

Cosmology with the Cosmic Microwave Background the Planck view

Marina Migliaccio SSDC – ASI & INFN, Rome, Italy On behalf of the Planck Collaboration

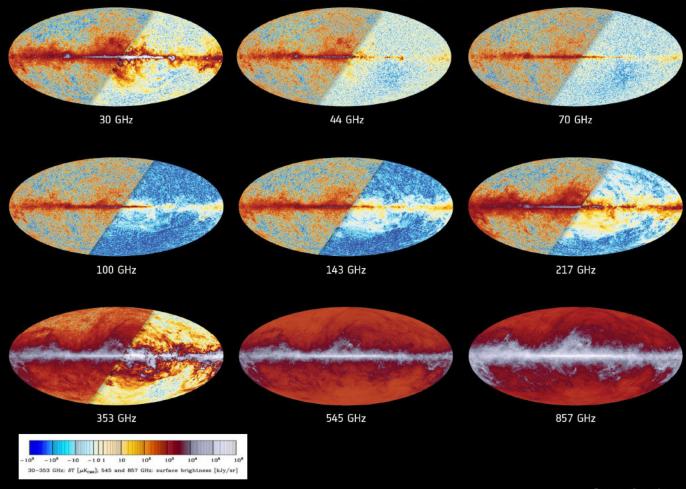
PACIFIC 2018 - 18th February 2018

May 2009: Launched from Kourou

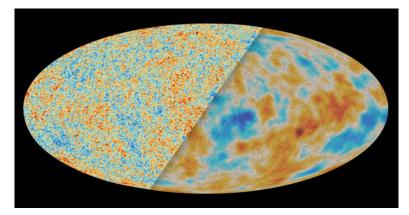
Mar 2013: Data Release and Cosmology Results Nominal Mission Temperature data

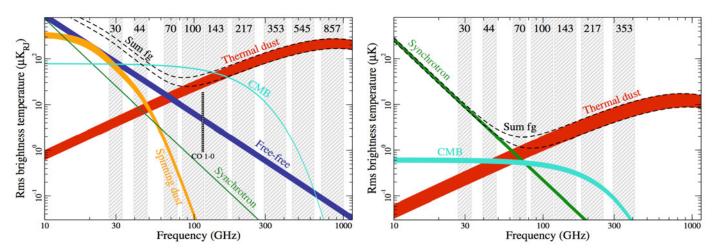
32 papers

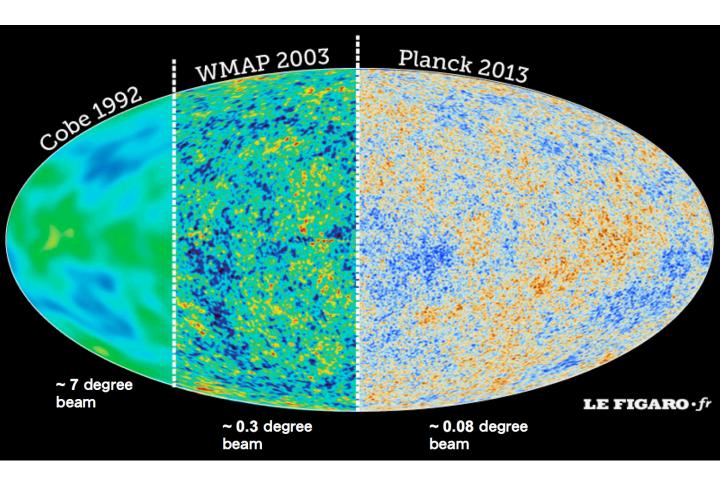
Oct 2013: Planck 'Shut Down'

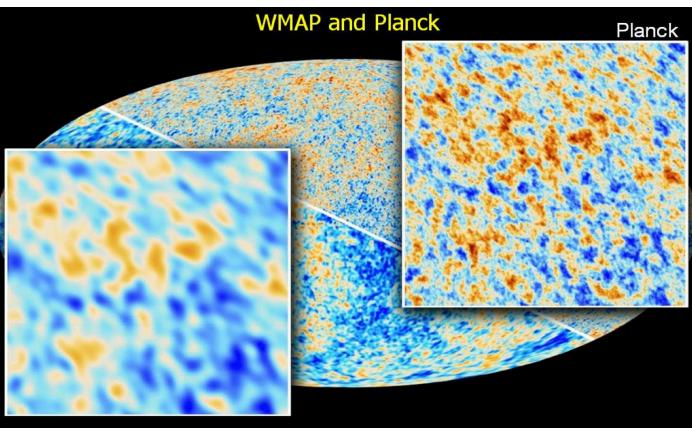

55 papers / intermediate results

28 papers Feb 2015: Data Release and Cosmology Results Full Mission Temperature and (preliminary) Polarization data

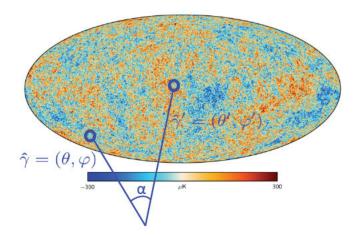

2018: Legacy Data & Paper Release


THE SKY AS SEEN BY PLANCK




UNVEILING THE CMB SKY

The *ultimate* measurement of the CMB temperature anisotropy field



WMAP

STATISTICAL DESCRIPTION — AT SMALL ANGULAR SCALES

CORRELATION FUNCTIONS

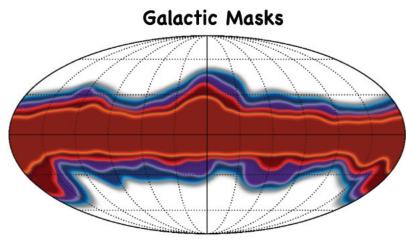
 $C(\alpha) \equiv \left\langle \frac{\Delta T}{T}(\hat{\gamma}) \frac{\Delta T}{T}(\hat{\gamma}') \right\rangle \quad \longleftarrow \quad \text{from Inflation}$ $\left\langle \frac{\Delta T}{T}(\vec{\gamma}) \frac{\Delta T}{T}(\vec{\gamma}') \frac{\Delta T}{T}(\vec{\gamma}'') \right\rangle$ $\left\langle \frac{\Delta T}{T}(\vec{\gamma}) \frac{\Delta T}{T}(\vec{\gamma}') \frac{\Delta T}{T}(\vec{\gamma}'') \frac{\Delta T}{T}(\vec{\gamma}''') \right\rangle$

POLARIZATION

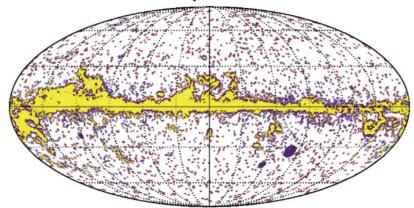
 $\begin{aligned} \mathbf{P}(\hat{\gamma}) &= \nabla \mathbf{E} + \nabla \times \mathbf{B} \\ \text{E-modes: even under parity} \end{aligned}$

. . .

E-modes: even under parity
 B-modes: odd under parity


Density perturbations -> E-modes Gravitational Waves -> E- and B-modes

E modes


B modes

Masks used for the high- ℓ analysis.

	Frequency									Mask		
	[GHz]							Temperature	Polarization			
100										T66	P70	
143											P50	
217		•								T47	P41	

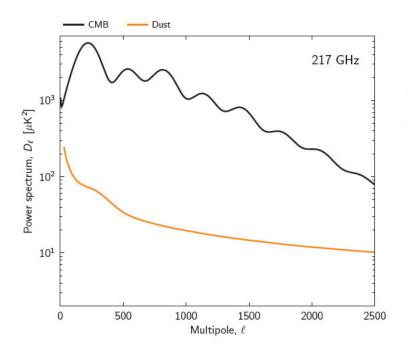
CO and Compact Source Mask

PARAMETRIC MODEL

$$-\ln \mathcal{L}(\hat{\boldsymbol{C}}|\boldsymbol{C}(\theta)) = \frac{1}{2} \left[\hat{\boldsymbol{C}} - \boldsymbol{C}(\theta) \right]^{\mathsf{T}} \mathsf{C}^{-1} \left[\hat{\boldsymbol{C}} - \boldsymbol{C}(\theta) \right] + \text{const.}$$

16 spectra in total

$$\hat{\boldsymbol{C}} = \left(\hat{\boldsymbol{C}}^{TT}, \hat{\boldsymbol{C}}^{EE}, \hat{\boldsymbol{C}}^{TE}\right)$$


$$\hat{\boldsymbol{C}}^{TT} = \left(\hat{\boldsymbol{C}}^{TT}_{100\times100}, \hat{\boldsymbol{C}}^{TT}_{143\times143}, \hat{\boldsymbol{C}}^{TT}_{143\times217}, \hat{\boldsymbol{C}}^{TT}_{217\times217}\right)$$

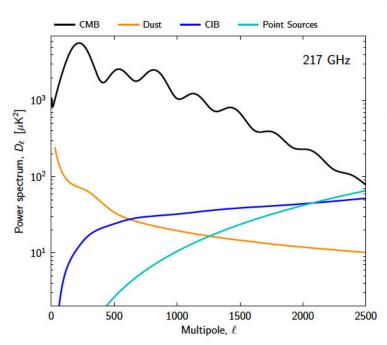
$$\hat{\boldsymbol{C}}^{EE} = \left(\hat{\boldsymbol{C}}^{EE}_{100\times100}, \hat{\boldsymbol{C}}^{EE}_{100\times143}, \hat{\boldsymbol{C}}^{EE}_{100\times217}, \hat{\boldsymbol{C}}^{EE}_{143\times143}, \hat{\boldsymbol{C}}^{EE}_{143\times217}, \hat{\boldsymbol{C}}^{EE}_{217\times217}\right)$$

$$\hat{\boldsymbol{C}}^{TE} = \left(\hat{\boldsymbol{C}}^{TE}_{100\times100}, \hat{\boldsymbol{C}}^{TE}_{100\times143}, \hat{\boldsymbol{C}}^{TE}_{100\times217}, \hat{\boldsymbol{C}}^{TE}_{143\times143}, \hat{\boldsymbol{C}}^{TE}_{143\times217}, \hat{\boldsymbol{C}}^{TE}_{217\times217}\right)$$

 $C(\theta)$ = CMB theoretical spectra plus physically motivated templates for the foregrounds θ = {cosmological and nuisance (foreground and instrumental) parameters}

PARAMETRIC FOREGROUND MODEL

Galactic Dust Model

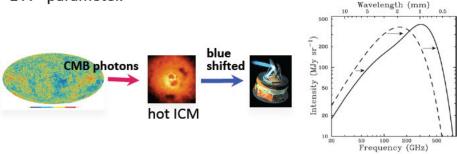

 $\left(C_{\nu \times \nu'}^{XY,\text{dust}}\right)_{\ell} = A_{\nu \times \nu'}^{XY,\text{dust}} \times C_{\ell}^{XY,\text{dust}}$

Temperature

 C_{ℓ}^{dust} from 545 GHz, 4 A^{dust} parameters **Polarization**

C_l^{dust} from 353 GHz, 12 A^{dust} parameters

PARAMETRIC FOREGROUND MODEL

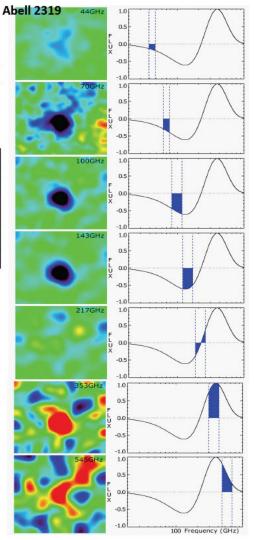


Unresolved Extragalactic Sources

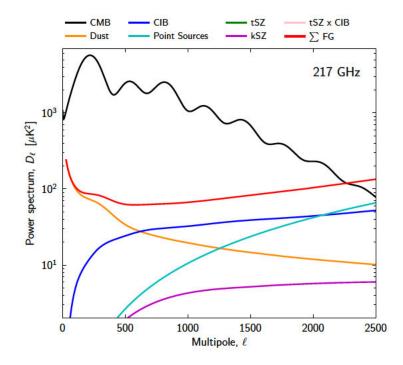
- Shot noise from Poisson fluctuations in the number density of point sources. C_{ℓ}^{PS} and 4 A^{PS} parameters
- Power due to clustering of highredshift dusty star forming galaxies that trace large-scale structures: Cosmic Infrared Background (Planck Collaboration XXX. 2014,A&A, 571, A30). C^{CIB} and 1 A^{CIB} parameter

SUNYAEV-ZEL'DOVICH EFFECT

Thermal SZ: Signal caused by inverse-Compton scattering of CMB photons (~ 3 meV) by the hot plasma in clusters of galaxies (~ a few keV). C_l^{tSZ} from Efstathiou & Migliaccio 2012, 1 A^{SZ} parameter.

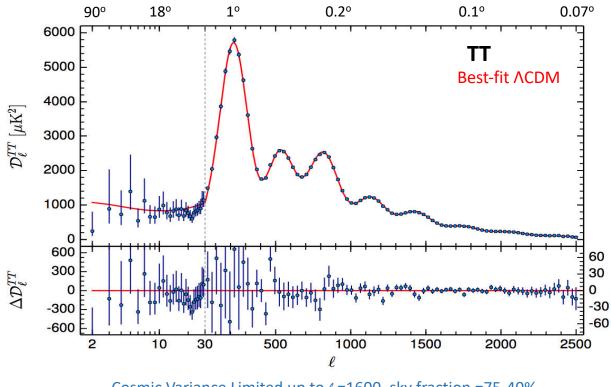


Kinetic SZ: CMB photons are scattered by electrons in bulk motion. C_{ℓ}^{kSZ} from Trac, Bode & Ostriker 2011, 1 A^{kSZ} parameter.

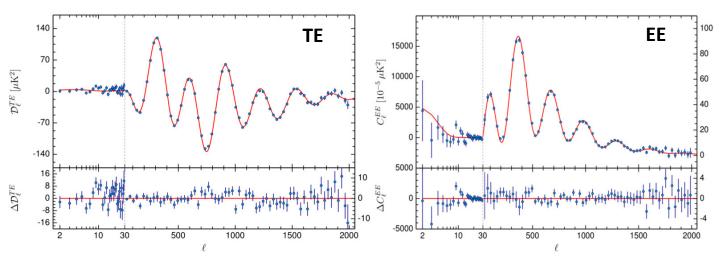

We also impose the 2D prior derived from a joint analysis with ACT and SPT

$$\mathcal{D}_{\ell}^{k\mathrm{SZ}} + 1.6\,\mathcal{D}_{\ell}^{t\mathrm{SZ}} = (9.5\pm3)\,\mu\mathrm{K}^2$$

tSZ x CIB: correlation between the tSZ and CIB sources. $C_l^{\text{tSZ x CIB}}$ model from Addison et al. 2012. 1 A^{tSZ x CIB} parameter



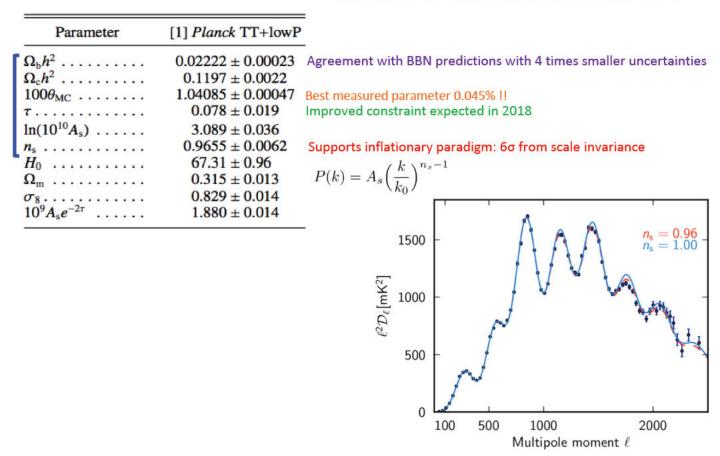
PARAMETRIC FOREGROUND MODEL


After fitting and removing the foreground model to the data, we find a very good agreement among the CMB angular power spectra estimated from different frequencies. Each of them is a good fit to the ACDM model.

CMB TEMPERATURE POWER SPECTRUM

Cosmic Variance Limited up to ℓ =1600, sky fraction =75-40% As good as it gets for cosmological parameters ACDM is an excellent fit to Planck data: χ^2 = 2545 with 2479 d.o.f. \rightarrow PTE = 17%

POLARIZATION POWER SPECTRA



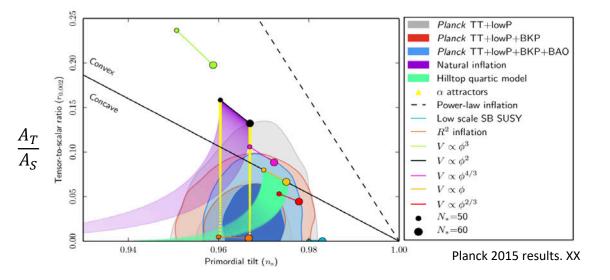
Red line is the best-fit cosmology from temperature data: success of the Λ CDM model Residual low level systematics are still unaccounted for O(1 uK²) (e.g., T \rightarrow P leakage,...)

Base **ACDM**

Fully described by 6 parameters

High precision: parameter estimates even better than 1% Improves on pre-Planck constraints by a factor 1.5 - 2

INFLATIONARY GRAVITATIONAL WAVES

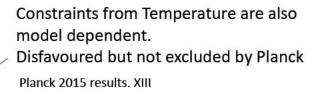

Upper limits on primordial tensor modes. The constraints from Planck temperature are already cosmic variance limited.

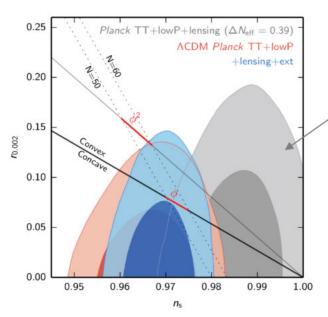
To improve we need direct detection of primordial B-modes.

Bicep2/Keck Array + Planck BB r_{0.05} < 0.09 @95% CL constraints from B-modes alone are already stronger than temperature

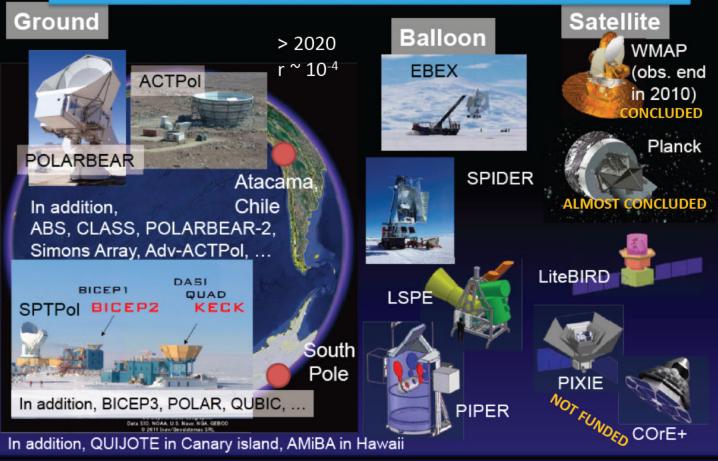
Bicep2/Keck Array + Planck BB & TT r_{0.05} < 0.07 @95% CL

Phys. Rev. Lett. 116 (2016)


INFLATIONARY GRAVITATIONAL WAVES


Upper limits on primordial tensor modes. The constraints from Planck temperature are already cosmic variance limited.

To improve we need direct detection of primordial B-modes.


Bicep2/Keck Array + Planck BB r_{0.05} < 0.09 @95% CL constraints from B-modes alone are already stronger than temperature

Bicep2/Keck Array + Planck BB & TT r_{0.05} < 0.07 @95% CL Phys. Rev. Lett. 116 (2016)

PRESENT AND FORTHCOMING CMB PROBES

Base **ACDM**

Fully described by 6 parameters

High precision: parameter estimates even better than 1% Improves on pre-Planck constraints by a factor 1.5 - 2

	(68% CL)
Parameter	[1] Planck TT+lowP
$\Omega_{\rm b}h^2$	0.02222 ± 0.00023
$\Omega_{\rm c}h^2$	0.1197 ± 0.0022
100θ _{MC}	1.04085 ± 0.00047
τ	0.078 ± 0.019
$\ln(10^{10}A_{\rm s})$	3.089 ± 0.036
<i>n</i> _s	0.9655 ± 0.0062
H_0	67.31 ± 0.96
Ω _m	0.315 ± 0.013
σ_8	0.829 ± 0.014
$10^9 A_{\rm s} e^{-2\tau}$	1.880 ± 0.014

No evidence for curvature

 $Y_P = 0.252^{+0.041}_{-0.042}$

 $\Omega_k = -0.052^{+0.049}_{-0.055}$

 $\frac{d\mathbf{n_s}}{d\mathbf{ln}k} = -0.008 \pm 0.016$

 $w = -1.54_{-0.50}^{+0.62}$

In agreement with measurements of primordial abundances and BBN predictions

Consistent with no running of the spectral index

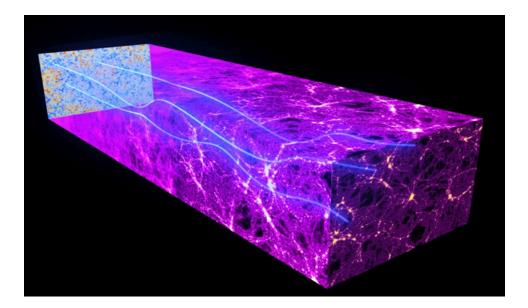
Dark Energy EoS compatible with a cosmological constant

Planck TT + LowP (95% Confidence Regions)

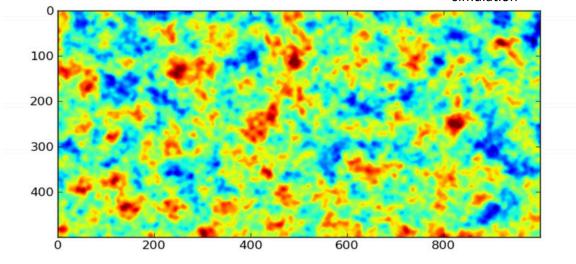
Base **ACDM**

Parameter	[1] Planck TT+lowP	[2] Planck TE+lowP	[3] Planck EE+lowP	[4] Planck TT, TE, EE+lowP
$\Omega_{\rm b}h^2$	0.02222 ± 0.00023	0.02228 ± 0.00025	0.0240 ± 0.0013	0.02225 ± 0.00016
$\Omega_{\rm c}h^2$	0.1197 ± 0.0022	0.1187 ± 0.0021	$0.1150^{+0.0048}_{-0.0055}$	0.1198 ± 0.0015
100θ _{MC}	1.04085 ± 0.00047	1.04094 ± 0.00051	1.03988 ± 0.00094	1.04077 ± 0.00032
τ	0.078 ± 0.019	0.053 ± 0.019	$0.059^{+0.022}_{-0.019}$	0.079 ± 0.017
$\ln(10^{10}A_{\rm s})$	3.089 ± 0.036	3.031 ± 0.041	$3.066^{+0.046}_{-0.041}$	3.094 ± 0.034
<i>n</i> _s	0.9655 ± 0.0062	0.965 ± 0.012	0.973 ± 0.016	0.9645 ± 0.0049
H_0	67.31 ± 0.96	67.73 ± 0.92	70.2 ± 3.0	67.27 ± 0.66
Ω _m	0.315 ± 0.013	0.300 ± 0.012	$0.286^{+0.027}_{-0.038}$	0.3156 ± 0.0091
σ_8	0.829 ± 0.014	0.802 ± 0.018	0.796 ± 0.024	0.831 ± 0.013
$10^9 A_{\rm s} e^{-2\tau}$	1.880 ± 0.014	1.865 ± 0.019	1.907 ± 0.027	1.882 ± 0.012

Almost independent determinations from polarized spectra - good consistency

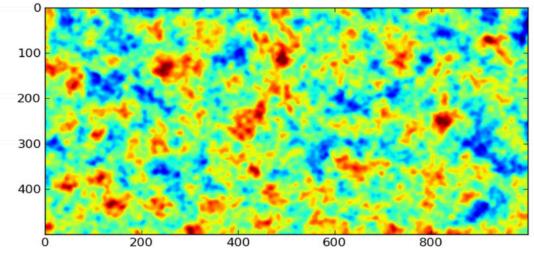

TT \rightarrow EE at most 1 σ shifts

TT \rightarrow TE at most 0.5 σ shifts

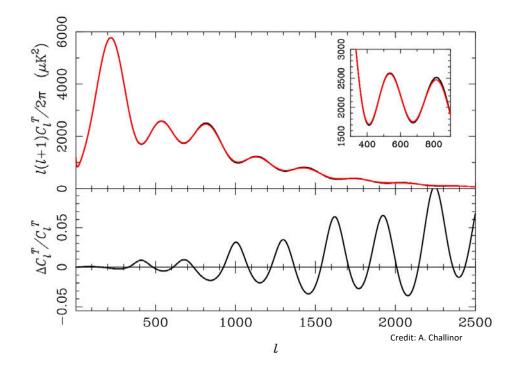

TE results are already almost as powerful as TT

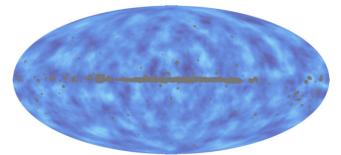
The good agreement of the angular power spectra was shown in a previous slide

The gravitational tug of the intervening large scale structure distorts photon paths. Deflections \sim 2 arcmin, coherent over 2 degree scales. A subtle effect that may be measured statistically with high angular resolution, low-noise observations of the CMB, like those from Planck.

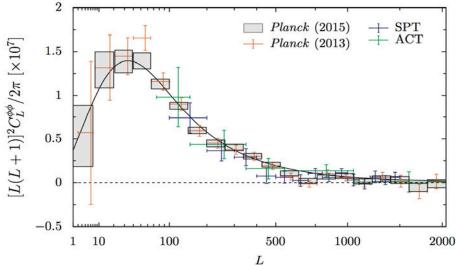

The gravitational tug of the intervening large scale structure distorts photon paths. Deflections \sim 2 arcmin, coherent over 2 degree scales. A subtle effect that may be measured statistically with high angular resolution, low-noise observations of the CMB, like those from Planck.

simulation


UNLENSED


The gravitational tug of the intervening large scale structure distorts photon paths. Deflections \sim 2 arcmin, coherent over 2 degree scales. A subtle effect that may be measured statistically with high angular resolution, low-noise observations of the CMB, like those from Planck.

simulation


LENSED

Deflections induce a distinctive non-Gaussianity -> 4pt correlation function -> gravitational potential

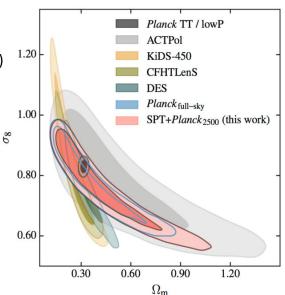
Planck 2015 results. XV

Amplitude constrained to ~ 2.5% 40 sigma detection

Breaks degeneracies in constraining: Dark Matter, Large scale structure evolution, Curvature, Neutrino masses, ...

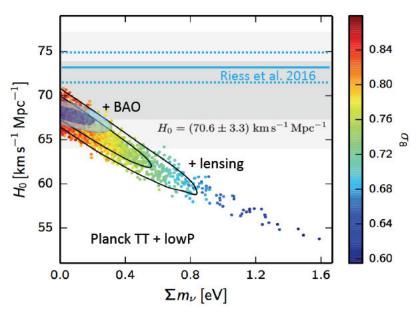
ACDM: a success story...

Good agreement between Planck CMB Temperature, Polarization and Lensing


Planck measurements consistent with other CMB experiments (e.g. WMAP, ACT and SPT), with Baryon Acoustic Oscillation, Type Ia SN.

Tensions with some low-z observables

PLANCK $H_0 = 67.31 \pm 0.96 \text{ km s}^{-1}\text{Mpc}^{-1}$ (PlanckTT+LFI LowP) $H_0 = 66.88 \pm 0.91 \text{ km s}^{-1}\text{Mpc}^{-1}$ (PlanckTT+HFI LowP)

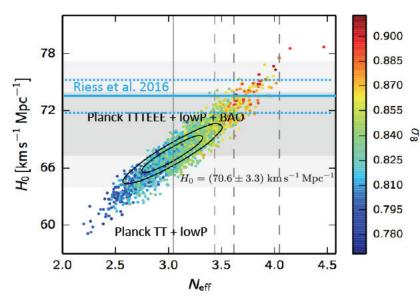

DIRECT MEASUREMENTS (Riess et al. 2016) $H_0 = 73.24 \pm 1.74 \text{ km s}^{-1}\text{Mpc}^{-1}$

 σ_8 from Planck > estimates from optical weak lensing surveys and (possibly) large galaxy clusters number counts.

G. Simard et al. SPT Collaboration 2018

Can deviations in the neutrino sector reconcile the tensions?

Massive neutrinos damp the amplitude of matter fluctuations but are not enough to solve the tension with Large-Scale Structure measurements of σ_8


Larger neutrino masses increase the tension with direct H_0 measurements

Planck TT + lowP Σm_v < 0.71 eV (95% CL) Planck 2015 + BOSS Lyman-α $\Sigma m_v < 0.12 \text{ eV} (95\% \text{ CL})$ (Palanque-Delabrouille et al. 2015) Planck 2015 + BOSS DR12 $\Sigma m_v < 0.16 \text{ eV} (95\% \text{ CL})$ (BOSS collab. 2016)

Can deviations in the neutrino sector reconcile the tensions?

Extra relativistic degrees of freedom in the early Universe. E.g. due to sterile neutrinos, neutrino/antineutrino asymmetry, other dark relics

$$\rho_{\rm rad} = \rho_{\gamma} + \rho_{\nu} = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\rm eff}\right] \rho_{\gamma}$$

 $N_{\rm eff}$ = 3.04 ± 0.18 (PlanckTTTEEE+lowP+BAO) N_{eff} > 0 ~ 15 σ detection of the v background N_{eff} = 4 excluded at ~ 5 σ

> Higher N_{eff} provides a better agreement with direct H_0 measurements, but increases tension with measurements of σ_8 from Large-Scale Structure

SUMMARY

- ✓ Planck temperature data are more precise than those from any previous CMB experiment -> Ultimate (cosmic variance limited) measurement of CMB anisotropy
- ✓ Main Goal fulfilled: Cosmological parameters determined at unprecedented sub-% precision
- ✓ Opened a new window on polarized foregrounds and CMB polarization science
- \checkmark First results from polarization in good agreement with temperature
- ✓ Planck has set the bar high: and yet we find no compelling evidence for new physics beyond the base inflationary ∧CDM model of Cosmology
 → if there are deviations they ought to be small and challenging to detect
- ✓ There are some tensions with astrophysical low-z measurements, which may or may not hint at new physics. At present, simple extensions to ∧CDM cannot explain all of them.
- ✓ The Planck Legacy Release is approaching (2018)

Acknowledgements: the scientific results presented here are a product of the Planck Collaboration, including individuals from more than 100 institutes in Europe, the USA and Canada.

THANK YOU