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ABSTRACT

A hot intergalactic medium (IGM) may make a significant contribution to the average density of the uni-
verse with few other observable effects. One effect it would have would be to produce an isotropic X-ray
background through thermal bremsstrahlung. We have modeled such a background, including both relativistic

electron-ion and electron-electron emission, and we can fit the observed X-ray measurements with a current
temperature of 10.2 keV and Qg of 0.27, assuming that the IGM was instantaneously heated at a redshift of
5 and cools by relativistic adiabatic expansion and Compton cooling. Such a hot IGM would also distort the
cosmic microwave background spectrum by inverse Compton scattering off relativistic electrons. We have
modeled this distortion using the relativistic treatment, and we find when including the recent data of Matsu-
moto et al, an undistorted radiation temperature of 2.86 K and an Qg of 0.41. We present similar models for
heating redshifts from 2 to 7.

Subject headings: cosmic background radiation — cosmology — galaxies: intergalactic medium —
radiation mechanisms
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10-88 MHz usable Galactic noise-dominated (>4:1) 24-87 MHz

4 independent beams x 2 pol. X 2 tunings each ~16 MHz bandwidth

All sky (all dipoles) modes: TBN (70 kHz-bandwidth; continuous)
TBW (78 MHz-bandwidth, 61 ms burst)

40+ publications, now observing jointly with VLA

Five “outrigger” antennas at up to 500 m baselines
LWA"1 discoveries: meteors, pulsars, Sun, Jupiter & lonosphere
Open skies — LWA1 is funded by NSF and AFRL
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Decametric Jovian Emission
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* Low frequency:
eB/2mrme. =28 MHz at 10 G

PASI image
* Bright! ~100 mJy flux density of a Jovian
predicted at 10 pc burst
* High circular polarization: O at 25.61 MHz

LWA i1s very good at this!

* Predictably time-variable:
* pulsar-like emission

* secondary eclipses

® periastron passages of
high-eccentricity HJs
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Dispersion of a Pulse
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Coronal Mass Ejection




Catching a Coronal Mass Ejection

LASCO C3

15

Howard et al 2016



Catching a Coronal Mass Ejection

2015/08/21 21:18
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Catching a Coronal Mass Ejection
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Meteors — by reflection
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International Space Station




Great Balls of Fire!

Obenberger et al. 2014, 2016 ’
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Light curves of the brightest transients
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Fireballs — Péréis_tent Trains



A Next Generation Very Large Array (ngVLA)

Improvements over
current VLA

* ~10x Sensitivity at 30 GHz

e ~10x Resolution at all bands

* 1.2-116GHz (vs. 1 — 50GHz)
* 5 MHz — 800 MHz option

<> 5-150 MHz Aperture Array <> 150-800 MHz Prime Focus Feeds

<> >4 beams <> Commensal

<> AGN, transients, exoplanets, stellar <> AGN, exoplanets, stellar flares,
flares, pulsars, follow-up at high pulsars

resolution and sensitivity (~0.1 mJy
in 1 hour)



Juno at Jupiter
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