

Recent progresses on *the cosmogenic neutrino* searches and *the multi-messenger view with neutrinos*

Aya Ishihara

PACIFIC-2018, Hokkaido, Japan

February 16, 2018

The origin of extragalactic cosmic-rays

Neutrino as a cosmic messenger

Weak interaction during "propagation"

- Penetration power
- Pointing capability

Unsocial neutrino unites UHE sky

Simple modeling ingredients

- pp or p γ interaction
- cosmic-ray and target spectra in source

Directly accompanying partners

- gamma-ray from neutral pions
- parent cosmic-rays
- Indirectly accompanying partners
 - radiations optical, x-ray
 - Gravitational waves

Multi-messenger !

Detection Principle

An array of photomultiplier tubes + Dark and transparent material

Charged Cherenkov light Particles

High energy neutrino signal channels

Extremly-High energy neutrino signal

Cosmogenic neutrinos

Decay

Induced by the off-source (<50Mpc) interactions of UH cosmicrays (>10^{19.5}eV) and CMB photons via GZK (Greisen-Zatsepin-Kuzmin) mechanism

cosmic-ray

CMB photon

⇒PeV-100EeV neutrinos

EHE Neutrinos tell us about the hidden Universe

Constraints on UHECR source parameters

Non detection of >10PeV events in 7 years of IceCube data constraints on cosmological evolution parameters of UHECR sources

model predictions cosmogenic neutrinos:7 year rates (IceCube)

•	UHECR sources evolve more slowly than SFR
	assuming proton composition

• Otherwise limits on proton component of UHECR flux

Limits on neutrino flux above 10PeV

Constraints on UHE astrophysical power-law (E⁻²) flux

The latest differential limits above 10PeV Proceedings of ICRC2017 PoS (ICRC2017)975

Neutrino events above PeV(=10¹⁵eV)

- 9 year data based extremely-high energy neutrino analysis
- two events observed

ICRC2017, TeVPA2017

particle shower event 2016 data reconstructed energy deposit **6.0±0.3 PeV** number of photoelectrons 200,000pe (the brightest to date)

ATEL #7856 The Astronomer's Telegram

A upward-going track with the highest energy deposit 2014 data reconstructed energy deposits **2.6±0.3 PeV** number of photo electrons 130,000pe

Glashow Resonance?

The next move on cosmogenic v detection: ARA

• Successful deployment of already data taking 5 stations next to IceCube!!

- Sensitivity will be comparable to IceCube @ 10¹⁸ eV
- A combined analysis will double the effective detection volume of cosmogenic v at the South Pole
- On-going effort to lower energy threshold toward PeV by "phased array" of antennas

Possible near future target model

AGN in the large scale cluster model: consistent with Auger composition, Kascade-Grande light composition, fermi EGB fluxes ...and IceCube neutrino flux

A factor of ~two better sensitivity than the current IceCube sensitivity allow us to reach

HE neutrino flux with upward-going muons

Constraints on «γ-bright» source models

AGN Blazer spacial correlation

 The equal-weighting upper limit results in a maximally4.5%-5.7% contribution of the total Fermi blazar sample to the astrophysical neutrino flux – no continuous emission from blazar?

GRB time/space correlation

contribute **no more than 1%** of the observed diffuse flux

$$\Phi_{\nu}(E_{\nu}) = \Phi_{0} \times \begin{cases} \varepsilon_{b}^{-1} E_{\nu}^{-1}, & E_{\nu} \leq \varepsilon_{b} \\ E_{\nu}^{-2}, & \varepsilon_{b} < E_{\nu} \leq 10\varepsilon_{b} \\ E_{\nu}^{-4} (10\varepsilon_{b})^{2}, & 10\varepsilon_{b} < E_{\nu}, \end{cases}$$

pp or py?

Neutrino online alert

« Public » aleart channels

Private alerts for	specific telescopes:	low energy threshold.	more background rates

Alert	Event type	Coverage	thres E [TeV]	Median Ang Res [deg]	Time window	Alert rate Sig+BG/yr
GFU	ν_{μ} track multiplets	All sky	~ 0.1	<1	variable, max 21d	∼2BGs
O(X)FU	up ν_{μ} track multiplets	Northern sky	∼0.1	<1	100s	Varies

EHE alert event selection

« Public » aleart history

• April 2016 - the end of 2017: 6 EHE alerts and 8 HESE alerts with 1 overlapping event

AMON ICECUBE_EHE EVENTS – Since June 2016 archived at <u>https://gcn.gsfc.nasa.gov/amon_ehe_events.html</u>						
EventNum_RunNum	Date	Time UT	RA	Dec	Error(arcmin)	Signalness
<u>17569642 130214</u>	17/11/06	20:54:30.43	340.2500	+7.3140	14.99	0.74593
50579430 130033	17/09/22	18:39:39.21	77.2853	+5.7517	14.99	0.56507
80305071 129307	17/03/21	07:32:20.69	98.3268	-14.4861	19.48	0.2801
80127519_128906	16/12/10	20:06:40.31	46.5799	+14.9800	60.00	0.49023
26552458 128311	16/08/06	12:21:33.00	122.7980	-0.7331	6.67	0.28016
► <u>6888376_128290</u>	16/07/31	01:55:04.00	214.5440	-0.3347	20.99	0.84879

	AMON ICECUBE_HESE EVENTS – Since April 2016 archived at https://gcn.gsfc.nasa.gov/amon_hese_events.html							
	EventNum_RunNum	Date	Time UT	RA	Dec	Error	Charge	SignalTr
	<u>34032434_130171</u>	17/10/28	08:28:14.81	275.0760	+34.5011	534.0	6317.82	0.30
	<u>56068624 130126</u>	17/10/15	1:34:30.06	162.5790	-15.8611	73.79	13906.14	0.51
	<u>32674593 129474</u>	17/05/06	12:36:55.80	221.6750	-26.0359	73.79	8685.07	0.35
	<u>65274589_129281</u>	17/03/12	13:49:39.83	304.7300	-26.2380	73.79	8858.64	0.78
	<u>38561326_128672</u>	16/11/03	09:07:31.12	40.8252	+12.5592	66.00	7546.05	0.30
	<u>58537957_128340</u>	16/08/14	21:45:54.00	199.3100	-32.0165	89.39	10431.02	0.12
-	<u>6888376_128290</u>	16/07/31	01:55:04.00	215.1090	-0.4581	73.79	15814.74	0.91
	<u>67093193_127853</u>	16/04/27	05:52:32.00	240.5683	+9.3417	35.99	18883.62	0.92

The first GCN notice: HESE-160427A

- Event occurred at 27th April 2016 at **05:52:32**
- First notice sent on 27th April 2016 at 05:53:53
- Revised coordinates sent at 27th April 2016 at 23:24:24
- Event direction RA 16.04deg, Dec 9.34 deg, 90%CL 0.6deg
- Follow-up responses
 - ➢ GCN 19364 Fermi Gamma-Ray Burst Monitor No detection
 - GCN 19360 Fermi LAT 5 unrelated blazars
 - ➢ GCN 19361 HAWK no detection
 - ➢ GCN 19362 MASTER no detection
 - ➢ GCN 19377 VERITAS no detection
 - ➢ GCN 19392 iPalomar Transient Factory 3 transients, all AGN
 - ➢ GCN 19427 FACT Cherenkov TeV Telescope no detection
 - GCN 19426 Interplanetary Network no detection
 - GCN 19381 Pan-STARRS 6 SN candidates. The most interesting object is PS16cgx which is consistent with type Ic supernova at z = 0.1 - 0.2 exploded on/around April 27

The 5th EHE aleart: EHE-170922A

- Event occurred at 22nd Sept 2017 20:54:30 UTC
- First notice sent on 22nd Sept 2017 20:55:13 (43s later) ⇒ https://gcn.gsfc.nasa.gov/notices_amon/50579430_130033.amon
- Revised coordinates sent 4 hours later ⇒ GCN#21916
- Event direction RA 77.43^{+0.95}-0.65 deg, Dec +5.72^{+0.50}-0.30 deg, 90%CL
- Follow-up responses
 - ➤ GCN 21917 Integral No detection
 - ➢ GCN 21923/Atel 10773 ANTARES No detection
 - ➢ GCN 21924 HAWK no detection
 - ➢ GCN 21930 SWIFT XRT 9 x-ray emitters
 - ATel 10791 Fermi increased gamma-ray activity of TXS 0506+056 (RA 77.36 deg, Dec +5.69 deg)
 - ➤ ATel 10787 H.E.S.S. no detection
 - > ATel 10817 The First-time detection of VHE gamma rays by MAGIC
 -and observations and reports by many more telescopes: AGILE, ASAS-SN, Kapteyn, Kanata, Kiso, Liverpool, Subaru, VERITAS, VLA

The recent most hot alert: EHE-170922A

- Event occurred at 22nd Sept 2017 at 20:54:30 UTC
 - > ATel 10791 Fermi increased gamma-ray activity of TXS 0506+056(3FGL J0509.4+0541)

> ATel 10817 – The First-time detection of VHE gamma rays by MAGIC

MAGIC observed this source under good weather conditions for 12 h of observations from September 28th till October 3rd. ...and a 5 sigma detection above 100 GeV was achieved!

The first time measurement of VHE gamma-ray from a direction consistent with a detected neutrino event

The recent most hot object: TXS 0506+056

Distance to TXS 0506+056?

Paiano et al. (2018): the 10.4m Gran Telescopio Canarias, an optical spectroscopy

 \Rightarrow z = 0.3365 +/- 0.0010

consistent with VHE gamma-ray observations

Summary

- Cosmogenic neutrino search with 7+2 years of IceCube data
- Stringent upper limits on neutrino above 10 PeV with an interesting event at 6 PeV
- Constraints on source parameters
 - Proton dominant UHECR sources with cosmological evolution equal to or stronger than SFR disfavored - UL on proton components
- Quick and robust event selections for diffuse analyses HESE and EHE lead to on-ice "real time" *semi*-automated event alert system with high signallikeness – with ~8 events/year rate
- The first association with the wide wavelength flaring AGN which is also VHE gamma-ray emitting object