From a Massive to a Partially Massless (PM)
 Graviton
 on Curved Space-times

1. Massive gravity 101:

Massive graviton on
Einstein space-times

PACIFIC 2018

Kiroro, Feb the 18th 2018.
Cédric Deffayet
(IAP and IHÉS, CNRS Paris)

FP7/2007-2013
«NIRG " project no. 307934
2. Massive graviton on arbitrary
spacetimes. L. Bernard, C.D., M. von Strauss + A. Schmidt-May (2015-2016, PRD, JCAP)
3. PM graviton on non Einstein spacetimes.

> L. Bernard, C.D., K. Hinterbichler and M. von Strauss arXiv:1703.02538 (PRD)

1. Massive gravity 101:

Fierz-Pauli linear theory for an Einstein space-time
Consider an Einstein space-time obeying $R_{\mu \nu}=\Lambda g_{\mu \nu}$

Fierz-Pauli theory (1939)

is the (only correct) theory of a massive graviton $h_{\mu \nu}$ which propagates on this space-time

1. Massive gravity 101:

Fierz-Pauli linear theory for an Einstein space-time

Consider an Einstein space-time obeying $R_{\mu \nu}=\Lambda g_{\mu \nu}$
Fierz-Pauli theory is defined by
Fierz-Pauli (1939), Deser Nepomechie (1984), Higuchi (1987),
Bengtsson (1995), Porrati (2001)
Field equations $E_{\mu \nu} \simeq 0$
on shell

$$
E_{\mu \nu} \equiv \mathcal{D}_{\mu \nu}^{\rho \sigma} h_{\rho \sigma}-\Lambda\left(h_{\mu \nu}-\frac{1}{2} g_{\mu \nu} h\right)+\frac{m^{2}}{2}\left(h_{\mu \nu}-g_{\mu \nu} h\right)
$$

$$
E_{\mu \nu} \equiv \mathcal{D}_{\mu \nu}^{\rho \sigma} h_{\rho \sigma}-\Lambda\left(h_{\mu \nu}-\frac{1}{2} g_{\mu \nu} h\right)+\frac{m^{2}}{2}\left(h_{\mu \nu}-g_{\mu \nu} h\right)
$$

Comes from expanding the
Einstein-Hilbert action $\int d^{4} x \sqrt{-g}(R-2 \Lambda)$

$$
E_{\mu \nu} \equiv \mathcal{D}_{\mu \nu}{ }^{\rho \sigma} h_{\rho \sigma}-\Lambda\left(h_{\mu \nu}-\frac{1}{2} g_{\mu \nu} h\right)+\frac{m^{2}}{2}\left(h_{\mu \nu}-g_{\mu \nu} h\right)
$$

Comes from expandina the
Einstein-H
Analogous to Proca equations for a massive photon :
$\partial_{\mu} F^{\mu \nu}+m^{2} A^{\nu}=0$

$$
E_{\mu \nu} \equiv \mathcal{D}_{\mu \nu}^{\rho \sigma} h_{\rho \sigma}-\Lambda\left(h_{\mu \nu}-\frac{1}{2} g_{\mu \nu} h\right)+\frac{m^{2}}{2}\left(h_{\mu \nu}-g_{\mu \nu} h\right)
$$

Comes from expanding the
Einstein-Hilbert action $\int d^{4} x \sqrt{-g}(R-2 \Lambda)$
Interest: Cosmology ?
The mass term leads to a large distance modification of gravity
(C.D., Dvali, Gabadadze 2001)

DOF (= « polarizations ») counting

The Fierz Pauli theory for a massive graviton of mass m propagates

Massless graviton (of GR)

DOF (= « polarizations ») counting

The Fierz Pauli theory for a massive graviton of mass m propagates

Massless graviton (of GR)
Generic massive graviton

- 5 DOF if $m \neq 0$ and $m^{2} \neq 2 \Lambda / 3$

DOF (= « polarizations ») counting

The Fierz Pauriheory for a massive graviton of mass m propa es

$$
\partial_{\mu} F^{\mu \nu}+m^{2} A^{\nu}=0
$$

- 5 DC the Proca «photon» has 3 polarizations

DOF (= « polarizations ») counting

The Fierz Pauli theory for a massive graviton of mass m propagates

Massless graviton (of GR)
Generic massive graviton

- 5 DOF if $m \neq 0$ and $m^{2} \neq 2 \Lambda / 3$

DOF (= « polarizations ») counting

The Fierz Pauli theory for a massive graviton of mass m propagates

Massless graviton (of GR)
Generic massive graviton

- 5 DOF if $m \neq 0$ and $\mathrm{m}^{2} \neq 2 \Lambda / 3$
- DOF if m^{2} Partially Massless
- 4 DOF if $m^{2}=2 \Lambda / 3$ graviton

How to count DOF ?

How to count DOF?

$E_{\mu \nu} \equiv \mathcal{D}_{\mu \nu}{ }^{\rho \sigma} h_{\rho \sigma}-\Lambda\left(h_{\mu \nu}-\frac{1}{2} g_{\mu \nu} h\right)+\frac{m^{2}}{2}\left(h_{\mu \nu}-g_{\mu \nu} h\right)$

Kinetic operator

Cosmological constant

Mass
term

Comes from expanding the
Einstein-Hilbert action $\int d^{4} x \sqrt{-g}(R-2 \Lambda)$
This implies the (Bianchi) offshell identities

$$
\nabla^{\mu}\left[\mathcal{D}_{\mu \nu}{ }^{\rho \sigma} h_{\rho \sigma}-\Lambda\left(h_{\mu \nu}-\frac{1}{2} g_{\mu \nu} h\right)\right]=0
$$

How to count DOF ?

Kinetic operator

Cosmological constant

Mass
term

Analogous to
$\partial_{\nu} \partial_{\mu} F^{\mu \nu}=0$
In Maxwell and Proca theories
This implies me (Dra, -uIshell identities

$$
\left.\nabla^{\mu}\left[\mathcal{D}_{\mu \nu}{ }^{\rho \sigma} h_{\rho \sigma}-\Lambda\left(h_{\mu \nu}-\frac{1}{2} g_{\mu \nu} h\right)\right]\right]^{\circ}=0
$$

Results in an the off-shell identity

$$
\nabla^{\mu} E_{\mu \nu}=\frac{m^{2}}{2}\left(\nabla^{\mu} h_{\mu \nu}-g^{\rho \sigma} \nabla_{\nu} h_{\rho \sigma}\right)
$$

Results in an the off-shell identity

$$
\nabla^{\mu} E_{\mu \nu}=\frac{m^{2}}{2}\left(\nabla^{\mu} h_{\mu \nu}-g^{\rho \sigma} \nabla_{\nu} h_{\rho \sigma}\right)
$$

And the on-shell relation

$$
\nabla^{\mu} h_{\mu \nu}-\nabla_{\nu} h \simeq 0
$$

4 vector
constraints

Kills 4 out of 10 DOF of $h_{\mu \nu}$

Results in an the off -anall Analogous to the constraint

$m^{2} \partial_{\nu} A^{\nu} \simeq 0$

of Proca theory
And the on-shell rem.

$$
\nabla^{\mu} h_{\mu \nu}-\nabla_{\nu} h \simeq 0
$$

4 vector constraints

Kills 4 out of 10 DOF of $h_{\mu \nu}$

Taking an extra derivative of the field equation operator yields (off shell)
$\nabla^{\mu} \nabla^{\nu} E_{\mu \nu}=\frac{m^{2}}{2}\left(\nabla^{\mu} \nabla^{\nu} h_{\mu \nu}-\nabla^{2} h\right)$

Taking an extra derivative of the field equation operator yields (off shell)
$\nabla^{\mu} \nabla^{\nu} E_{\mu \nu}=\frac{m^{2}}{2}\left(\nabla^{\mu} \nabla^{\nu} h_{\mu \nu}-\nabla^{2} h\right)$
While tracing it with the metric gives

$$
g^{\mu \nu} E_{\mu \nu}=\nabla^{2} h-\nabla^{\mu} \nabla^{\nu} h_{\mu \nu}+\left(\Lambda-\frac{3 m^{2}}{2}\right) h
$$

Taking an extra derivative of the field equation operator yields (off shell)
$\nabla^{\mu} \nabla^{\nu} E_{\mu \nu}=\frac{m^{2}}{2}\left(\nabla^{\mu} \nabla^{\nu} h_{\mu \nu}-\nabla^{2} h\right)$
While tracing it with the metric gives

$$
g^{\mu \nu} E_{\mu \nu}=\nabla^{2} h-\nabla^{\mu} \nabla^{\nu} h_{\mu \nu}+\left(\Lambda-\frac{3 m^{2}}{2}\right) h
$$

Hence we have the identity
$2 \nabla^{\mu} \nabla^{\nu} E_{\mu \nu}+m^{2} g^{\mu \nu} E_{\mu \nu}=\frac{m^{2}}{2}\left(2 \Lambda-3 m^{2}\right) h$
Yielding on shell

$$
\left(2 \Lambda-3 m^{2}\right) h \simeq 0
$$

$$
\left(2 \Lambda-3 m^{2}\right) h \simeq 0
$$

Generically: yields $h \simeq 0$
i.e. a "scalar constraint" $\mathcal{C} \equiv h \simeq 0$
reducing from 6 to 5 the
number of propagating DOF

$$
\left(2 \Lambda-3 m^{2}\right) h \simeq 0
$$

However, if $2 \Lambda=3 m^{2}$
Then this vanishes identically

$$
\left(2 \Lambda-3 m^{2}\right) h \simeq 0
$$

However, if $2 \Lambda=3 m^{2}$
Then this vanishes identically

$$
\text { As is } 2 \nabla^{\mu} \nabla^{\nu} E_{\mu \nu}+m^{2} g^{\mu \nu} E_{\mu \nu}
$$

$$
\left(2 \Lambda-3 m^{2}\right) h \simeq 0
$$

However, if $2 \Lambda=3 m^{2}$
Then this vanishes identically

$$
\text { As is } 2 \nabla^{\mu} \nabla^{\nu} E_{\mu \nu}+m^{2} g^{\mu \nu} E_{\mu \nu}
$$

Shows the existence of a gauge symmetry

$$
\Delta h_{\mu \nu}=\left(\nabla_{\mu} \nabla_{\nu}+\frac{m^{2}}{2} g_{\mu \nu}\right) \xi(x)=\left(\nabla_{\mu} \nabla_{\nu}+\frac{\Lambda}{3} g_{\mu \nu}\right) \xi(x)
$$

Hence, if $\quad 2 \Lambda=3 m^{2}$
one has 6-2 = 4 DOF

The massive graviton is said to be "Partially massless" (PM)

Two questions:

Can a fully non linear PM theory exist?

Can a PM graviton exist on
non Einstein space-times ?

Two questions:

Can a PM graviton exist on
non Einstein space-times ?

Here we address the second one...

First, we need to introduce the theory of a massive graviton on arbitrary backgrounds
2. Consistent massive graviton on arbitrary backgrounds

$$
\begin{aligned}
& S^{(2)}=- \frac{1}{2} M_{g}^{2} \int \mathrm{~d}^{4} x \sqrt{|g|} h_{\mu \nu}\left(\tilde{\mathcal{E}}^{\mu \nu \rho \sigma}+m^{2} \mathcal{M}^{\mu \nu \rho \sigma}\right) h_{\rho \sigma} \\
& \quad \begin{array}{l}
\text { Einstein-Hilbert } \\
\text { kinetic operator }
\end{array} \\
& \text { Mass term }
\end{aligned}
$$

The theory has been obtained in

L.Bernard, CD, M. von Strauss
$1410.8302+1504.04382$
+ 1512.03620 (with A. Schmidt-May)

out of the dRGT theory

de Rahm, Gabadadze; de Rham, Gababadze, Tolley 2010, 2011

Fully non linear theory for a dynamical metric + a non dynamical one which has been shown to propagate 5 (or less d.o.f.) in a fully non linear way ...
... evading Boulware-Deser no-go « theorem »

Our massive graviton theory is defined by

Our massive graviton theory is defined by

1. A symmetric tensor $S_{\mu \nu}$ obtained from the background curvature solving
$R^{\mu}{ }_{\nu}=m^{2}\left[\left(\beta_{0}+\frac{1}{2} e_{1} \beta_{1}\right) \delta_{\nu}^{\mu}+\left(\beta_{1}+\beta_{2} e_{1}\right) S_{\nu}^{\mu}-\beta_{2}\left(S^{2}\right)^{\mu}{ }_{\nu}\right]$
with β_{0}, β_{1} and β_{2} dimensionless parameters and m the graviton mass, e_{i} the symmetric polynomials

$$
\left\{\begin{array}{l}
e_{0}=1, \\
e_{1}=S_{\rho}^{\rho}, \\
e_{2}=\frac{1}{2}\left(S^{\rho}{ }_{\rho} S^{\nu}{ }_{\nu}-S^{\rho}{ }_{\nu} S^{\nu}{ }_{\rho}\right), \\
e_{3}=\frac{1}{6}\left(S^{\rho}{ }_{\rho} S^{\nu}{ }_{\nu} S^{\mu}{ }_{\mu}-3 S^{\mu}{ }_{\mu} S_{\nu}^{\rho} S^{\nu}{ }_{\rho}+2 S^{\rho}{ }_{\nu} S^{\nu}{ }_{\mu} S_{\rho}^{\mu}\right), \\
e_{4}=\operatorname{det}(S) .
\end{array}\right.
$$

2. The following (linear) field equations

$$
\begin{aligned}
& E_{\mu \nu} \equiv \mathcal{E}_{\mu \nu}{ }^{\rho \sigma} h_{\rho \sigma}+\frac{m^{2}}{2}\left[2\left(\beta_{0}+\beta_{1} e_{1}+\beta_{2} e_{2}\right) h_{\mu \nu}-\left(\beta_{1}+\beta_{2} e_{1}\right)\left(h_{\mu \rho} S^{\rho}{ }_{\nu}+h_{\nu \rho} S^{\rho}{ }_{\mu}\right)\right. \\
&-\left(\beta_{1} g_{\mu \nu}+\beta_{2} e_{1} g_{\mu \nu}-\beta_{2} S_{\mu \nu}\right) h_{\rho \sigma} S^{\rho \sigma}+\beta_{2} g_{\mu \nu} h_{\rho \sigma}\left(S^{2}\right)^{\rho \sigma} \\
&\left.-\left(\beta_{1}+\beta_{2} e_{1}\right)\left(g_{\mu \rho} \delta S_{\nu}^{\rho}+g_{\nu \rho} \delta S^{\rho}{ }_{\mu}\right)\right] \simeq 0
\end{aligned}
$$

2. The following (linear) field equations

$$
\begin{aligned}
E_{\mu \nu} \equiv & =\begin{array}{r}
\mathcal{E}_{\mu \nu}{ }^{\rho \sigma} h_{\rho \sigma}+\frac{m^{2}}{2}\left[2\left(\beta_{0}+\beta_{1} e_{1}+\beta_{2} e_{2}\right) h_{\mu \nu}-\left(\beta_{1}+\beta_{2} e_{1}\right)\left(h_{\mu \rho} S^{\rho}{ }_{\nu}+h_{\nu \rho} S^{\rho}{ }_{\mu}\right)\right. \\
\\
-\left(\beta_{1} g_{\mu \nu}+\beta_{2} e_{1} g_{\mu \nu}-\beta_{2} S_{\mu \nu}\right) h_{\rho \sigma} S^{\rho \sigma}+\beta_{2} g_{\mu \nu} h_{\rho \sigma}\left(S^{2}\right)^{\rho \sigma} \\
\left.-\left(\beta_{1}+\beta_{2} e_{1}\right)\left(g_{\mu \rho} \delta S^{\rho}{ }_{\nu}+g_{\nu \rho} \delta S^{\rho}{ }_{\mu}\right)\right] \simeq 0,
\end{array} \\
& \text { Linearized Einstein operator }
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{E}_{\mu \nu}^{\rho \sigma} h_{\rho \sigma} \equiv-\frac{1}{2}[& \delta_{\mu}^{\rho} \delta_{\nu}^{\sigma} \nabla^{2}+g^{\rho \sigma} \nabla_{\mu} \nabla_{\nu}-\delta_{\mu}^{\rho} \nabla^{\sigma} \nabla_{\nu}-\delta_{\nu}^{\rho} \nabla^{\sigma} \nabla_{\mu}-g_{\mu \nu} g^{\rho \sigma} \nabla^{2}+g_{\mu \nu} \nabla^{\rho} \nabla^{\sigma} \\
& \left.+\delta_{\mu}^{\rho} \delta_{\nu}^{\sigma} R-g_{\mu \nu} R^{\rho \sigma}\right] h_{\rho \sigma},
\end{aligned}
$$

2. The following (linear) field equations

$$
\begin{aligned}
& E_{\mu \nu} \equiv \mathcal{E}_{\mu \nu}{ }^{\rho \sigma} h_{\rho \sigma}+\frac{m^{2}}{2}\left[2\left(\beta_{0}+\beta_{1} e_{1}+\beta_{2} e_{2}\right) h_{\mu \nu}-\left(\beta_{1}+\beta_{2} e_{1}\right)\left(h_{\mu \rho} S^{\rho}{ }_{\nu}+h_{\nu \rho} S^{\rho}{ }_{\mu}\right)\right. \\
& -\left(\beta_{1} g_{\mu \nu}+\beta_{2} e_{1} g_{\mu \nu}-\beta_{2} S_{\mu \nu}\right) h_{\rho \sigma} S^{\rho \sigma}+\beta_{2} g_{\mu \nu} h_{\rho \sigma}\left(S^{2}\right)^{\rho \sigma} \\
& \left.-\left(\beta_{1}+\beta_{2} e_{1}\right)\left(g_{\nu} \delta \delta S^{\rho}+g_{\nu \rho} \delta S_{\mu}^{\rho}\right)\right] \simeq 0, \\
& \delta S^{\lambda}{ }_{\mu}=\frac{1}{2} g^{\nu \lambda}\left[e_{4} c_{1}\left(\delta_{\nu}^{\delta} \delta_{\mu}^{\sigma}+\delta_{\nu}^{\sigma} \delta_{\mu}^{\rho}-g_{\mu \nu} g^{\rho \sigma}\right)+e_{4} c_{2}\left(S_{\nu}^{\rho} \delta_{\mu}^{\sigma}+S_{\nu}^{\sigma} \delta_{\mu}^{\rho}-S_{\mu \mu} g^{\rho \sigma}-g_{\mu \nu} S^{\rho \sigma}\right)\right. \\
& -e_{3} c_{1}\left(\delta_{\nu}^{\rho} S_{\mu}^{\sigma}+\delta_{\mu}^{\sigma} S_{\mu}^{\rho}\right)+\left(e_{2} c_{1}-e_{4} c_{3}+e_{3} c_{2}\right) S_{\mu \mu} S^{\rho \sigma} \\
& +e_{4} c_{3}\left[\delta_{\mu}^{\sigma}\left[S^{2}\right]_{\nu}^{\rho}+\delta_{\mu}^{\rho}\left[S^{2}\right]_{\nu}^{\sigma}-g^{\rho \sigma}\left[S^{2}\right]_{\mu \nu}+\delta_{\nu}^{\rho}\left[S^{2}\right]_{\mu}^{\sigma}+\delta_{\nu}^{\sigma}\left[S^{2}\right]_{\mu}^{\rho}-g_{\mu \nu}\left[S^{2}\right]^{\rho \sigma}\right] \\
& -e_{3} c_{2}\left(S_{\nu}^{\rho} S_{\mu}^{\sigma}+S_{\nu}^{\sigma} S_{\mu}^{\rho}\right)-e_{3} c_{3}\left(S_{\mu}^{\sigma}\left[S^{2}\right]_{\nu}^{\rho}+S_{\mu}^{\rho}\left[S^{2}\right]_{\nu}^{\sigma}+S_{\nu}^{\rho}\left[S^{2}\right]_{\mu}^{\sigma}+S_{\nu}^{\sigma}\left[S^{2}\right]_{\mu}^{\rho}\right) \\
& +\left(e_{3} c_{3}-e_{1} c_{1}\right)\left(S^{\rho \sigma}\left[S^{2}\right]_{\mu \nu}+S_{\mu \nu}\left[S^{2}\right]^{\rho \sigma}\right)-\left(c_{1}-e_{2} c_{3}\right)\left(\left[S^{2}\right]_{\nu}^{\rho}\left[S^{2}\right]_{\mu}^{\sigma}+\left[S^{2}\right]_{\nu}^{\sigma}\left[S^{2}\right]_{\mu}^{\rho}\right) \\
& +c_{4}\left[S^{2}\right]_{\mu \nu}\left[S^{2}\right]^{\rho \sigma}+c_{1}\left(\left[S^{3}\right]_{\mu \nu} S^{\rho \sigma}+S_{\mu \nu}\left[S^{3}\right]^{\rho \sigma}\right)+c_{2}\left(\left[S^{3}\right]_{\mu \nu}\left[S^{2}\right]^{\rho \sigma}+\left[S^{2}\right]_{\mu \nu}\left[S^{3}\right]^{\rho \sigma}\right) \\
& \left.+c_{3}\left[S^{3}\right]_{\mu \mu}\left[S^{3}\right]^{\rho \sigma}\right] h_{\rho \sigma},
\end{aligned}
$$

DOF counting?

We follow the analysis for the case of Einstein space-times:

DOF counting?

We follow the analysis for the case of Einstein space-times:

The linearized Bianchi identity $\quad \nabla^{\mu} \mathcal{G}_{\mu \nu}=0$

Yields 4 vector constaints reducing from 10 to 6 the number of propagating DOF

DOF counting?

We follow the analysis for the case of Einstein space-times:

The linearized Bianchi identity

$$
\nabla^{\mu} \mathcal{G}_{\mu \nu}=0
$$

Yields 4 vector constaints reducing from 10 to 6 the number of propagating DOF

A scalar constraint $\mathcal{C} \simeq 0$ reduces to 5 the number of DOF
$\mathcal{C} \equiv\left(S^{-1}\right)^{\nu}{ }_{\rho} \nabla^{\rho} \nabla^{\mu} E_{\mu \nu}+\frac{m^{2} \beta_{1}}{2} g^{\mu \nu} E_{\mu \nu}+m^{2} \beta_{2} S^{\mu \nu} E_{\mu \nu} \simeq 0$

3. PM graviton on non Einstein space-times ?

We look for (non Einstein) space-times where the scalar constraint

$$
\mathcal{C} \equiv\left(S^{-1}\right)_{\rho}^{\nu} \nabla^{\rho} \nabla^{\mu} E_{\mu \nu}+\frac{m^{2} \beta_{1}}{2} g^{\mu \nu} E_{\mu \nu}+m^{2} \beta_{2} S^{\mu \nu} E_{\mu \nu} \simeq 0
$$

Identically vanishes
[Yielding the gauge symmetry $h_{\mu \nu} \rightarrow h_{\mu \nu}+\Delta h_{\mu \nu}$ with $\left.\Delta h_{\mu \nu}=\left[\left(S^{-1}\right)_{\mu}^{\rho} \nabla_{\rho} \nabla_{\nu}+\left(S^{-1}\right)_{\nu}^{\rho} \nabla_{\rho} \nabla_{\mu}+m^{2} \beta_{1} g_{\mu \nu}+2 m^{2} \beta_{2} S_{\mu \nu}\right] \xi(x)\right]$

3. PM graviton on non Einstein space-times ?

We look for (non Einstein) space-times where the scalar constraint

$$
\mathcal{C} \equiv\left(S^{-1}\right)^{\nu}{ }_{\rho} \nabla^{\rho} \nabla^{\mu} E_{\mu \nu}+\frac{m^{2} \beta_{1}}{2} g^{\mu \nu} E_{\mu \nu}+m^{2} \beta_{2} S^{\mu \nu} E_{\mu \nu} \simeq 0
$$

Identically vanishes
[Yielding the gauge symmetry $h_{\mu \nu} \rightarrow h_{\mu \nu}+\Delta h_{\mu \nu}$ with $\left.\Delta h_{\mu \nu}=\left[\left(S^{-1}\right)_{\mu}^{\rho} \nabla_{\rho} \nabla_{\nu}+\left(S^{-1}\right)_{\nu}^{\rho} \nabla_{\rho} \nabla_{\mu}+m^{2} \beta_{1} g_{\mu \nu}+2 m^{2} \beta_{2} S_{\mu \nu}\right] \xi(x)\right]$

We need to look in detail at the structure of the constraint

The scalar constraint reads
$\mathcal{C}=m^{2}\left[\left(A^{\beta \lambda}+\tilde{A}^{\beta \lambda}\right) \tilde{h}_{\beta \lambda}+B_{\rho}^{\beta \lambda} \nabla^{\rho} \tilde{h}_{\beta \lambda}\right]$
With $h_{\mu \nu}=\left(S_{\mu}^{\lambda} \delta_{\nu}^{\beta}+S_{\nu}^{\lambda} \delta_{\mu}^{\beta}\right) \tilde{h}_{\beta \lambda}$

The scalar constraint reads
$\left.\mathcal{C}=m^{2}\left[A^{\beta \lambda}+\tilde{A}^{\beta \lambda}\right) \tilde{h}_{\beta \lambda}+B_{\rho}^{\beta \lambda} \nabla^{\rho} \tilde{h}_{\beta \lambda}\right]$
With hf us $=\left(S_{\mu}^{\lambda} \delta_{\nu}^{\beta}+S_{\nu}^{\lambda} \delta_{\mu}^{\beta}\right) \tilde{h}_{\beta \lambda}$

$$
\begin{aligned}
A^{\beta \lambda} \equiv m^{2} S_{\rho}^{\beta} & {[} \\
& \left(\beta_{0} \beta_{1}+\beta_{0} \beta_{2} e_{1}+\frac{1}{2} \beta_{1}^{2} e_{1}\right) g^{\rho \lambda}+\left(-2 \beta_{0} \beta_{2}-\frac{1}{2} \beta_{1}^{2}-2 \beta_{2}^{2} e_{2}+\beta_{2}^{2} e_{1}^{2}\right) S^{\rho \lambda} \\
& \left.-\beta_{2}^{2} e_{1}\left[S^{2}\right]^{\rho \lambda}\right],
\end{aligned}
$$

The scalar constraint reads

$$
\begin{aligned}
& \left.\mathcal{C}=m^{2}\left[\left(A^{\beta \lambda}+\tilde{A}^{\beta \lambda}\right)\right) \tilde{h}_{\beta \lambda}+B_{\rho}^{\beta \lambda} \nabla^{\rho} \tilde{h}_{\beta \lambda}\right] \\
& \text { With } h_{\mu}\left(S_{\mu}^{\lambda} \delta_{\nu}^{\beta}+S_{\nu}^{\lambda} \delta_{\mu}^{\beta}\right) \tilde{h}_{\beta \lambda} \\
& \widetilde{A^{\beta \lambda}} \equiv \frac{1}{2}\left(\beta_{1}+\beta_{2} e_{1}\right)\left[S^{-1}\right]_{\gamma}^{\nu}\left[-\nabla^{\gamma} S^{\rho \lambda} \nabla_{\nu} S_{\rho}^{\beta}+\nabla^{\gamma} S_{\rho}^{\beta} \nabla^{\lambda} S_{\nu}^{\rho}+\nabla^{\gamma} S_{\nu}^{\rho} \nabla^{\lambda} S_{\rho}^{\beta}-\nabla^{\gamma} S_{\rho \nu} \nabla^{\rho} S^{\beta \lambda}\right. \\
& \left.-S^{\rho \lambda} \nabla^{\gamma} \nabla_{\nu} S_{\rho}^{\beta}+S_{\rho}^{\beta} \nabla^{\gamma} \nabla^{\lambda} S_{\nu}^{\rho}\right]+\beta_{2}\left[S^{-1}\right]_{\gamma}^{\nu}\left[S_{\rho}^{\beta} \nabla^{\lambda} S_{\nu}^{\rho} \nabla^{\gamma} e_{1}-S_{\rho}^{\beta} \nabla_{\nu} S^{\rho \lambda} \nabla^{\gamma} e_{1}\right. \\
& +S_{\rho}^{\lambda} \nabla^{\gamma} S_{\mu}^{\beta} \nabla_{\nu} S^{\rho \mu}+S_{\mu}^{\beta} \nabla^{\gamma} S_{\rho}^{\lambda} \nabla_{\nu} S^{\rho \mu}+S_{\mu}^{\lambda} \nabla^{\gamma} S^{\mu \rho} \nabla_{\nu} S_{\rho}^{\beta}+S^{\mu \rho} \nabla^{\gamma} S_{\mu}^{\lambda} \nabla_{\nu} S_{\rho}^{\beta} \\
& -2 S_{\mu}^{\beta} \nabla^{\gamma} S^{\mu \lambda} \nabla_{\nu} e_{1}-S_{\mu}^{\rho} \nabla^{\gamma} S_{\nu}^{\mu} \nabla^{\beta} S_{\rho}^{\lambda}-S_{\mu}^{\beta} \nabla^{\gamma} S_{\rho}^{\mu} \nabla^{\lambda} S_{\nu}^{\rho}-S_{\rho}^{\mu} \nabla^{\gamma} S_{\mu}^{\beta} \nabla^{\lambda} S_{\nu}^{\rho} \\
& -S_{\rho}^{\beta} \nabla^{\gamma} S_{\nu}^{\mu} \nabla^{\lambda} S_{\mu}^{\rho}+S_{\mu}^{\beta} \nabla^{\gamma} S_{\nu}^{\mu} \nabla^{\lambda} e_{1}+S_{\rho}^{\mu} \nabla^{\gamma} S_{\mu \nu} \nabla^{\rho} S^{\beta \lambda}-S_{\mu}^{\lambda} \nabla^{\gamma} S_{\nu}^{\mu} \nabla^{\rho} S_{\rho}^{\beta} \\
& -S_{\mu}^{\lambda} \nabla^{\gamma} S_{\rho}^{\beta} \nabla^{\mu} S_{\nu}^{\rho}-S_{\rho}^{\beta} \nabla^{\gamma} S_{\mu}^{\lambda} \nabla^{\mu} S_{\nu}^{\rho}-S_{\mu}^{\lambda} \nabla^{\gamma} S_{\nu}^{\rho} \nabla^{\mu} S_{\rho}^{\beta}+2 S_{\mu}^{\beta} \nabla^{\gamma} S^{\mu \lambda} \nabla^{\rho} S_{\rho \nu} \\
& +2 S_{\rho}^{\beta} \nabla^{\gamma} S_{\mu \nu} \nabla^{\mu} S^{\rho \lambda}+S_{\rho}^{\lambda} S_{\mu}^{\beta} \nabla^{\gamma} \nabla_{\nu} S^{\rho \mu}+\left[S^{2}\right]^{\lambda \rho} \nabla^{\gamma} \nabla_{\nu} S_{\rho}^{\beta}-\left[S^{2}\right]^{\beta \lambda} \nabla^{\gamma} \nabla_{\nu} e_{1} \\
& \left.-\left[S^{2}\right]_{\rho}^{\beta} \nabla^{\gamma} \nabla^{\lambda} S_{\nu}^{\rho}-S_{\mu}^{\lambda} S_{\rho}^{\beta} \nabla^{\gamma} \nabla^{\mu} S_{\nu}^{\rho}+\left[S^{2}\right]^{\beta \lambda} \nabla^{\gamma} \nabla^{\rho} S_{\rho \nu}\right]+\beta_{2}\left[+\nabla^{\beta} S_{\gamma}^{\lambda} \nabla^{\gamma} e_{1}\right. \\
& -\nabla_{\gamma} S^{\beta \lambda} \nabla^{\gamma} e_{1}-\nabla^{\mu} S_{\mu}^{\rho} \nabla^{\beta} S_{\rho}^{\lambda}-\nabla^{\mu} S_{\rho}^{\beta} \nabla^{\lambda} S_{\mu}^{\rho}+\nabla^{\mu} S_{\mu}^{\beta} \nabla^{\lambda} e_{1}+\nabla_{\mu} S_{\rho}^{\mu} \nabla^{\rho} S^{\beta \lambda} \\
& -\nabla^{\mu} S_{\mu}^{\lambda} \nabla^{\rho} S_{\rho}^{\beta}-\nabla^{\rho} S_{\mu}^{\lambda} \nabla^{\mu} S_{\rho}^{\beta}+2 \nabla_{\mu} S_{\rho}^{\beta} \nabla^{\mu} S^{\rho \lambda}-S_{\rho}^{\beta} \nabla^{\lambda} \nabla^{\mu} S_{\mu}^{\rho}+S_{\gamma}^{\beta} \nabla^{\gamma} \nabla^{\lambda} e_{1} \\
& \left.-S_{\gamma}^{\lambda} \nabla^{\gamma} \nabla^{\rho} S_{\rho}^{\beta}+S_{\rho}^{\beta} \nabla^{\gamma} \nabla_{\gamma} S^{\rho \lambda}\right]+(\beta \leftrightarrow \lambda),
\end{aligned}
$$

The scalar constraint reads

$\mathcal{C}=m^{2}\left[\left(A^{\beta \lambda}+\tilde{A}^{\beta \lambda}\right) \tilde{h}_{\beta \lambda}+B_{\rho}^{\beta \lambda} \nabla^{\rho} \tilde{h}_{\beta \lambda}\right]$
With $h_{\mu \nu}=\left(S_{\mu}^{\lambda} \delta_{\nu}^{\beta}+\delta \frac{\delta_{\nu}^{\beta}}{\nu}\right) \tilde{h}_{\beta \lambda}$

$$
\begin{aligned}
B_{\rho}^{\beta \lambda} \equiv & \frac{1}{2}\left(\beta_{1}+\beta_{2} e_{1}\right)\left[S^{-1}\right]_{\gamma}^{\nu}\left[-S^{\sigma \lambda} \delta_{\rho}^{\gamma} \nabla_{\nu} S_{\sigma}^{\beta}+\delta_{\rho}^{\gamma} S_{\sigma}^{\beta} \nabla^{\lambda} S_{\nu}^{\sigma}+\delta_{\rho}^{\lambda} S_{\sigma}^{\beta} \nabla^{\gamma} S_{\nu}^{\sigma}-S^{\beta \lambda} \nabla^{\gamma} S_{\nu \rho}\right] \\
& +\beta_{2}\left[S^{-1}\right]_{\gamma}^{\nu}\left[\delta_{\rho}^{\gamma} S_{\delta}^{\lambda} S_{\mu}^{\beta} \nabla_{\nu} S^{\delta \mu}+\delta_{\rho}^{\gamma}\left[S^{2}\right]^{\lambda \mu} \nabla_{\nu} S_{\mu}^{\beta}-\delta_{\rho}^{\gamma}\left[S^{2}\right]^{\beta \lambda} \nabla_{\nu} e_{1}-\delta_{\rho}^{\gamma}\left[S^{2}\right]_{\mu}^{\beta} \nabla^{\lambda} S_{\nu}^{\mu}\right. \\
& -\delta_{\rho}^{\gamma} S_{\mu}^{\lambda} S_{\delta}^{\beta} \nabla^{\mu} S_{\nu}^{\delta}+\delta_{\rho}^{\gamma}\left[S^{2}\right]^{\beta \lambda} \nabla^{\mu} S_{\mu \nu}+S^{\beta \lambda} S_{\rho}^{\mu} \nabla^{\gamma} S_{\mu \nu}+\left[S^{2}\right]^{\beta \lambda} \nabla^{\gamma} S_{\rho \nu}-\delta_{\rho}^{\beta}\left[S^{2}\right]_{\mu}^{\lambda} \nabla^{\gamma} S_{\nu}^{\mu} \\
& \left.-S_{\rho}^{\beta} S_{\mu}^{\lambda} \nabla^{\gamma} S_{\nu}^{\mu}\right]+\beta_{2}\left[-S_{\delta}^{\beta} \nabla^{\lambda} S_{\rho}^{\delta}+S_{\rho}^{\beta} \nabla^{\lambda} e_{1}-S_{\mu}^{\lambda} \nabla^{\mu} S_{\rho}^{\beta}+2 S_{\delta}^{\beta} \nabla_{\rho} S^{\delta \lambda}+\delta_{\rho}^{\beta} S_{\gamma}^{\lambda} \nabla^{\gamma} e_{1}\right. \\
& \left.-S^{\beta \lambda} \nabla_{\rho} e_{1}+S^{\beta \lambda} \nabla_{\mu} S_{\rho}^{\mu}-\delta_{\rho}^{\beta} S_{\delta}^{\lambda} \nabla^{\mu} S_{\mu}^{\delta}-S_{\rho}^{\beta} \nabla^{\mu} S_{\mu}^{\lambda}\right]+(\beta \leftrightarrow \lambda) .
\end{aligned}
$$

To get a PM theory we need to look for space-times where $A^{\beta \lambda}+\tilde{A}^{\beta \lambda}$ and $B_{\rho}^{\beta \lambda}$ vanish identically.

To get a PM theory we need to look for space-times where $A^{\beta \lambda}+\tilde{A}^{\beta \lambda}$ and $B_{\rho}^{\beta \lambda}$ vanish identically.

Most general solution?

To get a PM theory we need to look for space-times where $A^{\beta \lambda}+\tilde{A}^{\beta \lambda}$ and $B_{\rho}^{\beta \lambda}$ vanish identically.

Most general solution?

Assume $\quad \nabla_{\rho} S_{\mu \nu}=0$
(i.e. $S_{\mu \nu}$ covariantly constant)
makes $\tilde{A}^{\beta \lambda}$ and $B_{\rho}^{\beta \lambda}$ vanish.

Space-times possessing a covariantly constant tensor $H_{\mu \nu}$ are classified as (provided $H_{\mu \nu}$ is not proportional to the metric)

1. Spacetime is $2 \otimes 2$ decomposable
$g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=g_{a b}\left(x^{c}\right) \mathrm{d} x^{a} \mathrm{~d} x^{b}+g_{i j}\left(x^{k}\right) \mathrm{d} x^{i} \mathrm{~d} x^{j}$
and $H_{\mu \rho} H^{\rho}{ }_{\nu}=H_{\mu \nu}$
2. The spacetime admits a covariantly constant vector N^{μ} and $H_{\mu \nu}=N_{\mu} N_{\nu}$

Note further that the definition

$$
R_{\nu}^{\mu}=m^{2}\left[\left(\beta_{0}+\frac{1}{2} e_{1} \beta_{1}\right) \delta_{\nu}^{\mu}+\left(\beta_{1}+\beta_{2} e_{1}\right) S_{\nu}^{\mu}-\beta_{2}\left(S^{2}\right)^{\mu}{ }_{\nu}\right]
$$

Imposes that $\nabla_{\rho} S_{\mu \nu}=0 \quad \square \nabla_{\rho} R_{\mu \nu}=0$

Hence the space-time must be "Ricci Symmetric"
...i.e. the covariantly constant tensor is the Ricci tensor...

The spacetimes of interest for us here will all have
$\left(R^{2}\right)^{\rho}{ }_{\nu}=r_{1} R_{\nu}^{\rho}+r_{2} \delta_{\nu}^{\rho} \quad$ with r_{1} and r_{2} constant as a consequence of the integrability conditions

And have to solve (in order to get a PM graviton)

$$
\left\{\begin{array}{c}
{ }_{\lambda}^{\beta}\left(\beta_{2} \beta_{0} e_{1}+\beta_{0} \beta_{1}+\frac{\beta_{1}^{2}}{2} e_{1}\right)+S_{\lambda}^{\beta}\left(-2 \beta_{2} \beta_{0}+\beta_{2}^{2} e_{1}^{2}-2 \beta_{2}^{2} e_{2}-\frac{\beta_{1}^{2}}{2}\right)-\left(S^{2}\right)_{\lambda}^{\beta}\left(e_{1} \beta_{2}^{2}\right)=0 \\
R^{\mu}{ }_{\nu}=m^{2}\left[\left(\beta_{0}+\frac{1}{2} e_{1} \beta_{1}\right) \delta_{\nu}^{\mu}+\left(\beta_{1}+\beta_{2} e_{1}\right) S_{\nu}^{\mu}-\beta_{2}\left(S^{2}\right)_{\nu}^{\mu}\right]
\end{array}\right.
$$

The spacetimes of interest for us here will all have
$\left(R^{2}\right)^{\rho}{ }_{\nu}=r_{1} R_{\nu}^{\rho}+r_{2} \delta_{\nu}^{\rho} \quad$ with r_{1} and r_{2} constant as a consequence of the integrability conditions

And have to solve (in order to get a PM graviton)

$$
\int_{\lambda}^{\delta_{\lambda}^{\beta}}\left(\beta_{2} \beta_{0} e_{1}+\beta_{0} \beta_{1}+\frac{\beta_{1}^{2}}{2} e_{1}\right)+S_{\lambda}^{\beta}\left(-2 \beta_{2} \beta_{0}+\beta_{2}^{2} e_{1}^{2}-2 \beta_{2}^{2} e_{2}-\frac{\beta_{1}^{2}}{2}\right)-\left(S^{2}\right)_{\lambda}^{\beta}\left(e_{1} \beta_{2}^{2}\right)=0
$$

$$
R_{\nu}^{\mu}=m^{2}\left[\left(\beta_{0}+\frac{1}{2} e_{1} \beta_{1}\right) \delta_{\nu}^{\mu}+\left(\beta_{1}+\beta_{2} e_{1}\right) S_{\nu}^{\mu}-\beta_{2}\left(S^{2}\right)^{\mu}{ }_{\nu}\right]
$$

In order to get a vanishing $\mathcal{C}=m^{2} A^{\beta \lambda} \tilde{h}_{\beta \lambda}$

The spacetimes of interest for us here will all have
$\left(R^{2}\right)^{\rho}{ }_{\nu}=r_{1} R_{\nu}^{\rho}+r_{2} \delta_{\nu}^{\rho} \quad$ with r_{1} and r_{2} constant as a consequence of the integrability conditions

And have to solve (in order to get a PM graviton)

$$
\left\{\begin{array}{c}
\delta_{\lambda}^{\beta}\left(\beta_{2} \beta_{0} e_{1}+\beta_{0} \beta_{1}+\frac{\beta_{1}^{2}}{2} e_{1}\right)+S_{\lambda}^{\beta}\left(-2 \beta_{2} \beta_{0}+\beta_{2}^{2} e_{1}^{2}-2 \beta_{2}^{2} e_{2}-\frac{\beta_{1}^{2}}{2}\right)-\left(S^{2}\right)_{\lambda}^{\beta}\left(e_{1} \beta_{2}^{2}\right)=0 \\
R^{\mu}{ }_{\nu}=m^{2}\left[\left(\beta_{0}+\frac{1}{2} e_{1} \beta_{1}\right) \delta_{\nu}^{\mu}+\left(\beta_{1}+\beta_{2} e_{1}\right) S_{\nu}^{\mu}-\beta_{2}\left(S^{2}\right)^{\mu}{ }_{\nu}\right] \\
Z
\end{array}\right.
$$

From the definition of S_{ν}^{ρ}

The spacetimes of interest for us here will all have
$\left(R^{2}\right)^{\rho}{ }_{\nu}=r_{1} R^{\rho}{ }_{\nu}+r_{2} \delta_{\nu}^{\rho} \quad$ with r_{1} and r_{2} constant as a consequence of the integrability conditions

And have to solve (in order to get a PM graviton)
$\left\{\begin{array}{c}{ }_{\lambda}^{\beta}\left(\beta_{2} \beta_{0} e_{1}+\beta_{0} \beta_{1}+\frac{\beta_{1}^{2}}{2} e_{1}\right)+S_{\lambda}^{\beta}\left(-2 \beta_{2} \beta_{0}+\beta_{2}^{2} e_{1}^{2}-2 \beta_{2} e_{2}-\frac{\beta_{1}^{2}}{2}\right)-\left(S^{2}\right)_{\lambda}^{\beta}\left(e_{1} \beta_{2}^{2}\right)=0 \\ R^{\mu}{ }_{\nu}=m^{2}\left[\left(\beta_{0}+\frac{1}{2} e_{1} \beta_{1}\right) \delta_{\nu}^{\mu}+\left(\beta_{1}+\beta_{2} e_{1}\right) \cdot \dot{S}_{\nu}^{\mu}-\beta_{2}\left(S^{2}\right)^{\mu}{ }_{\nu}\right]\end{array}\right.$
NB: this implies that the Ricci tensor obeyes indeed the required relation

Explicit solutions (I)

with $\{\begin{array}{l}\left(R^{2}\right)^{\rho}{ }_{\nu}=r_{1} \\ R^{\prime} R^{\rho}{ }_{\nu}+r_{2} \delta_{\nu}^{\rho} \\ \text { dimensionless } \beta_{1}^{2}\end{array}, \underbrace{v \equiv m^{2} \beta_{0} \frac{16 u^{2}-24 u-3}{u(4 u+3)}}_{\text {dimensionful }}$

$$
\left[\begin{array}{l}
g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=\frac{2 \mathrm{~d} x^{0} \mathrm{~d} x^{1}}{\left(1+(R-E) x^{0} x^{1} / 8\right)^{2}}-\frac{2 \mathrm{~d} x^{2} \mathrm{~d} x^{3}}{\left(1-(R+E) x^{2} x^{3} / 8\right)^{2}} \\
\text { type D : } \quad r_{1}=\frac{R}{2}, \quad r_{2}=-\frac{1}{16}\left(R^{2}-E^{2}\right)
\end{array}\right.
$$

$2 \otimes 2$

$$
\begin{aligned}
& E^{2}=\frac{72\left(9+60 u+144 u^{2}+64 u^{3}\right)}{\left(-9-132 u-48 u^{2}+64 u^{3}\right)^{2}} R^{2} \\
& v=\left(2+\frac{96 u}{-9-132 u-48 u^{2}+64 u^{3}}\right) R
\end{aligned}
$$

Analogous to
$2 \Lambda=3 m^{2}$

Explicit solutions (II)

One simple example of the last kind is Einstein static Universe!
$\left\{\begin{array}{l}\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=-\mathrm{d} t^{2}+a^{2} \mathrm{~d} \Sigma^{2} \\ \text { with } \mathrm{d} \Sigma^{2}=\gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}=\frac{\mathrm{d} r^{2}}{1-k r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\end{array}\right.$

$$
R=\frac{6 k}{a^{2}}
$$

One simple example of the last kind is Einstein static Universe!
$\left\{\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=-\mathrm{d} t^{2}+a^{2} \mathrm{~d} \Sigma^{2}\right.$
with $\mathrm{d} \Sigma^{2}=\gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}=\frac{\mathrm{dr}}{}{ }^{2}-r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)$

$$
R=\frac{6 k}{a^{2}}
$$

The gauge symmetry reads

$$
\left\{\begin{array}{l}
\Delta h_{t t}=\left[-\frac{(4 u+3)(v-2 R)}{v} \nabla_{t} \partial_{t}+\frac{u(6 R+8 R u-3 v) v}{\left(-3-24 u+16 u^{2}\right)(-2 R+v v)}\right] \xi(x), \\
\Delta h_{t i}=-\frac{(4 u+3)(v-2 R)\left(\frac{8 R}{3}-2 v\right)}{2 v\left(\frac{8 R}{3}-v\right)} \nabla_{(t} \partial_{i)} \xi(x), \\
\Delta h_{i j}=\left[-\frac{(4 u+3)(v-2 R)}{\frac{8 R}{3}-v} \nabla_{i} \partial_{j}+\frac{u v(-18 R+8 R u+9 v)}{3\left(-3-24 u+16 u^{2}\right)(-2 R+v)} a^{2} \gamma_{i j}\right] \xi(x),
\end{array}\right.
$$

With e.g. one solution being $(u, v)=(-0.2006,0.6622 R)$

Conclusions

PM exists on non Einstein spacetimes !
(in contrast with previous no-go claim by Deser, Joung, Waldron In 1208.1307 [hep-th]...
... in particular some of our solution have a vanishing Bach tensor)

Solution for the vanishing
 Of $A^{\beta \lambda}+\tilde{A}^{\beta \lambda}$ and $B_{\rho}^{\beta \lambda}$
 are not known in full generality !

