
Post-Inflationary Higgs 
Relaxation and Leptogenesis 

Louis Yang 
Kavli IPMU 
PACIFIC 2018 
February 17, 2018 



Outline 

• Motivation: the Higgs potential 
• Quantum fluctuation during inflation 
• Post-inflationary Higgs relaxation 
• Leptogenesis via Higgs field relaxation 
• Cosmic Infrared Background (CIB) excess 
• Isocurvature perturbation 
 
Based on: 
[1]  A. Kusenko, L. Pearce, LY,  Phys. Rev. Lett. 114, 061302 (2015). 
[2]  L. Pearce, LY, A. Kusenko, M. Peloso,  Phys. Rev. D 92, 023509 (2015). 
[3]  LY, L. Pearce, A. Kusenko,  Phys. Rev. D 92, 043506 (2015). 
[4]  H. Gertov, L. Pearce, F. Sannino, LY,  Phys. Rev. D 93, 115042 (2016). 
[5]  A. Kusenko, L. Pearce, LY,  Phys. Rev. D 93, 115005 (2016). 
[6]  M. Kawasaki, A. Kusenko, L. Pearce, LY,  Phys. Rev. D 95, 103006 (2017). 2 



The Higgs Potential 

Motivation 
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The Higgs Boson 

• In 2012, ATLAS and CMS found the 
Higgs boson. 
        𝑽 𝚽 = −𝒎𝟐𝚽+𝚽 + 𝝀 𝚽+𝚽 𝟐, 
where  𝚽 = 𝟏

𝟐
𝟎

 𝒗 + 𝒉 . 

• Higgs boson mass:   
𝑴𝒉 = 𝟏𝟐𝟏.𝟎𝟎 ± 𝟎.𝟐𝟏 ± 𝟎.𝟏𝟏 GeV. 

• A mass smaller than expected! 
• A small quartic coupling 

𝝀 𝝁� = 𝑴𝒕 ≈ 𝑴𝒉
𝟐 𝟐𝒗𝟐⁄ ≈ 𝟎.𝟏𝟐𝟎 

 
 

𝑽(𝝓) 

𝝓 
Electroweak 
Vacuum 

h 

𝑣 

C. Patrignani et al. (Particle Data Group), 
Chin. Phys. C, 40, 100001 (2016). 
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• QFT: Coupling constants 
changes with energy scale 𝝁 

𝜷𝝀 = −
𝟑𝟑
𝟒𝟒 𝟐 𝒚𝒕

𝟒 + ⋯ 

• Due to large top mass 

𝒎𝒕 =
𝟏
𝟐
𝒚𝒕𝒗 

• If no new physics, 𝝀 𝒉  
becomes very small and turns 
negative at  𝝁 ≳ 𝟏𝟎𝟏𝟎 − 𝟏𝟎𝟏𝟐 
GeV. 
 
 

Running of 𝝀  

Figure from D. Buttazzo et al., arXiv:1307.3536 
[hep-ph] 

J. Elias-Miro et al., Phys. Lett. B709, 222 (2012) 
G. Degrassi et al., JHEP 1208, 098 (2012) 
D. Buttazzo et al., arXiv:1307.3536 [hep-ph] 
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The Higgs Effective 
Potential 

• Another minimum in the potential:  Planckain vacuum!! 
 Much lower than the electroweak vacuum. 

• Our universe can tunnel into the Planckain vacuum and end 
in a big crunch! 

 𝐬𝐬𝐬𝐬 𝑽 𝐥𝐥𝐬 𝑽 𝝓  

𝐥𝐥𝐬 𝝓  

Our Electroweak 
Vacuum 

Planckian Vacuum 

~1010 − 1012 GeV 

h 

h 
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Meta-stability of 
our Vacuum 

Our universe seems to be right on the meta-stable region. 

J. Elias-Miro et al., Phys. Lett. B709, 222 (2012) 
G. Degrassi et al., JHEP 1208, 098 (2012) 
D. Buttazzo et al., arXiv:1307.3536 [hep-ph] 
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The Higgs Effective 
Potential 

What does it imply?   
 A shallow  Higgs potential at large scale 
 A large Higgs VEV during inflation 
 
𝐬𝐬𝐬𝐬 𝑽 𝐥𝐥𝐬 𝑽 𝝓  

𝐥𝐥𝐬 𝝓  

Our Electroweak 
Vacuum 

Planckian Vacuum 

~1010 − 1012 GeV 

h 
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Quantum Fluctuation during 
Inflation 

I 
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Quantum Fluctuation 
during Inflation 

• During inflation, quantum fluctuations of scalar field get 
amplified and pulled to over the horizon size. 

• They becomes classical when the wavelength exits the 
horizon. 

• 𝝓(𝒕) jumps randomly like Brownian motion. 

Horizon Horizon 

Inflation 
𝜙(𝑥) 

Becomes classical Quantum fluctuation 

 𝜙0 ≠ 0 
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Quantum Fluctuation 
during Inflation 

• Quantum fluctuation brings 
the field to non-zero value. 

• Classical rolling down follows 
�̈� + 𝟑𝑯𝑰�̇� = −𝑽′ 𝝓 , 

which requires  

𝒕𝐫𝐥𝐫~
𝒅𝟐𝑽 𝝓
𝒅𝝓𝟐

−𝟏 𝟐⁄

=
𝟏
𝒎𝝓

 

• If 𝒎𝝓 ≪ 𝑯𝑰, insufficient time to 
relax (slow-rolling). 

• A non-zero VEV of the scalar 
field is building up. 

V(ϕ) 

ϕ 
ϕmin 

Quantum 
Jump 

Can’t 
Roll Down 
Classically 

Bunch, Davies (1978);  
Linde (1982); 
Hawking, Moss (1982); 
Starobinsky (1982); 
Vilenkin, Ford (1982); 
Starobinsky, Yokoyama (1994). 
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Stochastic Approach 
• Fokker-Planck equation: 

𝝏𝑷𝒄 𝝓,𝒕
𝝏𝒕

= −𝝏𝒋𝒄
𝝏𝝓

    where −𝒋𝒄 = 𝝏
𝝏𝝓

𝑯𝟑𝑷𝒄
𝟖𝟒𝟐

+ 𝑷𝒄
𝑯
𝒅𝑽
𝒅𝝓

 

     𝑃𝒄 𝝓, 𝒕 : probability distribution of 𝝓 
• Massless scalar, the field undergoes random walks 

        𝝓𝟎 ≡ 𝝓𝟐 ≃ 𝑯𝑰
𝟑 𝟐⁄

𝟐𝟒
𝒕 = 𝑯𝑰

𝟐𝟒
𝑵,     𝑵: number of e-folds 

• Massive case 𝑽 𝝓 = 𝟏
𝟐
𝒎𝟐𝝓𝟐: 

𝝓𝟎 ≃
𝟑
𝟖𝟒𝟐

𝑯𝑰
𝟐

𝒎
 

• For 𝑉(𝝓) = 𝝀
𝟒
𝝓𝟒:        𝝓𝟎 ≃ 𝟎.𝟑𝟑𝑯𝑰/𝝀𝟏/𝟒 

• In general,         𝑽 𝝓𝟎  ~ 𝑯𝑰
𝟒 

 

A. A. Starobinsky (1982) 
A. Vilenkin (1982) 
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Large Higgs VEV During 
Inflation 

• Higgs has a shallow potential at large scale (small 𝝀). 
• Large Higgs vacuum expectation value (VEV) during inflation. 

• For inflationary scale 𝚲𝐈 = 𝟏𝟎𝟏𝟑 𝐆𝐆𝐆, the Hubble rate 
𝑯𝑰 = 𝚲𝐈

𝟐

𝟑𝑴𝒑𝒑
~𝟏𝟎𝟏𝟑 𝐆𝐆𝐆, and 𝝀~𝟎.𝟎𝟏, the Higgs VEV after 

inflation is 
𝝓𝟎 ≃ 𝟎.𝟑𝟑𝑯𝑰/𝝀𝟏/𝟒~ 𝟏𝟎𝟏𝟑 𝐆𝐆𝐆. 

• For such a large VEV, the Higgs field can be sensitive to 
higher scale physics. 
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Post-Inflationary  
Higgs Field Relaxation 
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Post-inflationary 
Higgs Relaxation 

• As the inflation end, the 𝑯 drops. 
• When 𝑯 < 𝒎𝝓,𝐆𝐞𝐞, the Higgs field can relax classically  

�̈� 𝒕 + 𝟑𝑯 𝒕 �̇� 𝒕 +
𝝏𝑽eff 𝝓,𝑻 𝒕

𝝏𝝓
= 𝟎 

• 𝑽𝐆𝐞𝐞(𝝓,𝑻) is the finite temperature effective potential. 
• Higgs field oscillates with decreasing amplitude due to the 

Hubble friction 𝟑𝑯�̇� 𝒕 . 
• Relaxation time  (depending on 𝑻𝑹𝑯 and 𝜦𝑰) 

 𝒕𝐫𝐥𝐫 = 𝒕𝑹𝑯
𝟐.𝟏

𝒂𝑻𝑻𝑹𝑯𝒕𝑹𝑯

𝟒/𝟑
 if thermal mass dominates 𝑽 ≈ 𝟏

𝟐
𝜶𝑻𝟐𝑻𝟐𝝓𝟐 

 𝒕𝐫𝐥𝐫 = 𝟑.𝟎/ 𝝀𝝓𝟎       if the zero 𝑻 dominates       𝑽 ≈ 𝝀𝝓𝟒/𝟒 

• Typically during reheating or right after reheating. 
 15

 



Post-inflationary 
Higgs Relaxation 

• If the thermal mass dominates,  

𝑽 𝝓,𝑻 ≈
𝟏
𝟐
𝜶𝑻𝟐𝑻𝟐𝝓𝟐 

where 𝜶𝑻 ≈ 𝝀 + 𝟎
𝟒
𝒈𝟐 + 𝟑

𝟒
𝒈′𝟐 + 𝟑𝒚𝒕𝟐 𝟏𝟐⁄ ≈ 𝟎.𝟑𝟑 at 𝝁 = 𝟏𝟎𝟏𝟑 GeV. 

• The equation of motion is approximately (assuming MD) 

�̈� 𝒕 +
𝟐
𝒕
�̇� 𝒕 + 𝜶𝑻𝟐

𝑻𝑹𝑯𝟐 𝒕𝑹𝑯
𝒕

𝝓 𝒕 = 𝟎 

• A solution: 

𝝓 𝒕 = 𝝓𝟎
𝟑
𝟐

𝟐 𝟑⁄

𝜞
𝟏
𝟑

𝑱𝟐 𝟑⁄
𝟒𝜶𝑻𝜷
𝟑

𝒙𝟑 𝟒⁄ 𝟏
𝜶𝑻𝜷 𝟐 𝟑⁄ 𝒙

 

where 𝜷 = 𝑻𝑹𝑯𝒕𝑹𝑯, 𝒙 = 𝒕/𝒕𝑹𝑯, and 𝑱𝒏(𝒛) is the Bessel function of 
the first kind.  

M. Kawasaki, A. Kusenko, L. Pearce, 
LY,  Phys. Rev. D 95, 103006 (2017). 
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Post-inflationary 
Higgs Relaxation 

 
 

• What can this do for us? 
• Breaks time reversal symmetry,  

and provides the out of thermal equilibrium condition. 
• An important epoch for the matter-antimatter asymmetry! 

 

 

Thermal mass dominated Zero T potential dominated 
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Initial Conditions for the 
Higgs field 

 Initial Condition 1 (IC-1): 
 A metastable Planckian 

vacuum due to higher 
dimensional operators 

𝒪~
𝟏
𝑴𝟐 𝝓

𝟑,
𝟏
𝑴𝟒 𝝓

𝟖,
𝟏
𝑴𝟑 𝝓

𝟏𝟎 

 Higgs field trapped in a 
metastable vacuum during 
inflation 

 Reheating destabilize the 
metastable vacuum via 

𝜹𝑽~𝑻𝟐𝝓𝟐 
and the Higgs VEV relaxes 

18
 

V(ϕ) 

ϕ 

Second Min. 

Trapped 

𝐻4 

V(ϕ) 

ϕ 

Thermal  
correction 

Reheating 



Initial Conditions for the 
Higgs field 

 Initial Condition 2 (IC-2): 
 Inflaton VEV induced mass 

 term to the Higgs via 
𝒪 = 𝑰𝒏𝝓𝒎/𝚲𝐬+𝐦−𝟒 

 Large 𝑰  during early stage  
of inflation 

 Large Higgs mass and  
suppressing quantum  
fluctuation 

 In the last 𝑁𝐥𝐥𝐬𝐥 e-fold of inflation, 𝑰  decreases  
and Higgs becomes massless with  

𝝓𝟎 =
𝑯 𝑵𝐥𝐥𝐬𝐥

𝟐𝟒
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ϕ 

Quantum jumps 

𝜙2 ~0 

Early stage of inflation 

𝐻4 

Rolls down 
classically 

V(ϕ) 

ϕ 

Last N e-folds of inflation V(ϕ) 

𝜙2  starts to grow 

𝐻4 

ϕ 
𝜙2 = 𝐻𝐼2𝑁/4𝜋2 

End of inflation V(ϕ) 



Leptogenesis via the 
Relaxation of the  
Higgs Field 

II 
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Sakharov Conditions 

Successfully Leptogenesis requires: 
1. Deviation from thermal equilibrium 

 Post-inflationary Higgs relaxation 
2.  𝑪 and 𝑪𝑷 violations 

 𝑪𝑷 phase in the quark sector (not enough), 
higher dimensional operator, … 

3. Lepton number violation 
 Right-handed Majorana neutrino, others … 

Andrei D. Sakharov (1967) 
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Effective Operator 
• CP violation: Consider the effective operator: 

𝓞𝟑 = −
𝟏
𝚲𝒏𝟐

𝝓𝟐 𝒈𝟐𝑾𝑾�− 𝒈′𝟐𝑩𝑩� , 
𝑾 and 𝑩: 𝐒𝐒 𝟐 𝑳 and 𝐒 𝟏 𝒀 gauge fields  
    𝑾�: dual tensor of 𝑾 
    𝚲𝒏: energy scale when the operator is relevant 

• In standard model, integrating out a loop with all 6 quarks: 
 
 
 
 

• Also used by baryogenesis 
• But suppressed by small Yukawa and small 𝑪𝑷 phase 

M. E. Shaposhnikov (1987), 
M. E. Shaposhnikov (1988) 
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Effective Operator 

𝓞𝟑 = −
𝟏
𝚲𝒏𝟐

𝝓𝟐 𝒈𝟐𝑾𝑾�−𝒈′𝟐𝑩𝑩�  

• Replace the SM fermions by heavy states that carry 𝐒𝐒 𝟐  
charge. 

• Scale:  𝚲𝒏 = 𝑴𝒏 mass (must not from the SM Higgs) or 
       𝚲𝒏 = 𝑻 temperature 
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Effective Chemical 
Potential 

𝓞𝟑 = −
𝟏
𝚲𝒏𝟐

𝝓𝟐 𝒈𝟐𝑾𝑾�−𝒈′𝟐𝑩𝑩�  

• Using electroweak anomaly equation, we have 
𝓞𝟑 = −

𝟏
𝚲𝒏𝟐

𝝓 𝟐𝝏𝝁𝒋𝑩+𝑳
𝝁 , 

where 𝒋𝑩+𝑳
𝝁  is the 𝑩 + 𝑳 fermion current. 

• Integration by part: 
𝓞𝟑 =

𝟏
𝚲𝒏𝟐

𝝏𝝁 𝝓 𝟐 𝒋𝑩+𝑳
𝝁  

• Similar to the one use by spontaneous baryogenesis. 
• Breaks CPT spontaneously while 𝝓 is changing! 
• Sakharov’s conditions doesn’t have to be satisfied 

explicitly in this form. 

Dine et. al. (1991) 
Cohen, Kaplan, Nelson (1991) 
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Effective Chemical 
Potential 

𝓞𝟑 =
𝟏
𝚲𝒏𝟐

𝝏𝝁 𝝓 𝟐 𝒋𝑩+𝑳
𝝁  

• Effective chemical potential for baryon and lepton number: 

𝝁eff =
𝟏
𝚲𝒏𝟐

𝝏𝒕 𝝓 𝟐 

• Shifts the energy levels between fermions and anti-fermions 
while Higgs is rolling down (�̇� ≠ 𝟎). 
 
 
 
 

• Produce more lepton than antilepton in the present of L 
violating process. 

𝑙 ,̅ 𝑞� 

𝑙, 𝑞 

V(ϕ) 

ϕ 

Scalar VEV 
    Rolls Down 

Reheating 

Leads to 
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Lepton Number Violation 

Last ingredient: 
 Right-handed neutrino 𝑵𝑹 with Majorana mass term 𝑴𝑹. 
The processes for  𝚫𝚫 = 𝟐: 

• 𝝂𝑳𝒉𝟎 ↔ 𝝂𝑳𝒉𝟎 

• 𝝂𝑳𝝂𝑳 ↔ 𝒉𝟎𝒉𝟎 

• 𝝂𝑳𝝂𝑳 ↔ 𝒉𝟎𝒉𝟎 
For 𝒎𝝂~𝟎.𝟏 eV,  

𝝈𝑹~
𝚺𝒊𝒎𝝂,𝒊

𝟐

𝟏𝟑𝟒𝒗𝑬𝑾𝟐
~𝟏𝟎−𝟑𝟏 GeV −𝟐. 

 
 

26
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Evolution of Lepton 
Asymmetry 

𝚲𝐈 = 𝟏.𝟏 × 𝟏𝟎𝟏𝟑 GeV,  

𝚪𝑰 = 𝟏𝟎𝟖 GeV,  

𝑻𝑹𝑯 = 𝟏 × 𝟏𝟎𝟏𝟐 GeV, 

 𝝓𝟎 = 𝟑 × 𝟏𝟎𝟏𝟑 GeV. 

For 𝝁eff  ∝ 𝑴𝒏
−𝟐 case,  

𝑴𝒏 = 𝟏 × 𝟏𝟎𝟏𝟐 GeV. 

Could be one origin of the matter-antimatter asymmetry! 

Boltzman equation:      𝒏�̇� + 𝟑𝑯𝒏𝑳 ≈ − 𝟐
𝟒𝟐
𝑻𝟑𝝈𝑹 𝒏𝑳 −

𝟐
𝟒𝟐
𝝁𝐆𝐞𝐞𝑻𝟐  

Final lepton asymmetry: 𝒀 = 𝒏𝑳
𝒔
≈ 𝟎𝟎𝝈𝑹

𝟒𝟑𝒈∗𝑺

𝝓𝟎
𝚲𝐬

𝟐 𝟑𝒛𝟎𝑻𝑹𝑯
𝟒𝜶𝑻𝒕𝑹𝑯

𝐆𝐫𝐞 − 𝟖+ 𝟏𝟏
𝟒𝟐

𝝈𝑹𝑻𝑹𝑯𝟑 𝒕𝑹𝑯  
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Cosmic Infrared Background 
Radiation Excess 

III 

30
 



Cosmic Infrared Background 
(CIB) Radiation 

• CIB: IR part of extragalactic background light 
• from galaxies at all redshifts 
• Difficult to determine absolute intensity (isotropic flux) due 

to foreground signal, galactic components, and zodiacal light. 
• More focus on the anisotropies (spatial fluctuation) of CIB 

31
 CIB (spatial) fluctuations observed by Spitzer space telescope 



Excess in  
the CIB fluctuations 

• Excess found in near-IR (𝟏 − 𝟏𝟎 𝝁𝒎) at 𝜽 = 𝟑 − 𝟑𝟎 arcmins scale. 

• Not from known galaxy populations at 𝒛 < 𝟑 

• Most possible: First stars (population III stars, metal-free) at 
𝒛 ≳ 𝟏𝟎 in 𝟏𝟎𝟑 𝑴⊙ minihalos 

• But: Needs too large star formation efficiency and/or radiation 
efficiency due to insufficient stars forming at 𝒛 = 𝟏𝟎. 
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Helgason et al.,  
MNRAS 455, 282 (2015) 
Kashlinsky et al. 
ApJ 804, 99 (2015) 

Spitzer 

AKARI 



CIB fluctuation from 
population III stars 
• CIB fluctuation: 𝜹𝑭𝐂𝐈𝐂 ≈ 𝟎.𝟎𝟎 nWm−𝟐sr−𝟏 (𝟐 − 𝟏𝝁m at 5′) 
• Matter density fluctuation at 𝟏 arcmins scale:  Δ𝟏′ ≈ 𝟏𝟎𝟏 

• Inferred isotropic flux: 𝑭𝐂𝐈𝐂 ≈ 𝜹𝑭𝐂𝐈𝐂 Δ𝟏′⁄ = 𝟏 nWm−𝟐sr−𝟏 

• CIB flux from first stars (population III)  
𝑭𝑭𝑺 =

𝒄
𝟒𝟒

 𝝐 𝝆𝑩 𝒄𝟐 𝒇𝐡𝐥𝐥𝐥 𝒇∗ 𝒛𝐆𝐞𝐞−𝟏  
𝒇𝐡𝐥𝐥𝐥: mass fraction of the universe inside collapsed halos 
   𝒇∗ : the star formation efficiency 
     𝝐 : radiation efficiency 

• To explain the CIB fluctuation by first stars forming: 
𝒇𝐡𝐥𝐥𝐥 ≈ 𝟎.𝟏𝟑

𝟎.𝟎𝟎𝟎
𝝐

𝟏𝟎−𝟑

𝒇∗
𝑭𝑭𝑺
𝑭𝑪𝑰𝑩

 

• Difficult to reach with only adiabatic density perturbation from 
usual inflation. 

• Solution: isocurvature perturbation in the small spatial scale 33
 



Large vs Small scale 
density perturbation 

34
 

~106 𝑀⊙ minihalos  
Add isocurvature 
perturbation from 
relaxation leptogenesis 

Large scale fluctuation in CIB due to the 
adiabatic perturbation from inflaton 

𝜃 ~ 5′ 

𝛥5′ ≈ 10𝟏 

• Increasing the 
density contrast 𝜹𝑩 
in small scale 
increase the number 
of collapse halos 
𝒇𝐡𝐥𝐥𝐥 



Isocurvature Perturbation 
from Relaxation 
Leptogenesis 
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Isocurvature 
Perturbation 
 Fluctuation of 𝝓 in each patch 

of the universe during inflation 
 Variation in baryon asymmetry 

𝜹(𝑩 − 𝑩�) through  
leptogenesis (𝒀𝑩 ∝ 𝝓𝟎

𝟐) 
 Spatial fluctuation of baryon 

asymmetry after patches 
reenter 

 Baryon asymmetry 𝜹𝒀𝑩 
→ Baryon density 𝜹𝝆𝑩 

 Produce isocurvature 
perturbation of baryon  

 No contribution to the initial 
curvature perturbation. 
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𝑉(𝜙
) 

𝜙 

𝜙′′ 𝜙 𝜙′ 



Higgs Fluctuation during 
Inflation 

• In IC-2, the Higgs 𝝓 becomes massless in the last 𝑵𝐥𝐥𝐬𝐥 e-fold 
of inflation due to the inflaton couplings. 

• Quantum fluctuation 𝜹𝝓𝒌 ≈
𝑯𝑰
𝟐𝟒

  is produced at the scale 
smaller than the horizon scale 𝒑~𝑯−𝟏 at that time 
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𝒑 = 𝒌/𝒂 

t = 0 
𝑯𝑰 

𝒕 =
𝑵𝐥𝐥𝐬𝐥

𝑯
 

𝑯𝑰 𝑯𝑰𝐆𝐫𝐞 −𝑵𝐥𝐥𝐬𝐥  

Outside  
the horizon 

No difference from 
Minkowski space 

𝜹𝝓𝒌 ≈
𝑯𝑰

𝟐𝟒
 

Inflationary region 

Inside  
the horizon When Higgs 

becomes massless 

Physical 
momentum 

After 𝑵𝐥𝐥𝐬𝐥 e-fold 
of inflation 



Higgs Fluctuation during 
Inflation 

• The horizon at 𝑵𝐥𝐥𝐬𝐥 before the end of inflation has a scale 𝒌𝑺 
at present 

𝒌𝑺 ≃ 𝟐𝟒𝒆−𝑵𝐥𝐥𝐬𝐥𝑯𝑰
𝑻𝑹𝑯
𝚲𝑰

𝟒 𝟑⁄ 𝒈∗𝑺
𝟏 𝟑⁄ 𝑻𝐬𝐥𝐧
𝒈∗𝑺
𝟏 𝟑⁄ 𝑻𝑹𝑯

𝑻𝐬𝐥𝐧
𝑻𝑹𝑯

 

• Power spectrum of 𝝓 

𝓟𝝓 𝒌 ≈ �
𝑯𝑰

𝟐𝟒

𝟐
for 𝒌 ≥ 𝒌𝑺

𝟎 otherwise
 

• Baryonic isocurvature perturbation for 𝒌 > 𝒌𝑺 

𝜹𝑩 𝒌 ≡
𝜹𝝆𝑩
𝝆𝑩

�
𝒌

=
𝜹𝒀𝑩
𝒀𝑩

�
𝒌

=
𝜹 𝝓𝟐

𝒌
𝝓𝟐 ≈ 𝟐

𝐥𝐬𝟏 𝟐⁄ 𝒌 𝒌𝑺⁄
𝑵𝐥𝐥𝐬𝐥

𝜽 𝒌 − 𝒌𝑺  
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Constraints on Isocurvature 
Perturbation 

• CMB: 𝟎.𝟎𝟎𝟐 𝐌𝐞𝐜−𝟏 ≲ 𝒌 ≲ 𝟎.𝟏 𝐌𝐞𝐜−𝟏  (Limited by Silk damping) 

• Lyman-𝜶: 𝟎.𝟏 𝐌𝐞𝐜−𝟏 ≲ 𝒌 ≲ 𝟏𝟎 𝐌𝐞𝐜−𝟏 
• Allowed 𝑁 of e-folds of inflation for the Higgs field: 

𝑵𝐥𝐥𝐬𝐥 < 𝟒𝟖.𝟐 − 𝐥𝐬
𝒌∗

𝟏𝟎 𝐌𝐞𝐜−𝟏 +
𝟐
𝟑 𝐥𝐬

𝚲𝐈 
𝟏𝟎𝟏𝟑 𝐆𝐆𝐆 +

𝟏
𝟑 𝐥𝐬

𝑻𝑹𝑯
𝟏𝟎𝟏𝟐 𝐆𝐆𝐆  
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• Baryon isocurvature 
perturbation only growth after 
decoupling  

• But the induced potential 
allows dark matter to grows 
faster. 

• 𝛿𝑀 becomes nonlinear earlier 
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Growth of  
density  
perturbation 

• 𝛿𝐵,0 = 0.025, 𝑘𝑆 = 65 Mpc−1, 𝑁last = 46.5 

Matter power 
Spectrum 
• Contribution from relaxation 

leptogenesis model only 
appear in the small scale 

• Silk damping does not 
affect baryonic isocurvature 
perturbation. 



 Solid lines: Isocurvature 
perturbations from 𝑘𝑆 =
65 Mpc−1 

 Dashed lines: with only 
adiabatic perturbation 

 Dash-dot line: 𝛿𝑐 = 1.686 

 Halos with 106 𝑀⊙ collapsed 
by 𝑧 = 10. 
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Variance of the  
density contrast 

Mass fraction in  
collapsed halos 
 Solid lines: 106 𝑀⊙ halos 

• Reach 𝑓halo = 0.16 by 
𝑧 = 10 for 𝑘𝑆 = 65 Mpc−1 

 Dashed lines: 108 𝑀⊙ halos 
unchanged 

 Can explain the CIB fluctuation excess! 

108 𝑀⊙ 

106 𝑀⊙ 



Summary 
• Our universe seems to be right at the meta-stable vacuum. 
• A small quartic coupling of the Higgs potential at high 

energy scale gives a shallow potential. 
• Higgs can obtain a large vacuum expectation during inflation. 
• The relaxation of the Higgs VEV happens during reheating. 
• Higgs relaxation provides the out of thermal equilibrium 

condition and breaks T invariant. 
• Leptogenesis via the Higgs relaxation is possible. 
• Isocurvature perturbation generated by the relaxation 

leptogenesis might explain the CIB fluctuation excess. 
• Higgs relaxation is an interesting epoch in the early universe. 

Thanks for your listening! 42
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