How Did I End Up in the Galactic Center?

Frederick Baganoff

MIT Kavli Institute for Astrophysics and Space Research

Nedfest 2017 --- UCLA

Ned @ 40

- My first research advisor
 - Quasar reddening
 - IRC +10 216
- I learned a lot about programming
- Ned's & Mark's 40th birthday party
 - Ned: "brevity is the soul of wit" Hamlet
 - Francoise hiding Ned's rock 'n roll albums
- Playing tennis with Ned

– Ned: "You don't *have* to hit the ball when you toss it."

Good Advice!

Ned @ 40

- Thesis project?
 - COBE launch 2+ years away
 - Ned: "All I have are programming projects. You don't want to do that."
- Off to work with Matt on AGN variability
- Which lead to Sgr A* and the Galactic Center

Ned @ 70

Chandra, Hubble & Spitzer Views of the Galactic Center

Chandra Image of the Galactic Center

Red: 2-3.7 keV Green: 3.7-4.5 keV Blue: 4.5-8 keV

Central Parsec

2-3.5, 3.5-5, 5-8 keV

GC Magnetar Outburst

GC Magnetar SGR J1745-2900

- Swift/BAT discovered outburst 2013 Apr 24 (Kennea et al. 2013)
- NuSTAR follow-up revealed 3.76 s period (Mori et al. 2013)
- Chandra imaging places it 2.4" SE of Sgr A* (Baganoff et al. 2013)
- One of a handful of radio magnetars
- Eatough et al. (2013) infer superequipartition B ~ 8 mG near Bondi radius

GC Magnetar SGR J1745-2900

- VLBA proper motion yields transverse velocity 236 +/- 11 km/s wrt Sgr A* (Bower et al. 2015)
- Radial velocity unknown but chance alignment unlikely
- Velocity & position consistent with bound orbit originating within CW disk of massive stars orbiting Sgr A*
- Orbital period 700+ yr

Chandra monitoring of initial 3.5 yr of outburst decay analyzed by Coti Zelati et al. (2015, 2017)

Temporal Evolution of Spin Frequency

Pulsed Fraction Slightly Rising

Time Evolution of Blackbody T & R

L has double exponential decay: $\tau_1 \sim 96 \text{ d}$, $\tau_2 \sim 326 \text{ d}$

Correcting for Dust Scattering Halo

Spectral Fits & Beloborodov Model

Summary

- Crustal cooling model predicts hotspot should remain fairly constant in size while it cools as internal heat conducted up to outer crust; inconsistent with our observations
- Alternative model of untwisting bundle of currentcarrying closed field lines in magnetosphere works better (Beloborodov 2009)
- Other models being tested

Summary

- Magnetar was still visible to Chandra in 2017 July
- Day-long exposures measured spin
- Two more long Chandra observations approved for 2018
 July => follow spin evolution for 5 yr

Lots more to do in the GC Thanks, Ned! Happy Birthday! Ned @ 100?