

Strongly Focusing Undulator Design for TESSA-266

Youna Park

Outline

- Rubicon IFEL, Nocibur IIFEL, and TESSA-266
- efficiency vs transverse beam size
- Beam size and power output for different quadrupole lattice systems
- Matching the linac and the undulator beam size
- Time-dependent Simulation Result of TESSA-266

TESSA- Tapering Enhanced Stimulated Superradiant Amplification

High-quality electron beams from a helical inverse free-electron laser accelerator Duris, J.; Musumeci, P.; Babzien, M.; et al. NATURE COMMUNICATIONS Volume: 5 Article Number: 4928 Published: SEP 2014

Rubicon IFEL experiment(BNL)

First strongly tapered helical undulator, 52MeV -> 92MeV

Input e-beam energy	50 MeV
Average accelerating gradient	100 MV/m
Laser wavelength	10.3 µm
Laser power	100-300 GW
Laser focal spot size (w)	980 µm
Laser Rayleigh range	30 cm
Undulator length	54 cm
Undulator period	4 – 6 cm
Magnetic field amplitude	5.2 – 7.7 kG

NOCIBUR IIFEL deceleration experiment(BNL)

IIFEL Rubicon: IFEL reversed to decelerate electron beams 65->35MeV

High Efficiency Energy Extraction from a Relativistic Electron Beam in a Strongly Tapered Undulator

N. Sudar, P. Musumeci, J. Duris, I. Gadjev, M. Polyanskiy, I. Pogorelsky, M. Fedurin, C. Swinson, K. Kusche, M. Babzien, and A. Gover

Phys. Rev. Lett. 117, 174801 – Published 19 October 2016

E-Beam energy	$65 \rightarrow 35 \text{ MeV}$
emittance	2 mm-mrad
σxy (waist)	100 µm
Laser Wavelength	10.3 µm
Rayleigh Range	0.3 m
Laser Waist	1 mm
Laser Power	200 GW
E-beam current	100 A
E-beam charge	100 pC
λw buncher	0.05 m (1 period)
Chicane: R56	21 → 59 µm
period tapering	0.06 - 0.04 m
K tapering	2.01 - 1.19

TESSA-266

- Higher gain and higher current for radiation measurement
- Injector Linac at Argonne National Laboratory will operate at 375 MeV, 1kA and provide injection for 1.5 minutes in every 2 minutes
- decelerate ebeam for ~10% efficiency in 4 m undulator.
- Significant improvement from <1% efficiency in previous short wavelength FEL.

Tapered Helical Undulator:

Halbach helical undulator magnets

Undulator gap will be tapered to satisfy the resonance condition:

Tapering Equation for Helical Undulator: k_w = undulator wavenumber $K_l = \frac{eE_0}{km_ec^2} = \frac{e\lambda}{2\pi mc^2} \sqrt{2Z_0 I_{crit}}$ = laser vector potential Ψ_r = resonant phase

 $\frac{dK}{dz} = -2k_w K_l \sin \Psi_r$

High Gain Regime: *K_l* will be updated every period using
Genesis Informed Tapering (GIT) Simulation by
J. Duris, P. Musumeci (UCLA)
https://github.com/ypark39/GIT2018

Tapered Helical Undulator:

We determined that undulator period of 3.2 cm is the minimum length because :

- Smaller undulator period yields greater power, but smaller period requires smaller beam clearance.
- From Radia simulation we obtained undulator vector potential for different gaps and periods
- Given 6mm as the minimum for beam clearance, 3.2 cm was the smallest undulator period.

efficiency η vs electron beam size

$$\eta(z) = \frac{\chi_1 f_t}{\gamma_0} \left(\frac{K_0}{\gamma_0} E_0 \sin \psi_r z + \frac{f_t \chi_2}{2} \frac{K_0^2}{\gamma_0^2} \sin^2 \psi_r z^2 \right)$$

 $f_t = \text{trapping fraction}$

C. Emma "High efficiency, high brightness X-ray free electron laser pulses via fresh bunch self-seeding and undulator tapering," UCLA. ProQuest ID: EMMA_ucla_0031D_15825. Merritt ID: ark:/13030/m5j72b7s(Derivation assumed 1D and constant current, C. Emma 2017)

 γ_0 = initial energy K_0 = initial undulator vector potential parameter $\chi_1 = \frac{e}{2}$

$$^{\chi_1}$$
 $2m_ec^2$

 $\chi_2 = \frac{Z_0 I}{8\pi \sigma_e^2},$ $\sigma_e = \text{e-beam size}$ $\eta \propto \frac{1}{\sigma_e^2}$

- Derivation assumed constant current
- Optimal beam size based on gain length is unknown due to the emittance and the 3D effects.

Undulator with Natural Focusing, $< \sigma_x > =$ 76um

GIT Simulation for Undulator with Natural Focusing

Focusing and defocusing quadrupoles alternated, $< \sigma_x >=$ 62um

GIT Simulation of Focusing and defocusing quadrupoles alternated

Quads placed around undulator

Quads placed around undulator

$$\begin{split} M_{u+fq} &= \begin{bmatrix} \cos(\sqrt{k'_0}z) & 1/\sqrt{k_0}\sin(\sqrt{k'_0}z) \\ -\sqrt{k_0}'\sin(\sqrt{k_0}'z) & \cos(\sqrt{k_0}'z) \end{bmatrix} \quad M_{u+dq} = \begin{bmatrix} \cosh(\sqrt{|k'_0|}z) & \frac{1}{\sqrt{|k_0|}}\sinh(\sqrt{|k'_0|}z) \\ \sqrt{|k'_0|}\sinh(\sqrt{|k'_0|}z) & \cosh(\sqrt{|k'_0|}z) \end{bmatrix} \\ k'_0 &= k_0 + k_x^2, \\ k_0 &= \text{focusing strength}, \ k_x = \text{undulator parameter} \\ M_{tot} &= M_d M_{u+dq} M_u M_{u+fq} \end{split}$$

Quads placed around undulator, $< \sigma_x >=$ 45um

GIT Simulation for quads placed around undulator

Double quadrupole placed in the drift, $< \sigma_x >=42$ um

Undulator (28 λ_{μ})

$$M_{tot} = M_d M_{dq} M_d M_{fq} M_d M_u$$

GIT Simulation for double quadrupole placed in the drift

SBIR·ST

Beam size vs quad gradient for 3 different FODO lattice

Linac output to undulator

🙈 radiasoft

Arg

NATIONAL LABORATORY

Time-Dependent Simulation result of TESSA-266, quadrupole doublet

UCLA

radiabeam

HNOLOGIES

Conclusion

- TESSA-266 is the next step of tapered helical undulator experiment, going from 10um to 266nm.
- In tapered helical undulator, efficiency increases with smaller beam size, need to optimize quadrupole lattice setup
- Three different FODO lattice setup were explored, doublet quads being the best
- The doublet quads setup was also used to match the undulator beam size with the linac

Collaborators:

N. Sudar, C. Emma, J. Duris, P. Musumeci

Yine Sun, Alexander Zholents (Argonne, IL 60439, USA)

Alex Murokh (Los Angeles, CA 90404, USA)

Chris Hall, Stephen Webb, David Bruhwiler (Boulder, CO 80301, USA)

Acknowledgements:

This work has been supported by SBIR award DE-SC0017102.

Reference

[1] J Duris, A Murokh, and P Musumeci. TESSA. New Journal of Physics, 17(6):063036, 2015.
[2] N. Sudar, P. Musumeci, J. Duris, I. Gadjev, M. Polyanskiy, I. Pogorelsky, M. Fedurin, C. Swinson, K. Kusche, M. Babzien, and A. Gover. High efficiency energy extraction from a relativistic electron beam in a strongly tapered undulator. Phys. Rev. Lett., 117:174801, Oct 2016.
[3] A. Murokh "Challenges and opportunities for an industrial EUV FEL", contributed talk, 2015 EUV Lithography Symposium, October 5-7, 2015, Maastricht, Netherlands

