# The SENSEI<sup> $\dagger$ </sup> project

a zero noise detector for DM searches

Javier Tiffenberg

Fermi National Laboratory

February 18, 2018

† Sub-Electron-Noise SkipperCCD Experimental Instrument



1 PACIFIC 2018 - Akaigawa, Hokkaido

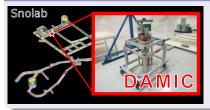
**Origin of the Collaboration** 





# March 22 - 25, 2013




PACIFIC 2018 - Akaigawa, Hokkaido

- Scientific CCDs as low-energy-threshold/low-noise particle detectors
- SENSEI project: status and prospects
- Application to light DM searches



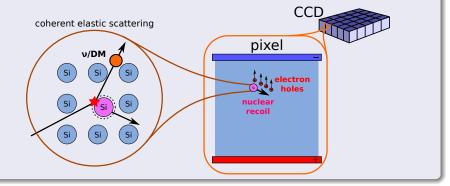
# **Current experiments using Scientific CCDs**

## DAMIC



- Low mass Dark Matter search (WIMP/NR-optimized)
- Installed at Snolab on Dec-2012
- Currently taking data

## CONNIE




- Coherent  $\nu$ -nucleous interaction
- Installed next to Angra nuclear power plant on Dec-2014
- $\bullet$  technique could be used for SB $\nu\text{-}\mathsf{Ex}$
- Currently taking data

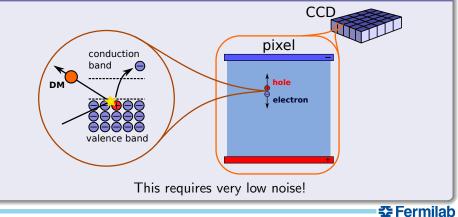


PACIFIC 2018 - Akaigawa, Hokkaido

DAMIC & CONNIE use CCDs as targets to detect coherent  $DM/\nu$ -nucleus interactions by measuring the ionization produced by the nuclear recoils



Sensitivity is limited by readout noise and NR-ionization yield




PACIFIC 2018 - Akaigawa, Hokkaido

SENSEI: lower the energy threshold to look for light DM candidates

Detect DM-e interactions by measuring the ionization produced by the electron recoils. See arXiv:1509.01598

#### Idea: use electrons in the CCDs as target

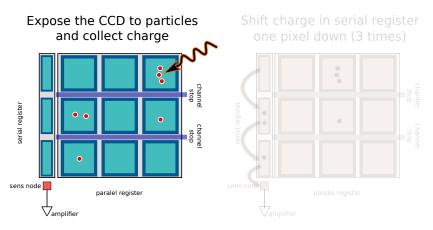


#### SENSEI LDRD Collaboration (2015)

Develop a CCD-based detector with an energy threshold close to the silicon band gap (1.1 eV) using SkipperCCDs produced at LBL MSL

- Fermilab: Tiffenberg, Guardincerri, Sofo Haro
- Stony Brook: Rouven Essig
- LBNL: Steve Holland, Christopher Bebek

- Tel Aviv University: Tomer Volansky
- CERN: Tien-Tien Yu
- Stanford University\*: Jeremy Mardon

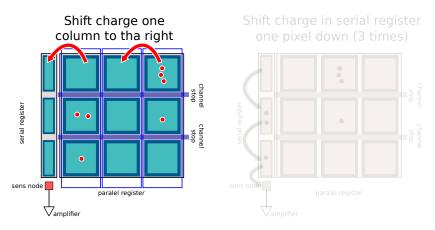

#### Main goals

7

- Build the first working detector using Skipper-CCDs.
- Validate the technology for DM and  $\nu$  experiments.
- Probe DM masses at the MeV scale through electron recoil.
- Probe axion and hidden-photon DM with masses down to 1 eV.



#### 3x3 pixels CCD

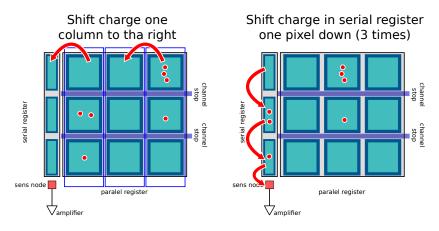





PACIFIC 2018 - Akaigawa, Hokkaido

8

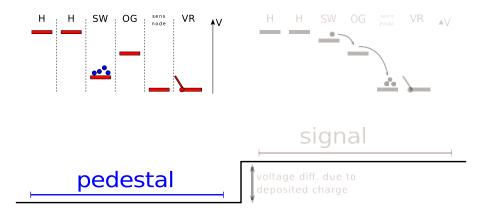
#### 3x3 pixels CCD






PACIFIC 2018 - Akaigawa, Hokkaido

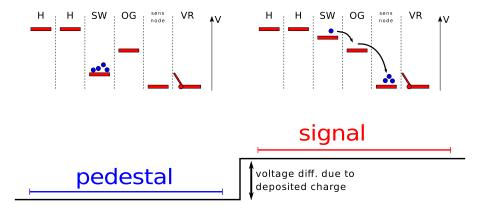
8


#### 3x3 pixels CCD



capacitance of the system is set by the SN: C=0.05pFightarrow 3 $\mu$ V/e

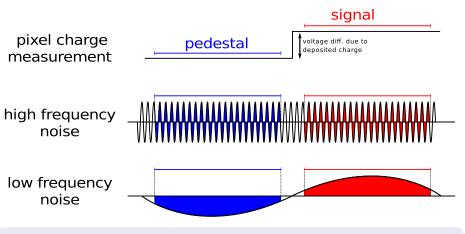



PACIFIC 2018 - Akaigawa, Hokkaido





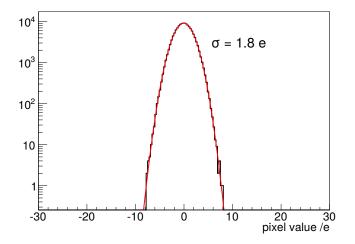
PACIFIC 2018 - Akaigawa, Hokkaido


9





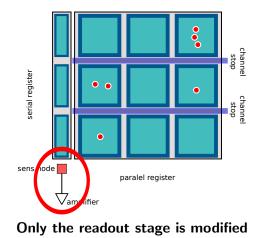
PACIFIC 2018 - Akaigawa, Hokkaido


9



excellent for removing high frequency noise but sensitive to low frequencies



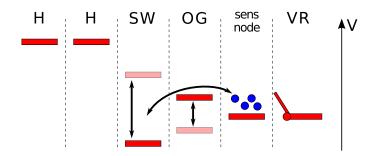

9



2 e<sup>-</sup> readout noise roughly corresponds to 50 eV energy threshold



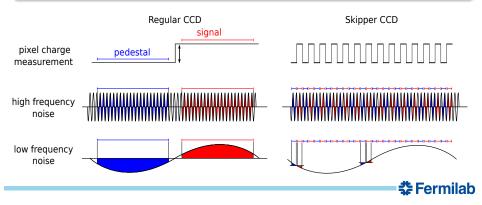
#### Lowering the noise: Skipper CCD




📲 🗱 🕻 🕂 🖏

11 PACIFIC 2018 - Akaigawa, Hokkaido

## Lowering the noise: Skipper CCD


- Main difference: the Skipper CCD allows multiple sampling of the same pixel without corrupting the charge packet.
- The final pixel value is the average of the samples **Pixel value** =  $\frac{1}{N} \Sigma_i^N$  (pixel sample)<sub>i</sub>
- Idea proposed in 1990 by Janesick et al. (doi:10.1117/12.19452)





## Lowering the noise: Skipper CCD

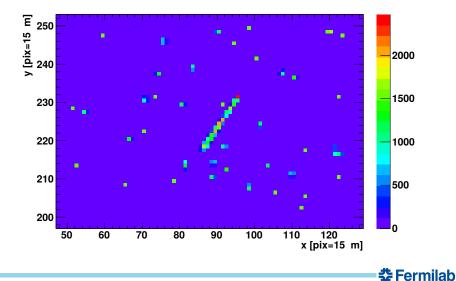
- Main difference: the Skipper CCD allows multiple sampling of the same pixel without corrupting the charge packet.
- The final pixel value is the average of the samples **Pixel value** =  $\frac{1}{N} \Sigma_i^N$  (pixel sample)<sub>i</sub>
- Idea proposed in 1990 by Janesick et al. (doi:10.1117/12.19452)

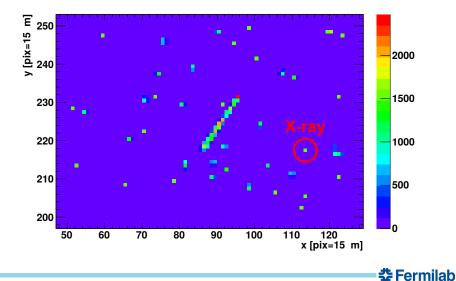


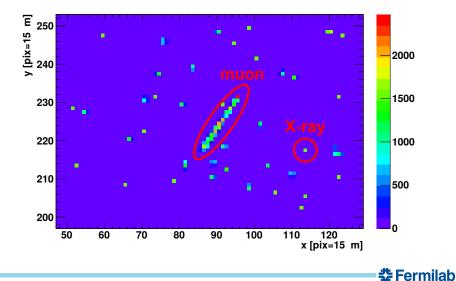
# SENSEI: First working instrument using SkipperCCD tech

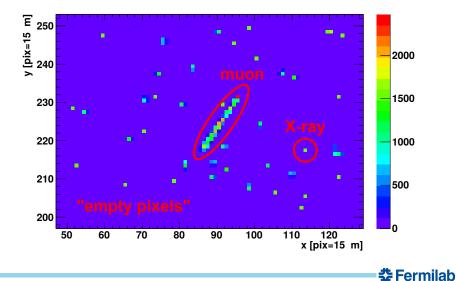
#### Sensors




- Skipper-CCD prototype designed at LBL MSL
- $\bullet$  200 & 250  $\mu {\rm m}$  thick, 15  $\mu {\rm m}$  pixel size
- $\bullet$  Two form factors 4k $\times 1k$  (0.5gr) & 1.2k $\times 0.7k$  pixels
- $\bullet$  Parasitic run, optic coating and Si resistivity  ${\sim}10 \text{k}\Omega$
- 4 amplifiers per CCD, three different RO stage designs

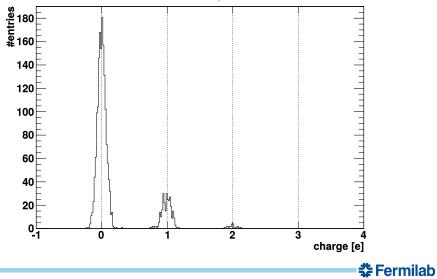

#### Instrument





- System integration done at Fermilab
- Custom cold electronics
- Modified DES electronics for read out
- Firmware and image processing software
- Optimization of operation parameters

🚰 Fermilab

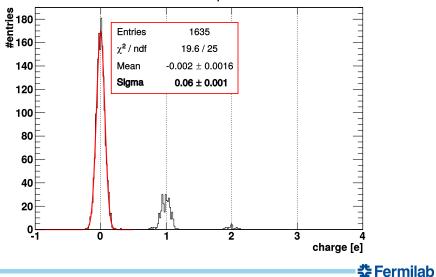








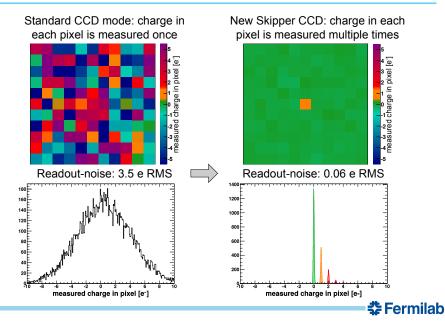

## Charge in pixel distribution. Counting electrons: 0, 1, 2..

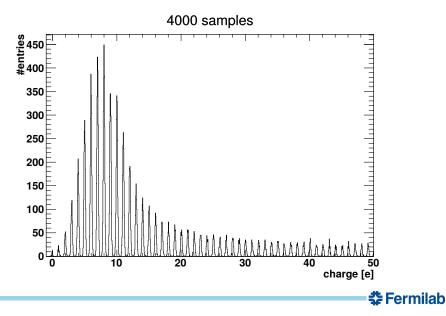

4000 samples



15

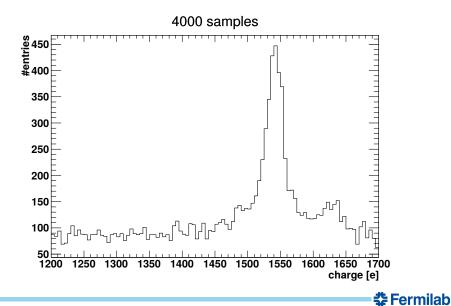
## Charge in pixel distribution. Counting electrons: 0, 1, 2..

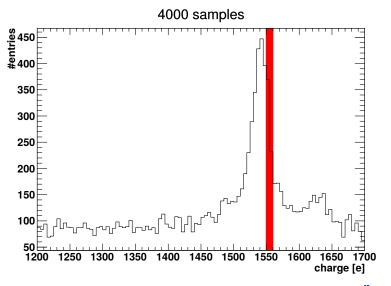

4000 samples




February 18, 2018

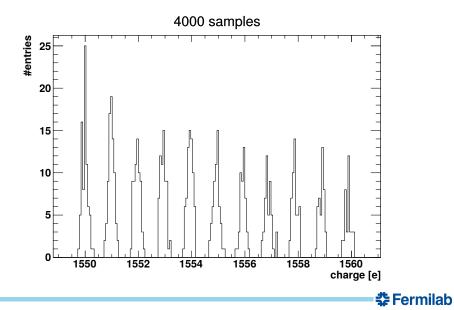
15


## Counting electrons: 0, 1, 2..





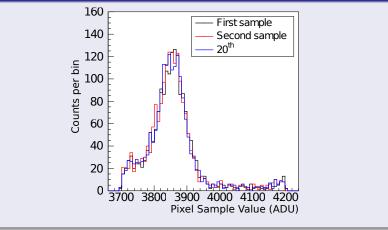

PACIFIC 2018 - Akaigawa, Hokkaido


17





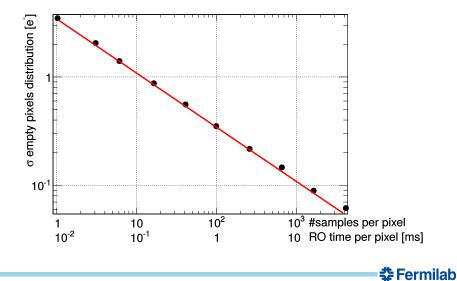
🗕 🛟 Fermilab


18



19

## Image taken with SENSEI: 20 samples per pixel


#### Single pixel distribution: X-rays from <sup>55</sup>Fe



The gain is the same for all the samples



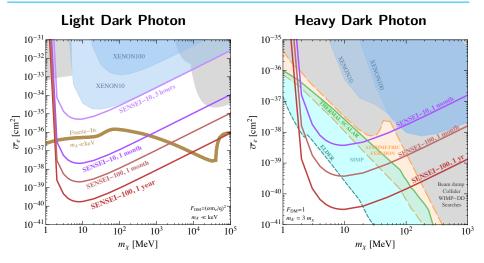
20



PACIFIC 2018 - Akaigawa, Hokkaido

21

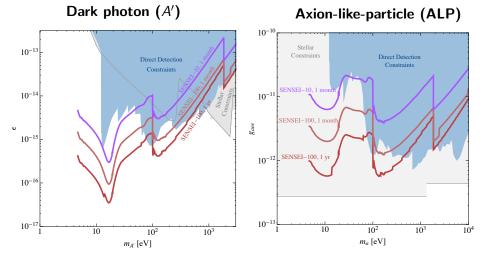
## SENSEI: DM search operation mode


- Counting electrons  $\Rightarrow$  **noise has zero impact**
- It can take about 1h to read the sensors
- Dark Current is the limiting factor

It's better to readout continuously to minimize the impact of the DC

| Dark Current                         | $\geq 1\mathrm{e}^-$ | $\geq$ 2e $^-$   | $\geq$ 3e $^-$    |
|--------------------------------------|----------------------|------------------|-------------------|
| $\left[e^{-}pix^{-1}day^{-1}\right]$ | [pix]                | [pix]            | [pix]             |
| 10 <sup>-3</sup>                     | $1	imes 10^8$        | $3	imes 10^3$    | $7	imes10^{-2}$   |
| 10 <sup>-5</sup>                     | $1	imes 10^{6}$      | $3	imes 10^{-1}$ | $7	imes 10^{-8}$  |
| 10 <sup>-7</sup>                     | $1	imes 10^4$        | $3	imes 10^{-5}$ | $7	imes 10^{-14}$ |

Measured upper limit for the DC in CCDs is:  $1\times 10^{-3}~e~pix^{-1}day^{-1}~$  arXiv:1611.03066 Could be orders of magnitude lower. Theoretical prediction is  $O(10^{-7})$ 


## SENSEI: reach of a 100g, zeroish-background experiment

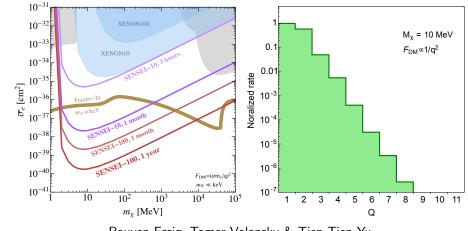


Rouven Essig, Tomer Volansky & Tien-Tien Yu.

🗳 Fermilab

## SENSEI: reach of a 100g, zeroish-background experiment




Rouven Essig, Tomer Volansky & Tien-Tien Yu.

📲 🗱 🗧 🕂

24

#### SENSEI: electron recoil background requirements

The sensitivity is dominated by the lowest energy/charge bin



Rouven Essig, Tomer Volansky & Tien-Tien Yu.

📲 🗱 🕻 🕂 📲

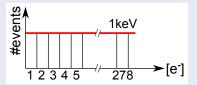
25

#### Back of the envelope calculation

A 100g detector that takes data for one year  $\rightarrow$  Expo = 36.5kg  $\cdot$  day

Assuming same background as in DAMIC:

- 5 DRU (events·kg<sup>-1</sup>·day<sup>-1</sup>·keV<sup>-1</sup>) in the 0-1keV range
  - $\rightarrow$   $N_{bkg}=36.5~{\rm kg} \cdot {\rm day} \times 5~{\rm DRU}=182.5$  events
- $\bullet$  Dominated by external gammas  $\rightarrow$  flat Compton spectrum



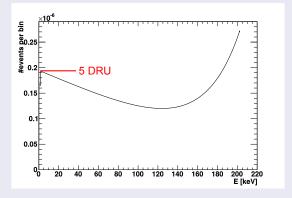

#### Back of the envelope calculation

A 100g detector that takes data for one year  $\rightarrow$  Expo = 36.5kg  $\cdot$  day

Assuming same background as in DAMIC:

- 5 DRU (events·kg<sup>-1</sup>·day<sup>-1</sup>·keV<sup>-1</sup>) in the 0-1keV range
  - $\rightarrow$   $N_{bkg}$  = 36.5 kg  $\cdot$  day  $\times$  5 DRU = 182.5 events
- $\bullet$  Dominated by external gammas  $\rightarrow$  flat Compton spectrum

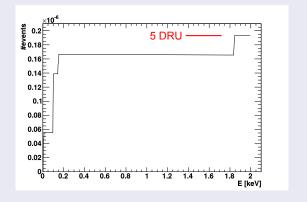



182.5 events over the 278 charge bins in the 0-1keV range

Expect 0.65 bkd events in the lowest (2 e<sup>-</sup>) charge-bin



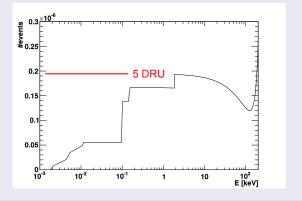
A more detailed analysis: Klein-Nishina + binding energy correction


- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)





A more detailed analysis: Klein-Nishina + binding energy correction


- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)





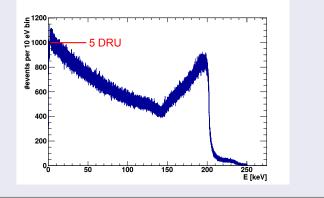
A more detailed analysis: Klein-Nishina + binding energy correction

- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)





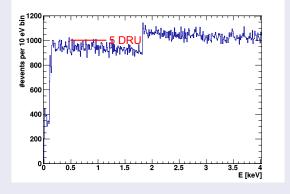
A more detailed analysis: MC simulation, G4 3D Monash model


- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)





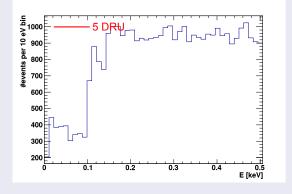
A more detailed analysis: MC simulation, G4 3D Monash model


- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)





A more detailed analysis: MC simulation, G4 3D Monash model


- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)





A more detailed analysis: MC simulation, G4 3D Monash model

- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det)





#### A more detailed analysis: MC simulation, G4 3D Monash model

- at lower energies atomic binding energies are relevant
- partial energy depositions populate low E region (thin det) Back of the envelope estimation is conservative

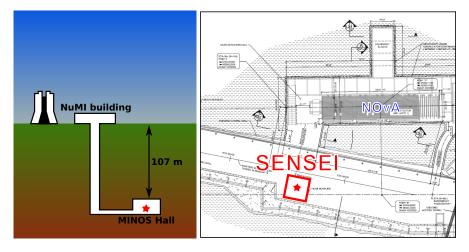
0.2

0.3

0.4

0.5 E [keV]

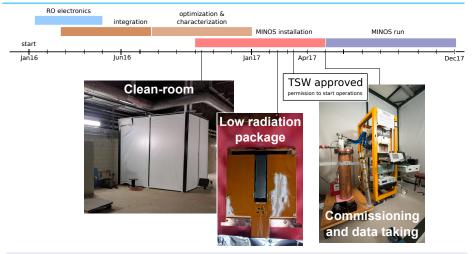



29

300 200

0.1

## Whats going on now: Installation @MINOS


#### Technology demonstration: installation at shallow underground site





February 18, 2018

## Whats going on now: Installation @MINOS



Taking data to understand if current (parasitically–fabricated) detectors are good enough to produce a science result



31

February 18, 2018

### Timeline

| 2016                                                   | 2017                                                                     |
|--------------------------------------------------------|--------------------------------------------------------------------------|
| LDRD funded,<br>fabrication of SkipperCCD<br>prototype | testing of prototype,<br>received funding from HSF<br>for S-10 and S-100 |
| 2018                                                   | 2019                                                                     |
|                                                        |                                                                          |
| assembly and testing of S-10,<br>take data             | take more data with S-10, begin analysis assembly and testing of S-100   |
| ,                                                      | · · ·                                                                    |



32 PACIFIC 2018 - Akaigawa, Hokkaido

February 18, 2018

# **SENSEI** path

#### Summary

- Demonstrated technology: working detector.
- Demonstrated bkg: no R&D needed.
  - required bkg level already reached by running experiments.
- Minimal R&D required for the packaging of the sensors.
- 10g & 100g desing/construction started.
  - Grant from Heising-Simons Foundation
  - Full technical support from Fermilab
- Complementary to LDMX.
- 10g Scientific Skipper-CCDs will start taking data at MINOS by the end of 2018.
- MINOS site is good up to a 10g experiment. Deeper location (Snolab/SURF) is required for 100g.

