Post-Inflationary Higgs Relaxation and Leptogenesis

Louis Yang Kavli IPMU PACIFIC 2018 February 17, 2018

Outline

- Motivation: the Higgs potential
- Quantum fluctuation during inflation
- Post-inflationary Higgs relaxation
- Leptogenesis via Higgs field relaxation
- Cosmic Infrared Background (CIB) excess
- Isocurvature perturbation

Based on:

[1] A. Kusenko, L. Pearce, LY, Phys. Rev. Lett. 114, 061302 (2015).

- [2] L. Pearce, LY, A. Kusenko, M. Peloso, Phys. Rev. D 92, 023509 (2015).
- [3] LY, L. Pearce, A. Kusenko, Phys. Rev. D 92, 043506 (2015).
- [4] H. Gertov, L. Pearce, F. Sannino, LY, Phys. Rev. D 93, 115042 (2016).
- [5] A. Kusenko, L. Pearce, LY, Phys. Rev. D 93, 115005 (2016).
- [6] M. Kawasaki, A. Kusenko, L. Pearce, LY, Phys. Rev. D 95, 103006 (2017).

Motivation

The Higgs Potential

The Higgs Boson

 In 2012, ATLAS and CMS found the Higgs boson.

 $V(\Phi) = -m^2 \Phi^+ \Phi + \lambda (\Phi^+ \Phi)^2,$ where $\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h \end{pmatrix}.$

- Higgs boson mass: $M_h = 125.09 \pm 0.21 \pm 0.11$ GeV.
- A mass smaller than expected!
- A small quartic coupling $\lambda(\overline{\mu} = M_t) \approx M_h^2/2\nu^2 \approx 0.129$

C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016).

Running of λ

• QFT: Coupling constants changes with energy scale μ $\beta_{\lambda} = -\frac{36}{(4\pi)^2}y_t^4 + \cdots$

• Due to large top mass $m_t = \frac{1}{\sqrt{2}} y_t v$

• If no new physics, $\lambda(h)$ becomes very small and turns negative at $\mu \gtrsim 10^{10} - 10^{12}$ GeV. J. Elias-Miro et al., Phys. Lett. B709, 222 (2012)G. Degrassi et al., JHEP 1208, 098 (2012)D. Buttazzo et al., arXiv:1307.3536 [hep-ph]

Figure from D. Buttazzo et al., arXiv:1307.3536 [hep-ph]

The Higgs Effective Potential

- Another minimum in the potential: Planckain vacuum!!
 - Much lower than the electroweak vacuum.
- Our universe can tunnel into the Planckain vacuum and end in a big crunch!

Meta-stability of our Vacuum

J. Elias-Miro et al., Phys. Lett. B709, 222 (2012) G. Degrassi et al., JHEP 1208, 098 (2012) D. Buttazzo et al., arXiv:1307.3536 [hep-ph]

Our universe seems to be right on the meta-stable region.

The Higgs Effective Potential

What does it imply?

- A shallow Higgs potential at large scale
- A large Higgs VEV during inflation

Quantum Fluctuation during Inflation

Quantum Fluctuation during Inflation

- During inflation, quantum fluctuations of scalar field get amplified and pulled to over the horizon size.
- They becomes classical when the wavelength exits the horizon.
- $\phi(t)$ jumps randomly like Brownian motion.

Quantum Fluctuation during Inflation

- Quantum fluctuation brings the field to non-zero value.
- Classical rolling down follows $\ddot{\phi} + 3H_I\dot{\phi} = -V'(\phi)$, which requires

$$t_{
m rlx} \sim \left[\frac{d^2 V(\phi)}{d\phi^2} \right]^{-1/2} = \frac{1}{m_{\phi}}$$

- If $m_{\phi} \ll H_I$, insufficient time to relax (slow-rolling).
- A non-zero VEV of the scalar field is building up.

Bunch, Davies (1978); Linde (1982); Hawking, Moss (1982); Starobinsky (1982); Vilenkin, Ford (1982); Starobinsky, Yokoyama (1994).

Stochastic Approach

A. A. Starobinsky (1982) A. Vilenkin (1982)

• Fokker-Planck equation:

$$\frac{\partial P_c(\phi,t)}{\partial t} = -\frac{\partial j_c}{\partial \phi} \quad \text{where } -j_c = \frac{\partial}{\partial \phi} \left(\frac{H^3 P_c}{8\pi^2} \right) + \frac{P_c}{H} \frac{dV}{d\phi}$$

 $P_{c}(\phi, t)$: probability distribution of ϕ

• Massless scalar, the field undergoes random walks $\phi_0 \equiv \sqrt{\langle \phi^2 \rangle} \simeq \frac{H_I^{3/2}}{2\pi} \sqrt{t} = \frac{H_I}{2\pi} \sqrt{N}, \quad N:$ number of e-folds

• Massive case
$$V(\phi) = \frac{1}{2}m^2\phi^2$$
:
 $\phi_0 \simeq \sqrt{\frac{3}{8\pi^2}\frac{H_I^2}{m}}$

- For $V(\phi) = \frac{\lambda}{4}\phi^4$:
- In general,

 $\phi_0 \simeq 0.36 H_I / \lambda^{1/4}$ $V(\phi_0) \sim H_I^4$

Large Higgs VEV During Inflation

- Higgs has a shallow potential at large scale (small λ).
- Large Higgs vacuum expectation value (VEV) during inflation.
- For inflationary scale $\Lambda_{I} = 10^{16}$ GeV, the Hubble rate $H_{I} = \frac{\Lambda_{I}^{2}}{\sqrt{3}M_{pl}} \sim 10^{13}$ GeV, and $\lambda \sim 0.01$, the Higgs VEV after inflation is

 $\phi_0 \simeq 0.36 H_I / \lambda^{1/4} \sim 10^{13}$ GeV.

 For such a large VEV, the Higgs field can be sensitive to higher scale physics.

Post-Inflationary Higgs Field Relaxation

Post-inflationary Higgs Relaxation

- As the inflation end, the *H* drops.
- When $H < m_{\phi,\text{eff}}$, the Higgs field can relax classically $\ddot{\phi}(t) + 3H(t)\dot{\phi}(t) + \frac{\partial V_{\text{eff}}(\phi, T(t))}{\partial \phi} = 0$
- $V_{eff}(\phi, T)$ is the finite temperature effective potential.
- Higgs field oscillates with decreasing amplitude due to the Hubble friction $3H\dot{\phi}(t)$.
- Relaxation time (depending on T_{RH} and A_I)

 $t_{\rm rlx} = t_{RH} \left(\frac{2.5}{a_T T_{RH} t_{RH}}\right)^{4/3} \text{ if thermal mass dominates } V \approx \frac{1}{2} \alpha_T^2 T^2 \phi^2$ $t_{\rm rlx} = 6.9/\sqrt{\lambda}\phi_0 \qquad \text{ if the zero } T \text{ dominates } V \approx \lambda \phi^4/4$

• Typically during reheating or right after reheating.

Post-inflationary Higgs Relaxation

M. Kawasaki, A. Kusenko, L. Pearce, LY, Phys. Rev. D 95, 103006 (2017).

- If the thermal mass dominates, $V(\phi,T) \approx \frac{1}{2} \alpha_T^2 T^2 \phi^2$ where $\alpha_T \approx \sqrt{\left(\lambda + \frac{9}{4}g^2 + \frac{3}{4}g'^2 + 3y_t^2\right)/12} \approx 0.33$ at $\mu = 10^{13}$ GeV.
- The equation of motion is approximately (assuming MD) $\ddot{\phi}(t) + \frac{2}{t}\dot{\phi}(t) + \alpha_T^2 \frac{T_{RH}^2 \sqrt{t_{RH}}}{\sqrt{t}} \phi(t) = 0$
- A solution:

$$\phi(t) = \phi_0 \left(\frac{3}{2}\right)^{2/3} \Gamma\left(\frac{5}{3}\right) J_{2/3} \left(\frac{4\alpha_T \beta}{3} x^{3/4}\right) \frac{1}{(\alpha_T \beta)^{2/3} \sqrt{x}}$$

where $\beta = T_{RH} t_{RH}$, $x = t/t_{RH}$, and $J_n(z)$ is the Bessel function of the first kind.

Post-inflationary Higgs Relaxation

Thermal mass dominated

Zero T potential dominated

- What can this do for us?
 - Breaks time reversal symmetry, and provides the out of thermal equilibrium condition.
 - An important epoch for the matter-antimatter asymmetry!

Initial Conditions for the Higgs field

- Initial Condition 1 (IC-1):
 - A metastable Planckian vacuum due to higher dimensional operators

$$\mathcal{O} \sim \frac{1}{M^2} \phi^6, \frac{1}{M^4} \phi^8, \frac{1}{M^6} \phi^{10}$$

- Higgs field trapped in a metastable vacuum during inflation
- Reheating destabilize the metastable vacuum via $\delta V \sim T^2 \phi^2$

and the Higgs VEV relaxes

Initial Conditions for the Higgs field

- Initial Condition 2 (IC-2):
 - Inflaton VEV induced mass term to the Higgs via $\mathcal{O} = I^n \phi^m / \Lambda^{n+m-4}$
 - Large (I) during early stage of inflation
 - Large Higgs mass and suppressing quantum fluctuation

 In the last N_{last} e-fold of inflation, (I) decreases and Higgs becomes massless with

$$\phi_0 = \frac{H\sqrt{N_{\text{last}}}}{2\pi}$$

Leptogenesis via the Relaxation of the Higgs Field

Sakharov Conditions

Andrei D. Sakharov (1967)

Successfully Leptogenesis requires:

- 1. Deviation from thermal equilibrium
 - Post-inflationary Higgs relaxation
- 2. C and CP violations
 - CP phase in the quark sector (not enough), higher dimensional operator, ...
- 3. Lepton number violation
 - Right-handed Majorana neutrino, others ...

Effective Operator

- M. E. Shaposhnikov (1987), M. E. Shaposhnikov (1988)
- CP violation: Consider the effective operator:

 $\mathcal{O}_6 = -\frac{1}{\Lambda_{\pi}^2} \phi^2 (g^2 W \widetilde{W} - g'^2 B \widetilde{B}),$

W and B: $SU(2)_L$ and $\ddot{U}(1)_Y$ gauge fields \widetilde{W} : dual tensor of W Λ_n : energy scale when the operator is relevant

• In standard model, integrating out a loop with all 6 quarks:

- Also used by baryogenesis
- But suppressed by small Yukawa and small CP phase

Effective Operator

$$\mathcal{O}_6 = -\frac{1}{\Lambda_n^2} \phi^2 (g^2 W \widetilde{W} - g'^2 B \widetilde{B})$$

- Replace the SM fermions by heavy states that carry SU(2) charge.
- Scale: $\Lambda_n = M_n$ mass (must not from the SM Higgs) or $\Lambda_n = T$ temperature

Effective Chemical Potential

Dine et. al. (1991) Cohen, Kaplan, Nelson (1991)

$${\cal O}_6 = -rac{1}{\Lambda_n^2} \phi^2 (g^2 W \widetilde{W} - g'^2 B \widetilde{B})$$

Using electroweak anomaly equation, we have

 $\mathcal{O}_6 = -\frac{1}{\Lambda_n^2} |\phi|^2 \partial_\mu j^\mu_{B+L},$

where j_{B+L}^{μ} is the B + L fermion current.

• Integration by part:

$${\cal O}_6={1\over \Lambda_n^2} ig(\partial_\mu |\phi|^2ig) j^\mu_{B+B}$$

- Similar to the one use by spontaneous baryogenesis.
- Breaks CPT spontaneously while *\phi* is changing!
- Sakharov's conditions doesn't have to be satisfied explicitly in this form.

Effective Chemical Potential

$${\cal O}_6={1\over \Lambda_n^2} \big(\partial_\mu |\phi|^2\big) j^\mu_{B+L}$$

Effective chemical potential for baryon and lepton number:

 $\mu_{\rm eff} = \frac{1}{\Lambda_n^2} \partial_t |\phi|^2$

• Shifts the energy levels between fermions and anti-fermions while Higgs is rolling down ($\dot{\phi} \neq 0$).

Produce more lepton than antilepton in the present of L violating process.

Lepton Number Violation

Last ingredient:

- > Right-handed neutrino N_R with Majorana mass term M_R .
- The processes for $\Delta L = 2$:
- $\nu_L h^0 \leftrightarrow \overline{\nu_L} h^0$
- $\nu_L \nu_L \leftrightarrow h^0 h^0$
- $\overline{\nu_L \nu_L} \leftrightarrow h^0 h^0$
- For $m_{\nu} \sim 0.1$ eV,
 - $\sigma_R \sim \frac{\Sigma_i m_{\nu,i}^2}{16\pi v_{EW}^2} \sim 10^{-31} \text{ GeV}^{-2}.$

LY, L. Pearce, A. Kusenko, Phys. Rev. D 92, 043506 (2015).

Evolution of Lepton Asymmetry

Boltzman equation: $\dot{n}_L + 3Hn_L \approx -\frac{2}{\pi^2}T^3\sigma_R\left(n_L - \frac{2}{\pi^2}\mu_{eff}T^2\right)$ Final lepton asymmetry: $Y = \frac{n_L}{s} \approx \frac{90\sigma_R}{\pi^6 q_{*S}} \left(\frac{\phi_0}{\Lambda_p}\right)^2 \frac{3z_0 T_{RH}}{4\alpha_T t_{RH}} \exp\left(-\frac{8+\sqrt{15}}{\pi^2}\sigma_R T_{RH}^3 t_{RH}\right)$ diation Domination $\Lambda_{\rm I}=1.5\times10^{16}~{\rm GeV},$ End of inflation $\Gamma_I = 10^8$ GeV, $\mu_{\rm eff} \propto M_n^{-2}$ $T_{RH} = 5 \times 10^{12}$ GeV, og(Y = n/s)-8 $\phi_0 = 6 \times 10^{13}$ GeV. rst ϕ crossing 0 -10 $\mu_{\rm eff} \propto T^{-2}$ For $\mu_{\rm eff} \propto M_n^{-2}$ case, -12 $M_n = 5 imes 10^{12}$ GeV. -14 -14-12 -10 -8 -16-6 $\log(t [GeV^{-1}])$

Could be one origin of the matter-antimatter asymmetry!

Cosmic Infrared Background Radiation Excess

Cosmic Infrared Background (CIB) Radiation

- CIB: IR part of extragalactic background light
- from galaxies at all redshifts
- Difficult to determine absolute intensity (isotropic flux) due to foreground signal, galactic components, and zodiacal light.
- More focus on the anisotropies (spatial fluctuation) of CIB

Faint Structures in the Distant Universe NASA / JPL-Caltech / A. Kashlinsky (GSFC) Spitzer Space Telescope • IRAC ssc2012-08a

CIB (spatial) fluctuations observed by Spitzer space telescope

Excess in the CIB fluctuations

Helgason et al., MNRAS **455**, 282 (2015) Kashlinsky et al. ApJ **804**, 99 (2015)

- Excess found in near-IR $(1 10 \ \mu m)$ at $\theta = 3 30$ arcmins scale.
- Not from known galaxy populations at z < 6
- Most possible: First stars (population III stars, metal-free) at $z \gtrsim 10$ in $10^6 M_{\odot}$ minihalos
- But: Needs too large star formation efficiency and/or radiation efficiency due to insufficient stars forming at z = 10.

CIB fluctuation from population III stars

- CIB fluctuation: $\delta F_{\text{CIB}} \approx 0.09 \text{ nWm}^{-2} \text{sr}^{-1} (2 5\mu \text{m at 5}')$
- Matter density fluctuation at 5 arcmins scale: $\Delta_{5'} \approx 10\%$
- Inferred isotropic flux: $F_{\text{CIB}} \approx \delta F_{\text{CIB}} / \Delta_{5'} = 1 \text{ nWm}^{-2} \text{sr}^{-1}$
- CIB flux from first stars (population III)

- f_{halo} : mass fraction of the universe inside collapsed halos
 - **f**_{*} : the star formation efficiency
 - *e* : radiation efficiency
- To explain the CIB fluctuation by first stars forming:

$$f_{\text{halo}} \approx 0.16 \left(\frac{0.007}{\epsilon}\right) \left(\frac{10^{-3}}{f_*}\right) \left(\frac{F_{FS}}{F_{CIB}}\right)$$

- Difficult to reach with only adiabatic density perturbation from usual inflation.
- Solution: isocurvature perturbation in the small spatial scale

Large vs Small scale density perturbation

 $\Delta_{5'} \approx 10\%$

Large scale fluctuation in CIB due to the adiabatic perturbation from inflaton

 $\theta \sim 5'$

 $\sim 10^6 M_{\odot}$ minihalos Add isocurvature perturbation from relaxation leptogenesis

 Increasing the density contrast δ_B in small scale increase the number of collapse halos f_{halo}

Isocurvature Perturbation from Relaxation Leptogenesis

Isocurvature Perturbation

- Fluctuation of ϕ in each patch of the universe during inflation
- Variation in baryon asymmetry $\delta(B \overline{B})$ through leptogenesis ($Y_B \propto \phi_0^2$)
- Spatial fluctuation of baryon asymmetry after patches reenter
- Baryon asymmetry δY_B \rightarrow Baryon density $\delta \rho_B$
- Produce isocurvature perturbation of baryon
- No contribution to the initial curvature perturbation.

Higgs Fluctuation during Inflation

- Quantum fluctuation $\delta \phi_k \approx \frac{H_I}{2\pi}$ is produced at the scale smaller than the horizon scale $l \sim H^{-1}$ at that time

Higgs Fluctuation during Inflation

 The horizon at N_{last} before the end of inflation has a scale k_s at present

$$k_{S} \simeq 2\pi e^{-N_{\text{last}}} H_{I} \left(\frac{T_{RH}}{\Lambda_{I}}\right)^{4/3} \frac{g_{*S}^{1/3}(T_{\text{now}})}{g_{*S}^{1/3}(T_{RH})} \frac{T_{\text{now}}}{T_{RH}}$$

• Power spectrum of ϕ

$$\mathcal{P}_{\phi}(k) \approx \begin{cases} \left(\frac{H_I}{2\pi}\right)^2 & \text{for } k \ge k_S \\ 0 & \text{otherwise} \end{cases}$$

• Baryonic isocurvature perturbation for $k > k_S$

$$\delta_B(k) \equiv \frac{\delta \rho_B}{\rho_B} \bigg|_k = \frac{\delta Y_B}{Y_B} \bigg|_k = \frac{\delta (\phi^2)_k}{\langle \phi^2 \rangle} \approx 2 \frac{\ln^{1/2}(k/k_S)}{N_{\text{last}}} \theta(k-k_S)$$

Constraints on Isocurvature Perturbation

- CMB: 0.002 Mpc⁻¹ $\leq k \leq 0.1$ Mpc⁻¹ (Limited by Silk damping)
- Lyman- α : 0. 1 Mpc⁻¹ $\leq k \leq 10$ Mpc⁻¹
- Allowed *N* of e-folds of inflation for the Higgs field:

$$N_{
m last} < 48.2 - \ln\left(rac{k_*}{10~{
m Mpc}^{-1}}
ight) + rac{2}{3}\ln\left(rac{\Lambda_{
m I}}{10^{16}~{
m GeV}}
ight) + rac{1}{3}\ln\left(rac{T_{RH}}{10^{12}~{
m GeV}}
ight)$$

Growth of density perturbation

- Baryon isocurvature perturbation only growth after decoupling
- But the induced potential allows dark matter to grows faster.
- δ_M becomes nonlinear earlier

Matter power Spectrum

- Contribution from relaxation leptogenesis model only appear in the small scale
- Silk damping does not affect baryonic isocurvature perturbation.

Variance of the density contrast

- Solid lines: Isocurvature perturbations from $k_s = 65 \text{ Mpc}^{-1}$
- Dashed lines: with only adiabatic perturbation
- Dash-dot line: $\delta_c = 1.686$
- Halos with $10^6 M_{\odot}$ collapsed by z = 10.

Mass fraction in collapsed halos

- Solid lines: $10^6 M_{\odot}$ halos
- Reach $f_{halo} = 0.16$ by z = 10 for $k_S = 65$ Mpc⁻¹
- Dashed lines: 10⁸ M_☉ halos unchanged

Can explain the CIB fluctuation excess!

Summary

- Our universe seems to be right at the meta-stable vacuum.
- A small quartic coupling of the Higgs potential at high energy scale gives a shallow potential.
- Higgs can obtain a large vacuum expectation during inflation.
- The relaxation of the Higgs VEV happens during reheating.
- Higgs relaxation provides the out of thermal equilibrium condition and breaks T invariant.
- Leptogenesis via the Higgs relaxation is possible.
- Isocurvature perturbation generated by the relaxation leptogenesis might explain the CIB fluctuation excess.
- Higgs relaxation is an interesting epoch in the early universe.

