Dure Natural Inflation

Masahito Yamazaki (Kavli IPMU, Univ. Tokyo)

Refs Y. Nomura, T. Watari + Y 1706 hep-ph Y. Nomura + Y 1711 hep-ph J.-P Hong, M. Kawasaki + Y 1711 astro-ph cf. K. Yohekura + Y 1704 hep-th inflationary paradigm — successful

but which inflaton potential? N(\$) Slow-roll fine-tuned quantum correction? "simplest" choices, $V(\phi) = \phi^2, \phi^4$ disfavored!

[Planck 2015]

* inflaton ϕ as axion $\int_{32\pi^2} \frac{1}{f} \operatorname{Tr} F_{\mu\nu} F^{\mu\nu}$ dynamical top. term in θ -ongle pure Yang - Mills $\theta = \frac{\phi}{f}$

* inflation as axion

$$\frac{1}{32\pi^{2}} \oint_{f} \text{Tr} F_{\mu\nu} F^{\mu\nu} \left[\theta = \frac{\phi}{f}\right]$$
dynamical

 θ -ongle

** perturbatively

 $V(\phi) = 0 \quad [\phi \to \phi + c \quad \text{sym.}]$

non-perturbatively

$$V(\phi) = \sqrt{1 - \cos \frac{\phi}{f}} + \frac{1}{mu/t_1' - inst}$$

* perturbatively $V(\phi) = 0$ [$\phi \rightarrow \phi + c$ sym.]

non-perturbatively

$$V(\phi) = \sqrt{1 - \cos \frac{\phi}{T}} + \cdots$$
"dynamical of the scale" 1-inst.

- (i) flatness (\$ → \$ + c)
- \odot EFT $(\wedge \ll M_{UV})$
- rather simple

 $\begin{array}{c}
\text{(i)} 1-porameter \\
\text{extension of} \\
\text{V} \sim \phi^2
\end{array}$

$$V(\phi) = \sqrt{4} \left[1 - \cos\left(\frac{\phi}{f}\right) \right]$$

(i) being disfavoved by observations

$$V(\phi) = \bigwedge^{4} \left[1 - \cos\left(\frac{\phi}{f}\right) \right] + \cdots$$

theoretically NOT CORRECT!

(at least for pure YM @ T=0)

$$V(\phi) = \bigwedge^{4} \left[1 - \cos\left(\frac{\phi}{f}\right) \right] + \cdots$$

theoretically NOT CORRECT! (at least for pure YM @ T=0) X YM theory; classically scale-invoviont IR problem: instanton gives divergent known since Jorge W [Witten 179, 81.... 198] [Dubovsky - Lawrence - Roberts '11] [Giusti-Petrorca-Tagglenti 107]

periodicity in a recovered by multiple metastable branches

[a version of monodromy inflation Silverstein - Westphal, Kaloper-Lawrence-Sorbo, ---] ('08)

X' beaware tunneling in different branches

[Nomura - Watari - Y 177 Our potential $V(\phi) = M^4 \left[1 - \left(\frac{\phi}{F} \right)^2 \right]$ power

power

strong - coupling

decay const.

effects (Fnf)

(i) CP sym $\phi \rightarrow -\phi$ (i) $V \sim \phi^2$ near $\phi \sim 0$

 $V(\phi) \rightarrow const.$ at $\phi \rightarrow \pm \infty$

(i) p=3 for holographic QCD (W/

 $M^{4} = \frac{\lambda N^{2}}{27\pi^{2}} M_{KK}^{4} \qquad F = \frac{8\pi^{2}N}{2\pi^{2}} \int_{-\infty}^{\infty} \frac{1}{2\pi^{2}} \frac{3\gamma^{2}N}{N} \left(\frac{1}{N} \right)$

[Dubovsky, Laurence, Roberts 11]

[Nomura-Watari-Y 17]

can we observe tensor modes in the near future? $r \sim 10^{-3}$, or even 0.20 -- p = 2 $N_e = 50$ $N_e = 60$ 0.15 -- p = 4- p = 100.10 what happens here ?? 0.05 ___ n_s

smaller r means smaller F
so that $\Phi/F = \theta$ longe

Finite N effects; (# of metastable branches) = N (finite)

lower bound on r [Nomura - Y'17]

(if we stay away from top of the potential)

roughly $F \gtrsim O(0.1 M_{PQ})$

* For $F \lesssim O(0.1 M_{Pl})$

we find spatially inhomogeneities (oscillons)

Hong, Kawasaki + T (pys)]

[also Amin et al (11) (p<0)]

analytical/numerical (Lattice Easy)

implications? GN? baryo/leptogenesis?
[also in progress]

Summary

* natural inflation for pure Yang-Mills, when done correctly is in complete agreement with data

*
$$F \gtrsim O(0.1 \text{Mpe}) \longrightarrow \text{tensor modes}$$

 $F \lesssim O(0.1 \text{Mpe}) \longrightarrow \text{oscillons}$

hep-th hep-ph pure natural inflation hep-lat astro-ph