbh2;Ωch2; As; ns; τreio; fpbhÞ, the χ2
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l ð~θÞ are the theoretical power spectra obtainedwith our
modified HYREC and CLASS. Taylor-expanding about the
best-fit standard cosmological parameters ~θ0 given in
Ref. [48] (with fpbh;0 ¼ 0), we rewrite this as
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is the Fisher information or curvature matrix [51], for which
we have neglected the smaller term linear in ðCX

l ð~θ0Þ − ĈX
l Þ.

Maximizing this quadratic approximation of the χ2 allows us

to find the best-fit cosmological parameters ~̂θ, with their
covariance given by ðF−1Þij. We have checked that without
PBHs this simple analysis recovers very accurately the best-
fit standard six cosmological parameters obtained in
Ref. [47], with biases of at most 0.17σ. The variances we
derive match those of Ref. [24] for H0;Ωbh2;Ωch2 and ns
and those of Ref. [48] for As and τreio, as expected since we
are using the same high-l covariance as in the former
reference, and the prior on τreio (strongly degenerate with
As) from the latter.
We apply this analysis to derive the best-fit and 1 − σ

error on fpbh, as a function of Mpbh. We explicitly checked
that for the limits we obtain, the change in the anisotropy
power spectra is indeed linear in fpbh (ROM find an effect

that goes as f1=2pbh because they obtain a much larger effect
on the freeze-out free-electron abundance than we do).

Though we consider a limit on the normalization of a
Dirac-function mass distribution, this analysis can be gen-
eralized to any extended mass function [52], by replacing
fpbhLðMÞ=M →

R
dM dfpbh

dM LðMÞ=M, where dfpbh=dM is
the differential DM-PBH fraction.
For all PBH masses we consider, M ≤ 104 M⊙ (as the

steady-state approximation breaks down beyond that
mass), the best-fit f̂pbh is always less than a fraction of
standard deviation7 σfpbh . We show σfpbh in Fig. 14, as a
simple proxy for the upper limit on this parameter8 We see
that in the collisional ionization limit, CMB anisotropy
measurements by Planck exclude PBHs with masses
M ≳ 102 M⊙ as the dominant component of the dark

FIG. 14. Approximate CMB-anisotropy constraints on the
fraction of dark matter made of PBHs derived in this work (thick
black curves). The “collisional ionization” case assumes that the
radiation from the PBH does not ionize the local gas, which
eventually gets collisionally ionized. The “photoionization” case
assumes that the local gas is ionized due to the PBH radiation, up
to a radius larger than the collisional ionization region, yet
smaller than the Bondi radius. The former case is the most
conservative, as collisional ionization leads to a smaller temper-
ature near the black hole horizon, hence a smaller luminosity, and
weaker bounds. The correct result lies somewhere between these
two limiting cases. For comparison, we also show the CMB
bound previously derived by ROM (thin dashed curve), as well as
various dynamical constraints: microlensing constraints from the
EROS [15] (purple curve) and MACHO [14] (blue curve)
collaborations (but see Ref. [53] for caveats), limits from Galactic
wide binaries [17], and ultrafaint dwarf galaxies [54] (in all cases
we show the most conservative limits provided in the referenced
papers).

7The astute reader may wonder why even given several probed
PBH masses, some best-fit f̂pbh do not deviate by more than one
standard deviation from 0; the reason is that the effect of PBHs of
different masses on the CMB is very similar; hence, the best-fit
values are expected to be correlated.

8Strictly speaking, given the prior fpbh ≥ 0, defining the
68% confidence interval is a bit more subtle; given the large
uncertainties of the calculation, we shall not delve into such
technical details here.
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Bondi-Hoyle-Lyttleton Accretion

• If a black hole freely floats, it may interact with interstellar 
medium (ISM) gas via Bondi-Hoyle-Lyttleton accretion  
(e.g., Ipser & Price 1977; Fujita et al. 1998; Agol & Kamionkowski 2002; Mii & 
Totani 2005; Ioka et al. 2017; Matsumoto et al. 2017) 

• Accretion rates scale with n & v-3 :

No. 6, 2008 BONDI–HOYLE ACCRETION IN STAR CLUSTERS 2383

Figure 1. Cartoon of Bondi–Hoyle accretion. The star is moving relative to the ISM gas. Material is focused toward the star. Most material accretes behind the star,
where opposing streamlines meet and cancel their velocities. Accretion is onto a large, temporary accretion disk of size ∼0.2 RB, which deposits material onto the
star’s circumstellar disk of size !0.1 RB.

times higher than the accretion flow density. Infalling material
will be rapidly intercepted and absorbed by the disk. Only in
the relatively unlikely circumstance that the star moves through
the medium with its disk aligned precisely edge-on, or with no
disk at all, can accretion directly onto the star be significant.

In some ways the accretion flow onto the disk can be
compared to the proto-Jovian nebula “starved disk” model of
Canup & Ward (2002), where gas accretes from the solar nebula
disk onto the circum-Jovian disk orbiting within it. The two
disks are co-planar and move at constant velocity to each other,
making mass transfer between them a smooth, linear process.
The molecular cloud case is much more complex, because the
orientation and velocity of the disk relative to the interstellar
medium (ISM) is constantly changing. The accretion flow will
almost always have a different angular momentum vector than
the star’s disk. In the short term, accretion onto the disk will
always result in mass gain. However, if the incoming angular
momentum is opposite that of the disk, one can imagine that
orbital decay and mass loss onto the star will soon follow as the
disk is perturbed. There are thus two distinct accretion rates: one
from the ISM onto the disk, and one from the disk onto the star.
The two are related, but the disk acts as a buffer between them, on
the viscous timescale of 105–107 yr. Our current understanding
of the interaction between the accretion flow and the disk is very
limited; we discuss the relationship between the two accretion
rates further in Section 5.1.

The numerical simulations presented here include large-
scale density gradients in the background gas field, but do
not include gas turbulence. Work by Krumholz et al. (2006)
generalized BHA to a supersonically turbulent medium. At
high turbulence, the accretion rate is limited by large-scale
vorticity, which can suppress accretion. In general, they found
vorticity to be important in the cases RB/l ! 1, where l
is the largest size scale of the turbulence, comparable to the
distance between protostellar cores. In the core of our densest
simulations, n∗ = 106 pc−3, so RB/l ≈ 1/4. This can cause a
moderate reduction in accretion; however, such dense regions
occur only in our largest simulation, only at its core, and only
at the beginning. In the vast majority of our parameter space,
RB/l ≪ 1, and the BH equations remain valid. Krumholz et al.
(2006) argued for some inhibited accretion in molecular clouds,
but they assumed far larger RB than used here (20,000 AU versus
500 AU), due to their initial conditions of colder gas and lower
stellar velocities.

3. NUMERICAL SIMULATIONS

We use N -body simulations of three model clusters to
trace the dynamical and environmental histories of individual
stars. Each cluster contains a background distribution of gas
from which these stars can accrete. The code NBODY6, a
sophisticated Hermite method integrator designed for accuracy
in handling of close approaches between stars, is used to
simulate the evolution of each star cluster (Aarseth 1999).
NBODY6 is fast and proven with a long heritage. It allows
for flexible control over initial input conditions, and enables
the inclusion of a background molecular cloud whose gravity
may dominate the motion of stars. The cloud is modeled as
a gravitational Plummer potential of a given width and mass,
which decays smoothly after an initial delay. NBODY6 treats
the gravitational effect of the gas on the stars, but the stars have
no direct feedback on the gas: the cloud shape, density structure,
and evolution are directly controlled only by input parameters.

Our calculations are performed in two discrete steps. First,
N -body simulations of a cluster generate the positions and
velocities of each star, outputting at fixed intervals. Second,
these quantities are used to calculate ṀB at each step for
each star, using Equations (1)–(7). The output timestep used
is 2 × 104 yr, which is sufficient for convergence.

Several simplifying assumptions have been made. First, the
simulations are not entirely self-consistent in that mass accreted
onto stars is removed only as a general global process, and not
locally in response to accretion. However, mass lost to accretion
by the end of the simulations is less than 1% of the original
cloud mass, so ignoring this has only a minor effect on stellar
motion. Ruffert (1996) shows that the drag on an accreting
body is approximately Ṁv, so the stars’ velocity change is also
insignificantly small. Because the sound speed is comparable
to the stellar velocities, any “tunnels” created in the cloud by
BH accretion will be rapidly filled, making a local treatment
unnecessary. Second, the increase in mass of individual stars
due to BH accretion is ignored during the N -body simulations;
it is only calculated afterward. The increase in stellar mass
is usually <1%, making only small changes to a star’s motion.
This assumption may underestimate growth for some high-mass
stars, by allowing them to retain their full velocity even as their
mass increases. However, our emphasis is on the consequences
of BHA for solar-mass stars, and ignoring this small effect sets
a conservative lower bound.
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2 Accretion onto Floating PBHs57

The accretion rate onto a floating PBH from the ISM is given by the Bondi-Hoyle-Lyttleton58
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∼ 10 km s−1 in approximate pressure balance with each other. The mass accretion processes65

on to floating BHs is extensively investigated by [44]. We basically follow their arguments66

hereafter.67

The luminosity of a floating PBH interacting with ISM gas is estimated as68
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where ϵ is the disk radiative efficiency. In the radiatively-inefficient accretion flow (RIAF)69

regime L ! 0.01LEdd, the luminosity is known to scale with L ∝ Ṁ2 rather than L ∝ Ṁ as in70

the standard accretion disk regime [56]. Therefore, we set the radiative efficiency as ϵ(Ṁ) =71

ϵ0/[1.0 + (Ṁ/0.01ṀEdd)−1], where ṀEdd ≡ LEdd/ϵ0c2 is the Eddington mass accretion rate72

at the efficiency of ϵ0 = 0.1. We note that ϵ0 can be from 0.057 for a Schwarzschild BH to73

0.42 for an extreme Kerr BH [e.g. 56].74

Does gas form an accretion disk? Small perturbations in the density or velocity of the75

accreting gas lead to an angular momentum large enough to form a disk [57]. The accreted76

angular momentum is l = (1/4)(∆ρ/ρ)ṽrB, where ∆ρ is the difference in density between the77
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Accretion Disk Formation

• Perturbations in the ISM gas density/velocity will form a disk (Shapiro & 
Lightman 1976; Fujita et al. 1998; Agol & Kamionkowski 2002) 

• Density fluctuation in ISM gas (Armstrong et al. 1995): 
  

• Accretion disk size:  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10 km s−1

)−10/3

, (2.6)

– 2 –

2 Accretion onto Floating PBHs57

The accretion rate onto a floating PBH from the ISM is given by the Bondi-Hoyle-Lyttleton58

rate [53–55]:59
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Figure 1. Cartoon of Bondi–Hoyle accretion. The star is moving relative to the ISM gas. Material is focused toward the star. Most material accretes behind the star,
where opposing streamlines meet and cancel their velocities. Accretion is onto a large, temporary accretion disk of size ∼0.2 RB, which deposits material onto the
star’s circumstellar disk of size !0.1 RB.

times higher than the accretion flow density. Infalling material
will be rapidly intercepted and absorbed by the disk. Only in
the relatively unlikely circumstance that the star moves through
the medium with its disk aligned precisely edge-on, or with no
disk at all, can accretion directly onto the star be significant.

In some ways the accretion flow onto the disk can be
compared to the proto-Jovian nebula “starved disk” model of
Canup & Ward (2002), where gas accretes from the solar nebula
disk onto the circum-Jovian disk orbiting within it. The two
disks are co-planar and move at constant velocity to each other,
making mass transfer between them a smooth, linear process.
The molecular cloud case is much more complex, because the
orientation and velocity of the disk relative to the interstellar
medium (ISM) is constantly changing. The accretion flow will
almost always have a different angular momentum vector than
the star’s disk. In the short term, accretion onto the disk will
always result in mass gain. However, if the incoming angular
momentum is opposite that of the disk, one can imagine that
orbital decay and mass loss onto the star will soon follow as the
disk is perturbed. There are thus two distinct accretion rates: one
from the ISM onto the disk, and one from the disk onto the star.
The two are related, but the disk acts as a buffer between them, on
the viscous timescale of 105–107 yr. Our current understanding
of the interaction between the accretion flow and the disk is very
limited; we discuss the relationship between the two accretion
rates further in Section 5.1.

The numerical simulations presented here include large-
scale density gradients in the background gas field, but do
not include gas turbulence. Work by Krumholz et al. (2006)
generalized BHA to a supersonically turbulent medium. At
high turbulence, the accretion rate is limited by large-scale
vorticity, which can suppress accretion. In general, they found
vorticity to be important in the cases RB/l ! 1, where l
is the largest size scale of the turbulence, comparable to the
distance between protostellar cores. In the core of our densest
simulations, n∗ = 106 pc−3, so RB/l ≈ 1/4. This can cause a
moderate reduction in accretion; however, such dense regions
occur only in our largest simulation, only at its core, and only
at the beginning. In the vast majority of our parameter space,
RB/l ≪ 1, and the BH equations remain valid. Krumholz et al.
(2006) argued for some inhibited accretion in molecular clouds,
but they assumed far larger RB than used here (20,000 AU versus
500 AU), due to their initial conditions of colder gas and lower
stellar velocities.

3. NUMERICAL SIMULATIONS

We use N -body simulations of three model clusters to
trace the dynamical and environmental histories of individual
stars. Each cluster contains a background distribution of gas
from which these stars can accrete. The code NBODY6, a
sophisticated Hermite method integrator designed for accuracy
in handling of close approaches between stars, is used to
simulate the evolution of each star cluster (Aarseth 1999).
NBODY6 is fast and proven with a long heritage. It allows
for flexible control over initial input conditions, and enables
the inclusion of a background molecular cloud whose gravity
may dominate the motion of stars. The cloud is modeled as
a gravitational Plummer potential of a given width and mass,
which decays smoothly after an initial delay. NBODY6 treats
the gravitational effect of the gas on the stars, but the stars have
no direct feedback on the gas: the cloud shape, density structure,
and evolution are directly controlled only by input parameters.

Our calculations are performed in two discrete steps. First,
N -body simulations of a cluster generate the positions and
velocities of each star, outputting at fixed intervals. Second,
these quantities are used to calculate ṀB at each step for
each star, using Equations (1)–(7). The output timestep used
is 2 × 104 yr, which is sufficient for convergence.

Several simplifying assumptions have been made. First, the
simulations are not entirely self-consistent in that mass accreted
onto stars is removed only as a general global process, and not
locally in response to accretion. However, mass lost to accretion
by the end of the simulations is less than 1% of the original
cloud mass, so ignoring this has only a minor effect on stellar
motion. Ruffert (1996) shows that the drag on an accreting
body is approximately Ṁv, so the stars’ velocity change is also
insignificantly small. Because the sound speed is comparable
to the stellar velocities, any “tunnels” created in the cloud by
BH accretion will be rapidly filled, making a local treatment
unnecessary. Second, the increase in mass of individual stars
due to BH accretion is ignored during the N -body simulations;
it is only calculated afterward. The increase in stellar mass
is usually <1%, making only small changes to a star’s motion.
This assumption may underestimate growth for some high-mass
stars, by allowing them to retain their full velocity even as their
mass increases. However, our emphasis is on the consequences
of BHA for solar-mass stars, and ignoring this small effect sets
a conservative lower bound.

Throop & Bally 2008



Emission from X-ray Binary Accretion Disks

• X-ray binary (XRB): 

• mass accretion from a companion star 
to a BH 

• significant emission in X-ray

Accretion flows in XRB 19

Fig. 9 The left hand panel shows a selection of states taken from the 2005 outburst
of GRO J1655–40. The right hand panel shows the proposed accretion flow changes
to explain these different spectra, with differing contributions from the disc, hot
inner flow and its associated jet, active regions above the disc and a wind.

the hard state is seen at lower luminosities. Comprehensive reviews of the
observational properties of these spectral states are given by e.g. Tanaka &
Lewin (1995) and Remillard & McClintock (2006).

Thus while we have two theoretical stable accretion flow models, a disc
and an optically thin, hot (messy) flow, there are (at least) three different
types of spectra to explain. As outlined in Section 3.4, the hot flows plus
a truncated disc can generically match the hard state properties (see also
Section 4.1), while the spectra seen at high L/LEdd show clear signs of be-
ing dominated by the disc. At these high luminosities the disc is likely to
extend down to the last stable orbit (see Section 5), but even the soft-state
spectra are always accompanied by a high-energy tail. This shows that there
must be some sort of optically thin dissipation which can co-exist with the
majority of the accretion flow being in the form of a disc. This could be due
to some small fraction of the flow in a state analogous to the hot, optically
thin (messy) flow seen in the hard state, but with properties modified by the
strong Compton cooling (Esin 1997; Janiuk, Życki & Czerny 2000) and ther-
mal conduction (Różańska & Czerny 2000; Liu, Meyer & Meyer-Hofmeister
2005). There are also alternatives to these smooth flows in models where the
energy dissipation is instead inherently very inhomogeneous, perhaps due to
magnetic reconnection of flux tubes rising to the surface of the disc, as was
first suggested by Galeev, Rosner & Vaiana (1979), and finds some support
in the inherently variable (in both space and time) dissipation produced by
the MRI (e.g. Hawley & Balbus 2002).

One way to put all these mechanisms together into a plausible model for
all the spectral states is sketched in Fig. 9b, similar to that first proposed
by Esin et al. (1997). In the sections below we will outline how this model
works to explain the observed spectra of each state. We discuss alternatives
to the truncated disc in Section 4.2.

Done, Gierlinski & Kubota 2008 
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Number density of X-ray emitting PBHs

• To compare X-ray binary number density with X-ray emitting 
PBHs,  

• we need mass accretion rate (or luminosity) function. 

• NPBH: Number of PBHs in a galactic disk 

• dfn/dn : ISM gas distribution 

• dfv/dv : PBH velocity distribution

where rs is the Schwarzschild radius 2GMBH/c2. Thus, an accretion disk can be formed83

around a PBH by the Bondi-Hoyle-Lyttleton accretion.84

We estimate the accretion timescale as tacc ≈ LMC/v ∼ 2.4×106(n/100 cm−3)(v/10 km s−1)−1 yr85

which is longer than the observation periods of various X-ray sources since the dawn of X-ray86

astronomy. LMC ∼ 24.7(n/100 cm−3)−0.9 pc is the size of a typical molecular cloud [59].87

The number of PBHs interacting with the ISM gas can be expressed in terms of the88

luminosity function:89

dN

dLX
=

dN

dṀ

dṀ

dLX
, (2.7)

where dN/Ṁ is the number of PBHs accreting at Ṁ . Function dṀ/dLX can be derived from90

Eq.(2.3), and dN/Ṁ is given by [44, 45]91

dN

dṀ
= NPBH,disk

∫ nmax

nmin

dn

∫ ∞

0
dv

dfn
dn

dfv
dv

δ[Ṁ(n, v)− Ṁ ]

= NPBH,disk

∫ nmax

nmin

dn
dfn
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dfv
dv

(v0)
ṽ2v=v0

3v0Ṁ
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where the number of PBHs passing through the Galactic disk region is given by NPBH,disk92

and v20 = (4πG2M2nµmp/Ṁ)2/3 − c2s. dfn/dn and dfv/dv is the probability distribution of93

the number density of the ISM gas and the velocity distribution of PBHs, respectively. We94

can not take all values of n between nmin and nmax since v20 > 0 and n must be greater than95

c3s/(4πG
2M2µmp/Ṁ).96

Using the Navarro-Frenk-White (NFW) profile [60] with parameters given in [61] for the97

Milky way, the DM mass included within 15 kpc radius is about ∼7% of Mhalo = 1012M⊙.98

NPBH,disk can be estimated as 0.07(πr22Hg)/(4πr3/3)NBH,tot ∼ 0.11Hg/(15 kpc)NBH,tot,99

where NPBH,tot is the total number of PBHs in our galaxy (ΩPBH/ΩM )(Mhalo/MBH). Hg is100

the disk scale height of the ISM gas. Recently, star formation activity in the extreme outer101

Galaxy at 22 kpc away from the Galactic center has been reported [62]. Since the radial102

distribution of such clouds is not well understood yet, we do not take into account such103

distant clouds. If we extrapolate the ISM gas distribution out to 22 kpc, we would expect a104

10 % increase in the X-ray emitting PBH number density.105

The probability distribution of the number density of the ISM gas is defined as [44, 45]106

dfn
dn

= f0(n/nmin)
−β , (nmin ≤ n ≤ nmax). (2.9)

The normalization factor is defined as f0 ≡ (β − 2)⟨Σ⟩/2µmpn2
minHg, where ⟨Σ⟩ is the mean107

surface mass density of the ISM gas in the Galactic disk, which is averaged for PBHs passing108

through the disk by ⟨Σ⟩ =
∫
2πrΣ(r)ρDM(r)dr/

∫
2πrρDM(r)dr, where r is the Galactocentric109

radius and ρDM(r) is the dark halo density given by the NFW profile.110

For the ISM gas, we consider three gas phases, galactic disk molecular clouds, cold HI111

clouds, and the central molecular zone (CMZ). We do not take into account warm or hot112

ISM gas, which would host only low luminosity objects below X-ray detection thresholds. We113

take Σ(r) of [63] and [64], for the molecular clouds and the HI clouds, respectively. We find114

⟨Σ⟩ = 27M⊙ pc−2 for the molecular clouds and 2.8M⊙ pc−2 for the cold HI clouds. The mass115

of CMZ is ∼ 3× 107M⊙ and its radius is ∼ 150 pc with a scale height of Hg = 30 pc [see 65,116

and references therein]. In this paper, we assume a constant radial distribution of the surface117

mass density leading ⟨Σ⟩ = 420M⊙ pc−2 for the CMZ region. Although the mass function118
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PBH Density and Velocity Distribution

• Navarro-Frenk-White (NFW) profile 

• Assume Maxwellian distribution  
for velocity 

• w/ velocity dispersion of 150 km/s (Ling et al. 2010a) 

• Galaxy mergers may form a “dark matter” disk (Read et al. 2008, 
2009) 

• density of dark disk: 0.25-1.5 of the non-rotating DM density 

• with low velocity dispersion 50 km/s (Read et al. 2008, 2009; Bruch 
et al. 2009; Ling 2010b)

J. Phys. G: Nucl. Part. Phys. 41 (2014) 063101 Topical Review
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(a) Halo shape change (b) Dark disc formation
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Figure 4. Including baryons in the cosmological simulations alters the predictions for
ρdm. (a) Adding dissipative baryonic matter causes the dark matter halo become oblate
and aligned with the disc (red horizontal line; Read et al 2009). (b) The presence of a
massive disc at high redshift biases the accretion of satellites causing their tidal debris—
both stars and dark matter—to settle into a rotating disc. This plot shows the distribution
function of rotational velocity in the disc plane vφ for the LPM simulation (Table 1; Read
et al 2009). Without baryons (DMO; dotted), the dark matter distribution is well-fit by a
single Gaussian. Including baryons (DM; black), it is skewed towards the rotating stellar
disc (red); it is well-fit by a double Gaussian. This is a particularly extreme example
since the LPM simulation had a massive near-planar merger at redshift z ∼ 1.

high velocity tail end of the distribution. This is boosted in the simulations with respect to
a pure Maxwellian profile, where the highest velocity particles come from recently accreted
structure that is not fully phase-mixed (so-called ‘debris flows’ Kuhlen et al 2012a, Lisanti and
Spergel 2012). These structures are a super-position of many tidal streams that intersect the
Solar neighbourhood volume; they are particularly important for direct detection experiments
that are sensitive to light or inelastic dark matter, or those with directional sensitivity (Kuhlen
et al 2012a). Even more pronounced effects occur if an undisrupted but significant stream
penetrates the Sun position (Stiff et al 2001). This is statistically unlikely, but—at least for the
more massive streams—can be observationally tested by hunting for the visible stream-stars
that would accompany such a ‘dark stream’ (Freese et al 2005). Lower mass satellite streams
are potentially more problematic. These could also alter the local velocity PDF while being
completely devoid of stars and essentially undetectable. I discuss these in section 2.2.2, below.

An example velocity PDF averaged over 2 kpc boxes at 7–9 kpc from the halo centre of
the Aq-A-1 Aquarius simulation is shown in figure 3(d). Notice that, while the distribution is
reasonably Maxwellian, there are prominent bumps and wiggles of larger magnitude than the
box-to-box scatter. These depend on the particular formation history of a given dark matter
halo (see figure 4 from Vogelsberger et al 2009a). As pointed out by those authors, if we enter
an era where dark matter particles are routinely detected, then we could actually measure such
bumps and wiggles for our own Galaxy. Since these encode information about our Galactic
accretion history, we could conceive of unravelling our past via detailed modelling of the
dark matter velocity PDF. I caution, however, that such bumps and wiggles may be at least
partially erased by baryonic processes during Galaxy formation (section 2.3); this remains to
be explored.

2.2.2. Extrapolating from ρdm to ∼ρdm. Even with over a billion super-particles, the spatial
resolution of the Aquarius Aq-A-1 DMO simulation is ∼20 pc (Springel et al 2008). While
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ISM Gas Distribution

• We need the volume of the Galaxy filled by gas 

• We consider molecular gas, HI gas, central molecular zone (CMZ) 

• We assume power-law distribution (e.g., Berkhuijsen 1999)
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Expected Luminosity Function

• We assume radiative efficiency scales with accretion rate as 

• Broken power-law shape is expected due to radiative efficiencies and ISM 
distributions. 

• However, PBH X-ray luminosity function should not overproduce observed XRBs.
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Distribution of X-ray Binaries

• XRB luminosity function is known to be correlated with star 
formation rate (e.g., Mineo et al. 2012) 

• A simple power-law (γ~1.6) + cutoff (1040 erg/s) 
(e.g. Grimm et al. 2003; Swartz et al. 2011; Walton et al. 2011; Mineo et al. 2012).

HMXBs in star-forming galaxies 2103

Figure 3. The SFR–M⋆ plane. Different types of galaxies are plotted with
different symbols. The dashed lines correspond to constant stellar-mass-to-
SFR ratio.

values for individual galaxies are difficult to determine and there-
fore average values are usually used. We use the results of Hirashita
et al. (2003):

η ≈
{

0.4 for normal disk galaxies,
0 for starbursts.

(12)

To be consistent with Hirashita et al. (2003), we use the atlas of
Kinney et al. (1993) to classify the objects of our sample as starbursts
or normal star-forming galaxies and use the appropriate value of η

in computing the SFR. This definition is similar, but not identical
to that used by Bell (2003) (η ∼ 0.32 for galaxies having LIR >

1011 L⊙ and η ∼ 0.09 for galaxies having LIR ≤ 1011 L⊙).
For each of the three galaxies with no UV data available (see

Section 5.3), we determined the average value of the LNUV,obs/LIR

ratio for galaxies of similar Hubble type and inclination. We ob-
tained values in the range 0.08–0.4. This ratio was used to estimate
LNUV,obs from LIR and then equation (9) was applied.

The SFRs for CDF-N galaxies were computed based on their
1.4-GHz luminosities and the calibration of Bell (2003):

SFR(M⊙ yr−1) = 5.55 × 10−29L1.4 GHz(erg s−1). (13)

In Fig. 3 we present two samples of star-forming galaxies in the
SFR–M⋆ plane.

7 TH E L U M I N O S I T Y F U N C T I O N O F H M X B S

Fig. 4 shows cumulative luminosity distributions for all galaxies
from the primary sample, normalized to their respective SFRs. It
is apparent that although the shapes of the distributions are simi-
lar, there is a considerable dispersion in their normalization. Their
amplitude and significance will be discussed later in this section.

7.1 Average XLF of HMXBs

We construct the average luminosity function combining the data
for all resolved galaxies. It includes over 700 compact sources. An
intuitive and straightforward method would be to bin the sources

Figure 4. Cumulative X-ray luminosity functions of galaxies from the pri-
mary sample, normalized by their respective SFRs. The solid line is the
cumulative XLF per unit SFR, given by integration of equation (18).

into e.g. logarithmically spaced bins and normalize the result by the
sum of the SFR of all galaxies contributing to the given luminosity
bins. The latter step is required to account for the fact that different
galaxies have different point-source detection sensitivity. However,
because of the considerable dispersion in the normalization (Fig. 4),
the luminosity function thus computed may have a number of ar-
tificial steps and features at the luminosities corresponding to the
luminosity limits of particular galaxies. In order to deal with this
problem, we used the following method.

Considering that there is much larger dispersion in normalization
than in the shape of the XLF in individual galaxies, we write for the
luminosity distribution in the kth galaxy
(

dN

dL

)

k

= ξk SFRk f (L), (14)

where SFRk is the star-formation rate in the kth galaxy, ξ k the XLF
normalization and the function f (L) describes the XLF shape, as-
sumed to be same in all galaxies, which we would like to determine.
The number of sources in the jth luminosity bin, $N(Lj), is

$N (Lj ) =
∑

k

$Nk(Lj ) = f (Lj ) $Lj

∑

k

SFRkξk, (15)

where $Nk(Lj) is the CXB-subtracted number of compact sources in
the kth galaxy in the jth luminosity bin and summation is performed
over all galaxies of the sample. The f (L) can be determined as

f (Lj ) = 1
$Lj

∑
k $Nk∑

k SFRk ξk

. (16)

For a power-law luminosity function f (L) = L−γ , the ξ k are
calculated as

ξk = 1 − γ

SFRk

Nk(> Lth,k) − NCXB(> Fth,k)

(L−γ+1
th,k − L

−γ+1
cut )

, (17)

where Lth,k is the sensitivity limit for the kth galaxy, Nk( > Lth,k) is
the number of sources detected above this sensitivity limit, NCXB(
> Fth,k) is the predicted number of resolved CXB sources above the
corresponding flux limit Fth,k = Lth,k/4πD2

k and Lcut is the high-
luminosity cut-off of the XLF. As is obvious from equations (16)
and (17), the f (L) computed is independent of SFRk.

C⃝ 2011 The Authors, MNRAS 419, 2095–2115
Monthly Notices of the Royal Astronomical Society C⃝ 2011 RAS

 at Uchu Kagaku Kenkyujo on M
arch 2, 2016

http://m
nras.oxfordjournals.org/

Downloaded from
 

2104 S. Mineo, M. Gilfanov and R. Sunyaev

Figure 5. The luminosity functions obtained by combining data of all galaxies of the primary sample, normalized by SFR. Left: the top histogram with error
bars (open circles, red in the electronic version of the paper) shows the luminosity distribution of all compact sources. The two histograms peaked near log (LX)
∼ 37 are predicted contributions of resolved CXB (blue in the electronic version of the paper) and LMXB (magenta in the electronic version of the paper,
dashed) sources. The latter was computed using the average scaling relations for nearby early-type galaxies from Gilfanov (2004), irrespective of their age.
Apparently it grossly overestimates the LMXB numbers, therefore no attempt to subtract their contribution was made. The histogram marked with solid circles
(black) shows the luminosity distribution of compact sources with the CXB contribution subtracted. It is our best approximation to the average HMXB XLF
in nearby galaxies. The histogram marked ‘SFR’ (green in the electronic version of the paper) shows the total SFR (in units of 100 M⊙ yr−1) of all galaxies
contributing to a given luminosity bin in the XLF. Right: the CXB subtracted luminosity distribution from the left panel. The shaded area indicates the range of
uncertainties corresponding to 40 per cent uncertainty in the CXB normalization. The solid line in both panels shows a power law with parameters according
to equation (18).

To compute ξ k we used a two-step iterative procedure. At the first
step we assumed γ = 1.6, Lcut = 2.1 × 1040 erg s−1 (Grimm et al.
2003) and computed the XLF using equations (16) and (17). The
Lth,k was set to 1.5 times the completeness limit for each galaxy.
The obtained luminosity function was fitted with a broken power
law:

dN

dL38
= ξ SFR ×

⎧
⎨

⎩

L
−γ1
38 , L38 < Lb,

L
γ2−γ1
b L

−γ2
38 , Lb ≤ L38 ≤ Lcut,

(18)

where L38 = LX/1038 erg s−1, Lb is the break luminosity, SFR is in
units of M⊙ yr−1 and ξ is the average normalization. The fit was
carried out on unbinned data using the maximum-likelihood (ML)
method and the predicted contribution of resolved CXB sources was
included in the model as described below. Using this model and its
best-fitting parameters, we calculated more accurate values of ξ k

and repeated the procedure. We obtained the following best-fitting
values for the XLF parameters: γ 1 = 1.58 ± 0.02, γ2 = 2.73+1.58

−0.54,
Lb = 110+57

−34, ξ = 1.49 ± 0.07. The value of the high-luminosity cut-
off was fixed at Lcut = 5 × 103, the result being virtually independent
of this choice. The final luminosity distribution is shown in Fig. 5.
The obtained XLF and its parameters are remarkably similar to
the one determined by Grimm et al. (2003). Correspondingly, the
second step of this procedure does not have any noticeable effect.

The statistical uncertainty of the slope γ 1 of the average XLF
quoted above is rather small, thanks to the large number of
sources involved in its determination. The rms of individual slopes
around their average value is much bigger, and is investigated in
Section 7.4.

7.2 High-luminosity break

The best-fitting XLF model has a break at LX ≈ 1.1 × 1040 erg s−1.
To assess its significance, we compare the observed number of
bright sources with the predictions of the single-slope power-law
model. The best-fitting parameters of the latter are γ = 1.60 ±
0.02, ξ = 1.49 ± 0.07. This model predicts ≈21.1 sources above
LX = 1040 erg s−1, whereas we detected 11 sources. The discrepancy
between the data and the model is ≈2.5σ , without taking account of
the arbitrariness in the choice of the threshold luminosity, which is
marginally significant. Interestingly, Swartz et al. (2011), based on
an independent study, found a XLF slope for ultra-luminous X-ray
sources in agreement with our results.

The error contours for the break luminosity and the XLF slope
after the break are shown in Fig. 6, demonstrating that the break
parameters are not very well constrained, which is not surprising
given their low statistical significance.

7.3 Contribution of LMXBs and CXB sources

Expected contributions of resolved CXB and LMXB sources to the
XLF are shown in Fig. 5. They were computed by summing up indi-
vidual predictions for all galaxies contributing sources to the given
luminosity bin and then renormalizing the total in the same way as
the XLF itself. For LMXBs we used the average scaling relation for
nearby early-type galaxies from Gilfanov (2004), whereas for CXB
sources we used the log N–log S determined by Georgakakis et al.
(2008).

Both predictions bear uncertainties that may affect the resulting
HMXB XLF. In the case of the CXB contribution, the uncertainties
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Comparison with XRB Luminosity Function

• Assume the Milky way (SFR = 1 Msun/yr) 

• constraints come from high luminosities 

• radiation feedback (e.g., Fukue & Ioroi 1999) will loosen constraints, but only at ~LEdd
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New Constraint on PBHs from X-ray

• ΩPBH = ΩDM is excluded at stellar and intermediate mass ranges 

• PBHs scenarios for LIGO events are still viable (see e.g., Sasaki et al. 2017) 

• Similar constraints are obtained by independent study by Gaggero 
et al. 2017 
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Contamination of Neutron Stars

• Some XRBs are hosted by neutron stars. 

• 3 ULXs powered by pulsars (Bachetti et al. 2014; 

Israel et al. 2016a,b, Fuerst et al. 2016). 

• need to understand the  “BH” XRB population.

8 J. Casares, P.G. Jonker, and G. Israelian
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Fig. 2 Top: compact remnant masses measured in X-ray binaries. Neutron stars and black holes are
indicated in black and red colours, respectively. 4U 1700-37 is plotted in dotted-style line because
the nature of the compact star is uncertain. The horizontal dotted line divides LXMBs/IMXBs from
HMXBs. Bottom: Observed distribution of neutron stars and black hole masses.

masses in radio pulsars and binary millisecond pulsars as these are covered by Chap.
7.4. The bottom panel displays the number distributions of neutron stars (black)
and black holes (red) masses, excluding upper/lower limits. Three main features
seem to be drawn from the plot, namely (1) neutron star masses tend to be larger
in LMXBs/IMXBs (mass average of 1.54±0.16 M�) than in HMXBs (1.34±0.26
M�), (2) a dearth of remnants or gap appears between ⇠2-5 M�, and (3) the most
massive black holes (⇠15 M�) are found in HMXBs.

Feature (1), although tentative, could be a manifestation of the pulsar recycling
scenario. The difference in neutron star masses, if confirmed, would stem from dif-
ferent binary evolution histories, with neutron stars in LMXBs having experienced
significant accretion over extended periods of time. This interpretation would be
further supported by indications that pulsar mass decreases with spin period [89].
Neutron stars in HMXBs are little modified by accretion and, thus, their masses are
expected to lie closer to their birth values. And indeed, both the mean and dispersion

Casares et al. 2017

d 5 169u409 47.90) to be consistent with the location of M82 X-2 (Fig. 3).
Monitoring by the Swift satellite establishes that the decrease in the
nuclear region flux seen during observation (ObsID) 011 (see Extended
Data Table 1) is due to fading of M82 X-1. The persistence of pulsations
during this time further secures the association of the pulsating source,
NuSTAR J09555116940.8, with M82 X-2. We derive a flux Fx(0.5–
10 keV) 5 4.07 3 10212 erg cm22 s21, and an unabsorbed luminosity
of LX(0.5–10 keV) 5 (6.6 6 0.1) 3 1039 erg s21 for M82 X-2 during the
Chandra observation.

The detection of coherent pulsations, a binary orbit, and spin-up behav-
iour indicative of an accretion torque unambiguously identify NuSTAR
J09555116940.8 as a magnetized neutron star accreting from a stellar
companion. The highly circular orbit suggests the action of strong tidal
torques, which, combined with the high luminosity, point to accretion
via Roche lobe overflow. The orbital parameters give a Newtonian mass
function f 5 2.1M[ (here M[ indicates the solar mass), and the lack of
eclipses and assumption of a Roche-lobe-filling companion constrain the
inclination to be i , 60u. The corresponding minimum companion mass
assuming a 1.4M[ neutron star is Mc . 5.2M[, with radius Rc . 7R[.

It is challenging to explain the high luminosity using standard models
for accreting magnetic neutron stars. Adding the Chandra-measured
E , 10 keV luminosity to the E . 10 keV pulsed flux (NuSTAR cannot
directly spatially resolve the ULX), NuSTAR J09555116940.8 has a lumi-
nosity LX(0.5–30 keV) < 1040 erg s21. Theoretically, the X-ray luminosity
depends strongly on the magnetic field and the geometry of the accre-
tion channel, being largest for a thin, hollow funnel that can result from
the coupling of a disk onto the magnetic field10. A limiting luminosity

LX<
lo

2pdo
LEdd, where lo is the arc length of the funnel, do its thickness,

and LEdd the Eddington luminosity, can be reached if the magnetic field
is high enough (B $ 1013 G) to contain the accreting gas column8. Ratios
of lo/do < 40 are plausible, so that the limiting luminosity can reach
LX < 1039 erg s21, implying mass transfer rates exceeding the Eddington
value by many times. Beyond this, additional factors increasing LX could
result from increased LEdd due to very high (B . 1014 G) fields, which
can reduce the electron scattering opacity17, and/or a heavy neutron star.
Some geometric beaming is also likely to be present.

This scenario is, however, difficult to reconcile with the measured rate
of spin-up. The spin-up results from the torque applied by accreting
material threading onto the magnetic field18,19. NuSTAR J09555116940.8
is likely to be in spin equilibrium, given the short spin-up timescale,
P= _P<300yr. Near equilibrium, the magnetosphere radius, rm, is com-
parable to the co-rotation radius (the radius where a Keplerian orbit
co-rotates with the neutron star):

rco~
GMNSP2

4p2

! "1=3

~2:1|108 MNS

1:4M8

! "

Here G is the gravitational constant, MNS is the neutron star mass, and
rco is in cm. With this assumption we can convert the measured torque,
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Figure 1 | The X-ray light curve and pulsations from the region containing
NuSTAR J09555116940.8. a, The background-subtracted 3–30 keV light
curve extracted from a 700-radius region around the position of NuSTAR
J09555116940.8. Black and red indicate the count rate from each of the two
NuSTAR focal plane modules (FPMA and FPMB; 1s errors). The vertical grey
labels indicate different observations. b, Detection of the pulse period. Data
(black points) are fitted using the best sinusoidal ephemeris (blue dashed line).
The mean period is 1.37252266(12) seconds, with an orbital modulation period
of 2.51784(6) days. The dashed vertical lines through all panels delineate the
contemporaneous Chandra observation. c, Pulsed flux as a fraction of the
emission from the 700 region. Insets, pulse profile at indicated points,
normalized so that s 5 1.
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Figure 2 | The spin-up behaviour of NuSTAR J09555116940.8. a, The
residual period after correcting for the sinusoidal orbital modulation given in
Extended Data Table 2. The period, displayed through the best-fit in Extended
Data Table 3, decreases consistently, but the spin-up rate is changing. b, Time
of arrival (TOA) residuals after removing the best-fit sinusoidal orbital
modulation and a constant period derivative (the parameters are shown in
commonly used units26). PEPOCH, F0 and F1 are the reference time and the
pulse frequency and its derivative, respectively. There is a clear trend
independent of the choice of time binning (30, 40 or 50 ks) that results from the
variable spin-up. c, Residuals after a smooth curve is fitted to the TOA residuals.
Residual noise remains in the TOAs at the 100 ms level (1s uncertainties).
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Summary

• Primordial black holes will shine in X-ray through the 
Bondi-Hoyle-Lyttleton accretion process. 

• X-ray binary observations put tight constraints on the 
PBH abundance. 

• ΩPBH = ΩDM is excluded at stellar and intermediate mass 
ranges. 

• PBH scenarios for LIGO events are still viable.


