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1. Introduction



What we learn from the Higgs mass

mh ≃ 125 GeV ⇒ V = λ(|H|2 − v2)2 with λ(mh) ≃ 0.13

λ becomes negative at a very high scale

~ 10    GeV10

H

EW scale

Pontential

• EW vacuum is not stable in the standard model (SM)

• λ is minimized at µ ∼ 1017 GeV



Is the decay rate small enough so that tnow ≃ 13.6 Gyr?

⇒ (Probably) yes
[Isidori, Ridolfi & Strumia; Degrassi et al.; Alekhin, Djouadi & Moch; Espinosa

et al.; Plascencia & Tamarit; Lalak, Lewicki & Olszewski; Espinosa, Garny,

Konstandin & Riotto; · · ·]

How precisely can we estimate the decay rate?

• Gauge-invariance of the result was unclear

• Effects of zero modes were not properly taken into ac-
count

• There has been progresses in the calculation of the decay
rate of false vacuum
[Endo, TM, Nojiri & Shoji; Chigusa, TM & Shoji; see also Andreassen, Frost

& Schwartz]



Today, I discuss

• A calculation of the decay rate of EW vacuum

• Effects of extra matters
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2. Bounce in the SM



The decay rate is related to 4D Euclidean partition function
[Coleman; Callan & Coleman]

Z = ⟨FV|e−HT |FV⟩ ∝ exp(iγV T )

The path integral is dominated by the “bounce”

Bounce: a saddle-point solution of classical EoM

Z = + + + ...

= exp [ ]

one-bounceV

Φ

bouncet = -∞

t = ∞

γ ≃ 1

V T
Im


∫
1-bounce

DΨ e−SE∫
0-bounce

DΨ e−SE

 ≡ Ae−B with B = SE(Bounce)



Main concern of this talk: calculation of the prefactor A

A contains one-loop (and higher order) effects

We expand the action around the bounce ϕ̄

SE[ϕ̄+Ψ] = SE[ϕ̄] +
1

2

∫
d4xΨMΨ+O(Ψ3)

SE[v +Ψ] = SE[v] +
1

2

∫
d4xΨM̂Ψ+O(Ψ3)

Prefactor A (for bosonic contribution)

A ≃ 1

V T

∣∣∣∣∣DetM
DetM̂

∣∣∣∣∣
−1/2

∝
∏
i

√√√√ 1

ωi
with ωi = eigenvalue of M

Sometimes M has zero eigenvalue

⇒ A careful treatment is necessary



Higgs potential in the SM: V = −m2H†H + λ(H†H)2

• We consider very large Higgs amplitude for which λ < 0

• We will neglect quadratic term because λ < 0 occurs at a
scale much higher than the EW scale

We use the following potential:

V = −|λ|(H†H)2

The “bounce solution” (Fubini-Lipatov instanton)

Hbounce =
1√
2
eiσ

aθa
0
ϕ̄

 with ∂2r ϕ̄+
3

r
∂rϕ̄+ 3|λ|ϕ̄2 = 0

⇒ Explicit form of the bounce:

ϕ̄(r) =

√√√√ 8

|λ|
R−1 1

1 +R−2r2
with R = (free parameter)



Bounce action for the SM

B =
8π2

3|λ|
Possible deformations of the bounce

• Dilatation: parameterized by R

• SU(2) transformation: parameterized by θa

Effects of zero modes in association with these transfor-
mations were not properly taken into account before

• Translation
[Callan & Coleman]

Expansion around the bounce:

H =
1√
2
eiσ

aθa
 φ1 + iφ2

ϕ̄+ h− iφ3

 , W a
µ = wa

µ, Bµ = bµ



3. Effects of the Higgs Mode



We need to calculate the functional determinant of M(h)

L ∋ 1

2
h (−∂2 − 3|λ|ϕ̄2)h =

1

2
hM(h) h

Expansion of h w.r.t. 4D spherical harmonics YJ,mA,mB

h(x) =
∑

J,mA,mB ,n

αn,J,mA,mB
ρn,J(r)YJ,mA,mB

(r̂)

J = 0, 1/2, 1, 3/2, · · ·

ρn,J : radial mode function

αn,J,mA,mB
: expansion coefficient (integration variable)

Fluctuation operator for angular-momentum eigenstates:

M(h)
J ≡ −

(
∆J + 3|λ|ϕ̄2

)
≡ −

∂2r + 3

r
∂r −

4J(J + 1)

r2
+ 3|λ|ϕ̄2





Higgs-mode contribution to the prefactor A

A(h) =

DetM(h)

DetM̂(h)

−1/2

=
∏
J

DetM(h)
J

DetM̂(h)
J


−(2J+1)2/2

The ratio of the functional determinants can be evaluated
with so-called Gelfand-Yaglom theorem

Zero modes exist for M(h)

• Dilatational zero mode (for J = 0)

ρD(r) ∝
∂ϕ̄

∂R
⇔ M(h)

0 ρD(r) = 0 and ρD(r → ∞) = 0

• Translational zero modes (for J = 1/2)
[Callan & Coleman]



Path integral over dilatational zero mode = integral over R

H ∋ ϕ̄+ h = ϕ̄+ αDND
∂ϕ̄

∂R
+ · · · ≃ ϕ̄

∣∣∣
R→R+αDND

+ · · ·

⇒
∫
Dh(dilatation) ≡

∫
dαD →

∫ dR

ND

⇒
DetM(h)

0

DetM̂(h)
0


−1/2

→
∫ dR

ND

Det′M(h)
0

DetM̂(h)
0


−1/2

Det’: zero eigenvalue is omitted from the Det

Higgs-mode contribution:
[Chigusa, TM & Shoji; Andreassen, Frost & Schwartz]

A(h) →
∫
d lnR

16π
|λ|

1/2 ∏
J≥1/2

DetM(h)
J

DetM̂(h)
J


−(2J+1)2/2



Comment on gauge and NG contribution

• Gauge fixing function in old calculations

F = ∂µBµ − 2ξg1(ReH0)(ImH0), · · ·

⇒ Gauge and NG fields couple in the EoM

⇒ General form of the bounce is more complicated

• We adopt the following gauge fixing function
[Kusenko, Lee & Weinberg]

F = ∂µBµ, Fa = ∂µW
a
µ ⇒ Hbounce =

1√
2
eiσ

aθa
0
ϕ̄


• Path integral over gauge zero modes = integral over θaDetM(W,Z,NG)

DetM̂(W,Z,NG)

−1/2

→ VSU(2)

16π
|λ|

3/2 ∏
J≥1/2

DetM(W,Z,NG)
J

DetM̂(W,Z,NG)
J


−1/2



4. Total Decay Rate



Decay rate:

γ =
∫
d lnR

[
I(h)I(W,Z,NG)I(t)e−SC.T.e−B]

µ∼ 1/R

We derived complete and gauge-invariant expressions of I(X)

I(h): Higgs contribution

I(W,Z,NG): gauge and NG contribution

I(t): top contribution

We take the renormalization scale as µ ∼ 1/R

⇒ The effects of µ-dependent terms from higher loops, i.e.,
∼ lnp(µR), are expected to be minimized

⇒ This is important for the convergence of the integral



We use:

• mh = 125.09± 0.24 GeV

• mt = 173.1± 0.6 GeV

• αs(mZ) = 0.1181± 0.0011

• 2- or 3-loop RGEs (with relevant threshold corrections)

Decay rate of the EW vacuum (taking µ = 1/R)

• log10[ γ (Gyr−1Gpc−3) ] ≃ −564+38
−43

+173
−312

+137
−208

For the present universe:

• Cosmic age: t0 ≃ 13.6 Gyr

• Horizon scale: H−1
0 ≃ 4.5 Gpc



log10[γ (Gyr−1Gpc−3)] on mh vs. mt plane (with µ = 1/R)
[Chigusa, TM & Shoji, in preparation]
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• Instability: γ > H4
now

• Metastability: γ < H4
now

• Absolute stability: λ > 0



5. Case with Extra Matters



Let us consider vector-like fermions coupled to H

L = LSM + yψHψLψR + yψ̄H
∗ψ̄Lψ̄R +Mψψ̄LψL +Mψψ̄RψR + · · ·

RGE for λ

= + + ...λ(μ)
H

H*

H*

H

ψ

SM

dλ

d lnµ
=

[
dλ

d lnµ

]
SM

− 1

4π2
∑
ψ

N
(ψ)
C y4ψ + · · ·

With extra fermions, λ may become smaller (at high scale)

⇒ Enhancement of the decay rate

C.f., γ = Ae−B with B =
8π2

3|λ|



Case 1: Down-quark-like colored fermions

⇒ ψL(3,2, 1/6) and ψR(3̄,1,−1/3)

• ϕ̄(max)
C =MPl

PRELIMINARY

⇒ Yukawa coupling larger than ∼ 0.4− 0.5 is dangerous



Case 2: Charged-lepton-like fermions

⇒ ψL(1,2, 1/2) and ψR(1,1,−1)

• ϕ̄(max)
C =MPl

PRELIMINARY



Case 3: Right-handed neutrino

L = LSM + yνHℓLν
c
R +

1

2
Mνν

c
Rν

c
R + · · ·

• ϕ̄(max)
C =MPl

PRELIMINARY



6. Summary



I have discussed the decay rate of the EW vacuum

Path integrals over the dilatational and gauge zero modes
are properly performed

Numerical result

log10[ γ (Gyr−1Gpc−3) ] ≃ −564+38
−43

+173
−312

+137
−208

The decay rate is extremely small: γ ≪ H4
0

⇒ We will fall into another vacuum if we wait ∼ 10562 Gyr
(assuming that the dark energy is cosmological constant)

Extra fermions may change the above conclusion

⇒ y >∼ 0.4− 0.6 is dangerous



Back Up



Functional determinant for operators defined in 0 ≤ r ≤ r∞

DetM ≃
∏
n
ωn with



Mρn = ωnρn with M = −∆J + δW (r)

ρn(0) <∞

ρn(r∞) = 0

We introduce a function f which obeys: Mf(r;ω) = ωf(r;ω)

• f(r = r∞;ω)|ω=ωn
= 0

• Det(M− ω)|ω=ωn
= 0

f (r; ω)

r

O r

ω = ωn

ω = ωn

8



Gelfand-Yaglom theorem
[Gelfand & Yaglom; Coleman; Dashen, Hasslacher & Neveu; Kirsten & McKane; · · ·]

Det(M− ω)

Det(M̂ − ω)
=
f(r = r∞;ω)

f̂(r = r∞;ω)
with



Mf(r;ω) = ωf(r;ω)

M̂f̂(r;ω) = ωf̂(r;ω)

f(r = 0) = f̂(r = 0) <∞

⇒ Notice: LHS and RHS have the same analytic behavior

• LHS and RHS have same zeros and infinities

• LHS and RHS becomes equal to 1 when ω → ∞

We take r∞ → ∞ at the end of calculation

⇒ The results converge (in the case of our interest)


