Power Beaming Applications for High Efficiency Lasers

C.R. Phipps, Ph.D.

Photonic Associates LLC, 200A Ojo de la Vaca Road Santa Fe, New Mexico USA 87508 Phone/fax: +1-505-466-3877, mobile: +1-215-358-4360 <u>crphipps@aol.com</u>

Christophe Bonnal and Frédéric Masson

CNES, Direction des Lanceurs, 52 rue Jacques Hilairet, 75612 Paris Cedex, France <u>christophe.bonnal@cnes.fr; frederic.masson@cnes.fr</u>

Presented at the Workshop on High Efficiency Free-Electron Lasers, Dept. of Physics, UCLA, Los Angeles, CA 11-13 April, 2018 Pho

Laser space propulsion

Outline

- Introduction to authors
- Purpose
- What is laser ablation propulsion?
- Why is it useful compared to pure photon propulsion?
- Terminolgy and relationships
- For FEL ablation, limited data compared to that for pulsed lasers
- Shortest efficient wavelength is best in space
- Applications: pushing rocks, laser rockets but <u>not</u> space debris removal (SDR)
- Issues: thermal coupling, mechanical coupling
- Exciting prospects: what can be done with 0.1 1MW
- Conclusions

Authors

- C. Phipps: Ph.D. Stanford in 1972, specializing in plasma physics, lasermaterials interactions
- Worked in laser programs at LLNL, LANL
- Formed PALLC in 1995: Santa Fe High Tech consulting company devoted to peaceful applications in space
- Invented space debris removal with groundbased pulsed lasers in 1995
- Now, working intensively on laser driven propulsion
- C. Bonnal is chief engineer of the launcher directorate at CNES in Paris
- F. Masson is in charge of advanced concepts for space transportation at CNES

Purpose of this talk

- At PALLC, most of our history working with <u>pulsed</u> laser ablation propulsion
 - > Space debris reëntry, collision avoidance, laser rockets...
- We judged that CW (continuous) lasers could only produce splashing with low velocity "specific impulse," I_{sp}= v_E/g_o, and low ablation efficiency η_{AB}=C_mv_E
 - > This could still be true!
 - \sim C_m =p/l is the momentum coupling coefficient, units N/W of incident laser light
- Our applications require average power in the tens, hundreds of kW, or MW
- Largest available pulsed laser average power is 1kW; FEL's could create MW
- Stimulated by Prof. Lubin's work at UCSB asteroid deflection, curiosity at LANL about FEL's, and the topic of this workshop, we took a second look
- Despite uncertainties, we will sketch some posible FEL applications in this talk

What is laser ablation propulsion?

- A form of electric propulsion that uses laser ablation of a surface to make a high speed jet¹⁾
- Why is it useful?
 - Remote propulsion at speed of light
 - Flexibility. Gives v_E >> chemical jets
 - Tiny impulse bits with pulses
 - \succ C_m is 10k times larger than that of pure photons
- Record: 2N thrust²⁾, 72m altitude³⁾

- Efficiency always better for pure electric propulsion (lon, HET, FEEP)
 - 1) A. Kantrowitz, "Propulsion to orbit by groundbased lasers," Astro. and Aero. 10, No.5 (1972)
 - L. Myrabo, et al, "Ground and flight tests of a laser propelled vehicle," AIAA paper 98-1001, 36th AIAA Aerospace Science Meting and Exhibit, Reno, NV 12-15 Jan. 1998
 - 3) Y. Rezunkov, et al., "Performance characteristics of laser propulsion engine operated both in CW and repetitivelypulsed modes," AIP Conference Proceedings **830** Ameerican Institute of Physics pp. 3-12 (2006)
 - 4) W. Schall, et al., "Lightcraft impulse measurements under vacuum," EOARD Report FA8655-02-M4017 (2002)

Pulsed or CW laser relationships

- Pressure
- Force
- Ablation efficiency
- Fuel use rate
- Recession velocity
- Rocket equation: with ∆v is total change of payload velocity, m/M is delivered mass fraction
- * Expression⁵⁾ shows that, if C_{mo} is sufficiently <u>small</u>, almost any space mission is possible with enough laser power P_o to overcome gravity

6 <u>https://doi.org/10.1016/j.actaastro.2018.02.018</u> (2018)

 $p = C_m I$ $F = PC_m = \dot{m}v_E$ $\eta_{AB} = (\dot{m}v_E^2 / (2P) = C_m I_{sp}g_o / 2$ $\dot{m} = 2P\eta_{AB} / (g_o I_{sp})^2 = PC_m^2 / (2\eta_{AB})$ $v_r = \dot{m} / (A\rho_T) = IC_m^2 / (2\rho_T \eta_{AB})$ $*m / M = \exp(-C_{mo}\Delta v / 2)$

6

⁵⁾ C. Phipps, et al., "Transfers from Earth to LEO and LEO to Interplanetary Space using Lasers,"

We can normalize to unit η_{AB}

- If ablation efficiency is not known, we can still study propulsion possibilities
- Take

$$P = P_o / \eta_{AB}$$
$$C_m = C_{mo} \eta_{AB}$$
$$F = C_{mo} P_o$$

- Then fuel usage is constant $\dot{m} = P_o C_{mo}^2 / 2$
- As is fuel lifetime (Large at low C_{mo})

$$M/\dot{m} = 2M/(P_o C_{mo}^2)$$

- C. Phipps, et al., "Laser impulse coupling measurements at 400fs and 80ps using the LULI facility at 1057nm wavelength," *J. Appl. Phys.*, **122**, 193103 (2017)
- 8 7) C. Phipps, calculations with CLAUSIUS code show $C_m = 15N/MW$ with 10MW/m² on AI (2018)

Photonic Associates

Other optima: maximum m/M

- Simulations show⁸⁾ that mass, mass ratio and cost from ground to LEO optimize at different values of the coupling coefficient C_m.
- Maximum m/M ratio at C_m→0, I_{sp}→∞, P→∞

8) C. Phipps, et al., "Optimum Parameters for Laser-launching Objects into Low Earth Orbit," J. Laser and Particle Beams, **18** (4), 661-695 (2000)

Thermal coupling a critical factor

- C_{th} not measured
 - > Simulations predict pulsed C_{th} as small as 2% at 100ps⁹⁾
 - <u>Must be this small</u> to avoid melting target after 100k pulses in our applications! \geq
 - Similar considerations apply for CW

Target material: Al

Vapor, Infinite Slab 95% absorptivity at I = 5/3

1.E+11

Conditions: 1D, Vacuum

1.E+13

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1.E+15

- ne - · - Cth

10

Pulsed vacuum data

Pulsed ablation efficiency:

- Tons of data exist for ns-ms pulses
- Example: with 4ns pulses, we measured $\eta_{AB} = 100\% \text{ on gold}^{10}$
- > Need 80ps to minimize C_{th} (shorter is difficult)
 - » η_{AB} not measured at 80ps
- Practical requirements
 - » Need 100J/pulse to create plasma at 1000km with a 3m dia. mirror and fs-ps pulses
 - » Need 10-1000kW time average power for useful work
- fs-pulse lasers not powerful: 30J/pulse, 300W (ELI)
- Pulsed coupling coefficient:
 - > $C_m ≤ 770$ MW with 80ps pulses on polyoxymethylene⁶⁾ (POM) [Table 4]
 - \succ C_m = 30N/MW on AI

Material→	Al	l	РОМ		
Pulsewidth	C _m (N/MW)	$\Phi(kJ/m^2)$	C _m (N/MW)	Φ(kJ/m ²)	
400 fs	30±5	50±10	125±12	32±6	
80 ps	28 ± 5	30±6	773 ± 70	40±8	

6) C. Phipps, et al., "Laser impulse coupling measurements .." (2017)

10) C. Phipps, et al., "3ks specific impulse with a ns-pulse laser microthruster," paper IEPC 319, 29th International Electric Propulsion Conference, Princeton (2005)

CW ablation data

- No published vacuum C_m data to my knowledge except Lubin's¹¹⁻¹²)
 - > In the "DE-STAR" concept, Lubin's simulations for refractories (SiO₂) give C_m =600N/MW at 70MW/m².
 - But simulation doesn't look right: plasma formation doesn't permit a plateau in C_m vs. intensity.
 - Recall this plot from page 8? Plasma saps momentum!
 - Our calcs give 70-100N/MW
 - That's not so bad!
 - Still: what are I_{sp} and η_{AB}?

Experimental data point¹¹): Basalt, 880nm, C_m=70N/MW at 10MW/m²

11) T. Brashears, et al., "Directed Energy Laboratory Measurements," SPIE Optics & Photonics, San Diego (2015)

Incident Intensity (W/m²

12 12) P. Lubin, et al, "Toward directed energy planetary defense," Opt. Eng. 53(2), 025103 (2014)

Multiple considerations in system design

• Diffraction controls spot size on target

[z is range, λ is wavelength, T_{eff} is system transmission, M² is beam quality (2 for a good laser), I is intensity on target, a_d is 2.44 for a hard aperture and 4/ π for a gaussian beam shape]

- This leads to a constraint on power P and mirror size D_{eff}.
 - > If we need I = 10MW/m², and have D_{eff} =3m, λ =1 μ m and z=1000km, P=5MW. This is why we need FEL's!
 - > Note λ^2 factor!
- Thermal coupling and splashing are terrible for metal targets. This is why we have ruled out SDR with CW lasers.
- What about refractory targets? Brashears says: "There is bubbling, mass ejecta, sparks and plume clouds." ¹¹
- What is the minimum mass of an FEL? Five tons or less? Then it might be useful in space.

 $d_s = a_d M^2 \lambda z / D_{eff}$

Considerations, cont'd

- If C_m on refractories is close to estimates, FEL lasers are useful for laser propulsion!
 - This is because FEL's are the only way to get high beam quality, MW-level power in the near term. Largest average pulsed power today is 1kW¹³.
- Beam quality is very good, 1.25<M²<1.5¹⁵)
- Thermal coupling could be good, or disastrous, although simple heat conduction model says it should be OK on refractories.
- What about fracturing, splashing and flaking? Not known, may be ok

¹³⁾ HiLASE Project, Czechia, "Advanced DPSSL laser, DiPOLE 100, delivers 1kW performance," http://www.hilase.cz/en/advanced-dpssl-laser-dipole-100-delivers-1kw-performance/ (2016)

¹⁴⁾ Dr. Bruce Carlsten, LANL, private communication (2018)

XFEL beam temporal profile

We have data in pulsed regime⁶⁾! This chart shows fluence (J/m^2) needed to get optimum C_m vs pulse duration

- 6) C. Phipps, et al., "Laser impulse coupling measurements .." (2017)
- 15) C. Phipps, et al., "An alternate treatment of the vapor-plasma transition," *Int. J. Aero. Innovations* 3, 45-50 (2011)

Need 1MJ/m² in a 10µs pulse for optimum coupling, 10MW/m² avg. intensity at 10Hz. Spot size is 11cm for 1MW laser.

On many materials, $10\mu s$ pulses give $C_m = 20-50 N/MW^{15}$

UCLA's LCLS2 beam profile

- To first order, an LCLS2 FEL beam might behave like CW¹⁶. Note that Ref. (16) measured specific ablation energy (Q = J/kg ablated), not C_m .
- Yet, with one μs to recover between illumination spikes, the physics is complex!¹⁷ At 1MW, essentially 1MHz, 1ps,1J pulses
- As mentioned earlier, there is no significant vacuum data on C_m for a CW beam, certainly not for this one!

16

 For pulses: fluence (J/m²), for CW: average not peak intensity is important to heat target to plasma threshold, achieve C_{mopt}

Time (s

16) "As for the interaction of a high PRF (10's of MHz) FEL beam with matter, the Q's I measured were in line with those measured with CW lasers. This changes when the irradiance gets higher than 10¹⁰ W/cm² (the interaction looks like that typical of ultrafast lasers), but that would not be expected to occur in your application." Dr. Michelle Shinn, Jefferson Lab, March 27, 2014 [private communication]
17) C. Phipps, "Concerns for phased fiber laser arrays in space," 4th workshop on space debris modeling and remediation, CNES-HQ (2016)

LCLS2 cont'd

17

- Unrealistic spot size to achieve C_{mopt} at target with a single micropulse in 1MW beam (8mm).
- Guess: $10MW/m^2$ avg. (11cm) still gives C_m=70N/MW
- Combined effect of thousands of pulses at 1µs interval? Might be pulse-like!

Latest calculations

- Our CW calcuations⁷⁾ say η_{AB} is only ~ 3% on metals, still <u>unmeasured</u>
- What about nonmetals?
- Calculations for a CW 1 μ m laser on SiO₂ say:
 - \succ C_m is as good as we get for pulses on metals
 - \succ C_{th} is good, but
 - \succ η_{AB} is disappointing for reasonable intensities
 - All of this needs further work!

1.E-02

0.E+00

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

Intensity (W/m²)

Target material: SiO2

Infinite Slab 95% absorptivity at q = 5/3

Conditions: 1D, Vacuum

1.E+10 1.E+11 1.E+12 1.E+13

50

Applications: Laser launch

Here's the idea •

19

- We may use balloons to get the target ٠ to a good launch altitude
- Groundbased or spacebased applications •
- Could reduce launch cost to \$300/kg⁵⁾ •

ballons

Applications: Flights to LEO or the planets

• Our flyer is 50-80cm diameter, with a discardable ablation fuel layer outside a scientific payload

- Launched spinning about axis y-y and driven by gas jets to slowly precess about axis x-x, all surface elements eventually have equal beam exposure
- The entire object weighs 25kg at launch to LEO
- Optimized for 355nm pulses, the ablator has an Al/POM mixture, with C_m=70-150N/MW, using 80ps pulses at 35kJ/m² and 1.25MW average power^{5), 6)}
- A spacebased application. Are FEL's light enough?

Why FELs might work very well for us

- Assume C_m=130N/MW for this flyer. Not an extreme assumption. If we trust simulations, I = 1MW/m² is adequate. Lubin obtained similar results for MgO and Al₂O₃. Then P=5.1MW at z=1000km.
- FEL's could offer this power. Our flyer is 85 cm dia.
- We can use 0.5µm wavelength and make it 50cm.
- Assume a refractory coating for the flyer and $C_m = 130$ M/MW.

Result for launching 25kg to LEO using this C_m value and a 3-meter dia. mirror from ref. 5) with a 0.5µm, 5MW pulsed laser. Can FEL's do the same?

Applications: Laser-powered rocket to Mars⁵⁾

- Also a spacebased application
- Problem: provide Δv=3.6km/s impulsively in LEO to get to a cis-Mars orbit
- The laser is in space, can use 355nm for best focus, 3-m mirror
- No worries about perigee
- Batteries recharge in 3days at 25kW solar array input
- Equation of motion (no drag):

$$\ddot{s} = \frac{PC_m \eta_c}{m}$$

5) C. Phipps, et al., "Transfers..." (2018)

Extreme levels of m/M for this application

Parameters for flight to Mars						
Wavelength (nm)	355					
Average power (MW)	1.25					
C _m (N/MW)	70					
Fluence Φ (kJ/m ²)	35					
Target diameter (cm)	50					
Initial mass (kg)	25					
Final mass (kg)	18.2 (73%)					
Final velocity (km/s)	3.6					
Acceleration time (min)	18.5					
Mirror diameter (m)	3					
Maximum range (km)	1900					
Maximum acceleration (m/s ²)	3.84					
Ablation efficiency	1.0					

Apps: Launching swarms of microsatellites

- Also spacebased
- Can we reduce power to the 100kW level, making it possible to launch swarms of microsatellites in the near term?
- We think so, but it's tedious!
- Increase velocity in 8 stages to limit laser power to 100kW
- Two "L'ADROIT" stations¹⁸⁾, one in LEO, one in GEO do the trick
 - 19) C. Phipps, et al., "L'ADROIT a spaceborne ultraviolet laser system for space debris clearing," *Acta Astron.* **104**, 243-255 (2014)

Swarms cont'd

• Multiple passes make L'ADROIT and satellite orbits resonant

Table: Eight stages to GEO or cis-Mars orbit											
Parameters: W=5kJ, C_m =130N/MW, D_b =3m, λ =355nm											
Phase	1	2	3	4	5	6	7	8A(GEO)	8B(Mars)		
m _o (kg)	25	21.7	20.2	19.3	18.7	17.9	17.4	16.8	16.8		
m _f (kg)	21.7	20.2	19.3	18.7	17.9	17.4	16.8	11.3	10.8		
f(Hz)	17.3	13.9	10.9	8.97	14.4	9.74	14.8	23.2	50		
P(kW)	86	70	54	45	42	49	74	116	250		
∆v(m/s)	865	450	285	198	258	166	204	1470	2740		
∆t(s)	2240	1300	1020	800	620	580	460	1820	1420		
Passes	3	3	2	3	4	5					
s(km)	951	293	147	80	81	50	49	1300	1820		
е	0.24	0.37	0.46	0.52	0.60	0.66	0.73	0.998			

Applications: Kare/Parkin HX concept¹⁹⁾

- Task: ground launch to LEO
- Main example of laser-heated fluid propulsion (H₂)
- Clearly, a groundbased application
- Problems: 300-900MW electrical input, ~2B\$ cost for ground station
- Problem: for microwaves, interference with radar, wireless and TV
- Benefit: At \$3W, est \$500/kg to LEO

19) J. Kare and K. Parkin, "A comparison of laser and microwave approaches to beamed energy launch," CP830, *Beamed Energy Propulsion, 4th International Symposium,* K. Komurasaki, ed. (2006)

Outstanding problems

- Determining interaction parameters for FEL beams on refractory materials
 - ≻ C_m
 - \succ I_{sp}, η_{AB}
 - ▷ C_{th}
- Qualifying *any* large laser for these applications
- Are FEL's too massive to put in space?
 - \succ If so, what can we do from the ground?
- Apologies to lawyers, but they may still stop us with liability considerations¹⁸⁾

18) S. Aoki, "Legal Aspects of Laser in Space Activities," Proc. Optics & Photonics International Congress, Yokohama, 17-20 May 2016

Conclusions

- Laser ablation propulsion is an effective method of propelling objects remotely
- High-payoff applications from LEO to GEO and beyond
- Still a lot of confusion on mechanical coupling and efficiency for CW beams
- Exciting developments may be near
- Some distance exists between requirements and actualities in "portable" high peak and high average power lasers
 - I hope you will help us close this distance!
- Thank you for your attention!
- Woops! 2 very recent slides follow showing ablation propulsion in action!

Laser propulsion demo

Here is what laser propulsion looks like.

In this video, created three days ago, a repetitive-pulse Nd laser (1.076um, 4ns) strikes a coated pingpong ball on a rail.

Total laser power is just 9W.

Drag force due to air is 14μ N at maximum velocity of 13.6cm/s.

