

Initial Design of the Advanced Gradient Undulator

Finn H. O'Shea RadiaBeam Technologies, LLC High Efficiency FEL Workshop 04/12/2018

Project Structure

- Small Business Innovation and Research project through the Department of Energy, Basic Energy Science.
- Results here are a partial summary of the Phase I project.
- Phase II was awarded on Monday. (Yay!)
- Phase I Participants:
 - RadiaBeam: Finn H. O'Shea and Alex Murokh
 - SLAC/UCLA: Claudio Pellegrini and Claudio Emma
 - Argonne: Yuri Ivanyushenkov and Efim Gluskin

Ultimate Goal

 Turn a table of simulation parameters in to a prototype undulator and eventually an FEL.

TABLE I. GENESIS Simulation parameters.

C. Emma, et al., PRAB 19, 020705 (2016).

AGU Motivation - 1

,	- <u>-</u>			-
Parameter	Units	AGU	SCU	$LCLS-II^1$
E_{beam}	${ m GeV}$	12.975	12.975	9.25
Norm. Emit.	$\mu \mathrm{m}{\cdot}\mathrm{rad}$	0.3	0.3	0.3
Current	$\mathbf{k}\mathbf{A}$	4	4	4
Rel. Energy $Spread^2$	10^{-4}	2.4	2.4	2.3
Quad. Gradient	T/m	26.6	94.5	26.0
Quad. Length	cm	100	20	33.8
Average β	m	5	5	9
Undulator Type		Helical	Planar	Planar
Und. Period	\mathbf{cm}	2.0	2.0	2.6
Und. Length	\mathbf{cm}	100	100	338
FODO Cell Length	m	2.4	2.4	8.7
K_{rms}		3.0	3.0	1.7
Seed Power	\mathbf{MW}	5	5	5

AGU Motivation - 2

F.H. O'Shea - High Efficiency FEL Workshop - Los Angeles, CA, USA - April 12, 2018

Phase I Goals

- Define the AGU Undulator features: wire type and current, winding pattern, initial thermal considerations.
- Define high-level tolerances for the undulator.
- Target the LCLS-II HE upgrade within DoE Basic Energy Science.
- Why superconductors?
 - Recent work has shown better performance at short period than permanent magnet solutions. J. Bahrdt and Y. Ivanyushenkov, IOP Conf. Series 425, 032001 (2013).
 - PPM Undulator (Br = 1.6 T, i.e. state of the art) needs g < 3.5 mm, while LCLS-II requires g > 4.6 mm for beam stay clear.
 - Superposition naturally allows combining the quadrupole and undulator without having to worry about non-linearity of materials or steel.

Inspiration: Argonne SCUs

Q. Hasse, Advanced in Cryogenic Engineering, AIP Conf. Proc 1573, 392 (2014).

Y. Ivanyushenkov, IPAC 2017.

F.H. O'Shea - High Efficiency FEL Workshop - Los Angeles, CA, USA - April 12, 2018

Bifilar Helical SCUs

 Madey's FEL was Bifilar SCU, so we are back to where we started at 50 years ago.

S.H. Kim, ANL/APS/LS-331 (2012).

M. Wilson "Lecture 1, CAS Zakopane, Oct 2006"

$$B = \frac{2\mu_0 j}{\pi} \sin\left(\frac{k_u a}{2}\right) \int_{r_0}^{r_0 + b} \left(k_u r K_0(k_u r) + K_1(k_u r)\right) dr$$

Comparison to Codes

20 mm period, $r_0 = 3.75$ mm, j = 780 A/mm², a = 8.63 mm = 0.43 λ_u

Analytical: blue, Radia: magenta, Maxwell 3D: red, Goal of 1.6T: orange

I tried to find subtle differences in the current distribution due to differing ways of defining the current in the two simulation packages, but nothing jumped out.

Lesson: Stick to $\lambda_{\rm u}/4$ and not much bigger.

4-wire quadrupole

- Primary motivations for this design are access and "simplicity."
 - In a cosine-theta quadrupole, the undulator would be almost totally closed off from the helium bath, and epoxy impregnated wires are not very good thermal conductors.
- Ends of cosine theta are complicated.
- Plus, we do not need the field strength, quality or aperture of ring magnets.
- Harmonic purity is good, in principle:

$$B_y = \frac{2\mu_0 I_0}{\pi R^2} r \left(\cos\phi + \left(\frac{r}{R}\right)^4 \cos 5\phi\right)$$

CEA-IRFU

 $B_x = \frac{2\mu_0 I_0}{\pi R^2} r \left(\sin \phi + \left(\frac{r}{R}\right)^4 \sin 5\phi \right)$ • I₀ = 132 A, 49 turns of the same wire used in the undulator to reach 26.6 T/m.

http://irfu.cea.fr/en/Phocea/Vie_des_labos/Ast/ast_visu.php?id_ast=2411

Parameter	Units	Sr	nall Bore	Large Bo	re	Final
Windings	$N_h imes N_w$		7×7	7×7		9×10
a	$\mathbf{m}\mathbf{m}$		7.01	6.29		6.36
b	$\mathbf{m}\mathbf{m}$		5.27	5.27		5.40
r_0	$\mathbf{m}\mathbf{m}$		3.25	4.5		3.50
Wire Type			$ m NbTi^1$	$ m NbTi^1$		$NbTi^2$
Total Current	kA		33.3	46.6		35.1
Strand Current (I_1)	А		680	952		390
I_1/I_{crit}			77%	76%		82%
Temperature	Κ		4.2	2.0		4.2
Max. Coil Field	Т		2.71	3.66		2.85
$P_L{}^3$	W/m		2.63	1.91		2.12

1 SuperCon 56S53, 0.7 mm. 2 SuperCon 56S53, 0.5 mm. 3 Following [29] for LCLS-II for 1 MHz repetition rate, 90 μ m long flat top beam with 1 kA peak current. The beam chamber is made from aluminum (RRR = 100) and assumed to be 0.5 mm smaller in radius than r0.

Current Lead Considerations

- Minimize current in conductors (I₁) without sacrificing clear aperture.
 - Heat leak in feed-throughs are, by far, the biggest source of steady state heat per undulator module (10s of Watts).
 - P_{leak} ~ A while P_{ohm} ~ 1/A, so lower current means smaller heat leaks.

$$P_{t} = \frac{I_{1}^{2}\rho L}{A} + \frac{k\Delta TA}{L} \qquad A_{min} = \sqrt{\frac{I_{1}^{2}\rho L^{2}}{k\Delta T}} \qquad P_{min} = 2\sqrt{I_{1}^{2}\rho k\Delta T}$$

$$\stackrel{\text{Copper:}}{\underset{k = 400 \text{ W/(m K)}}{\text{Copper:}}} \qquad P \sim 30 \text{ W}$$

- Heat load is at 50-80K, but if we need to feed current in to each undulator segment separately, there will be 6 kW of heat to cool (42 kW "warm" power). Half that of the LCLS-II linac.
- More importantly, 400 A is similar to the ANL design (500 A).

radiabeam

ECHNOLOGIES

The ANL current leads

F.H. O'Shea - High Efficiency FEL Workshop - Los Angeles, CA, USA - April 12, 2018

"Final" Design

Magnetic Field [T]

For mechanical stability combine the undulator and quadrupole in to one monolithic structure. Judicious placement of Al/Cu so cooling can reach the undulator coils.

F.H. O'Shea - High Efficiency FEL Workshop - Los Angeles, CA, USA - April 12, 2018

Tolerance Budget

- Three assumptions to simplify analysis:
 - 1. The undulator is N_c, identical segments long.
 - 2. The different types of errors are independently distributed (i.e. no correlations)
 - 3. The FEL's sensitivity to errors is independent of segment number.
- This isn't as un-conservative as it may sound as long as you use conservative estimates for the actual errors.

$$\eta = P/P_0$$
$$<\bar{\eta}>= \left\langle \prod_{j=1}^{N_j} \bar{\eta}_j \right\rangle = \prod_{j=1}^{N_j} \langle \bar{\eta}_j \rangle = \prod_{j=1}^{N_j} \left\langle \frac{1}{N_c} \sum_{i=1}^{N_c} \eta_{ji} \right\rangle = \prod_{j=1}^{N_j} \langle \eta_{j1} \rangle$$

Following H.-D. Nuhn at SLAC for LCLS-II.

Two types of "Fundamental Errors"

Electron Beam Kicks H.-D. Nuhn, SLAC-PUB-15062

E-Loss=9.62+-0.15 MeV (2.40 mJ), 29-AUG-2010 18:34:57 (9.74 GeV) 1.0 12 N-photons = 3.56e+12 GDET:FEE1:242:ENRC E-photon = 4.22 keV slope=1.02+-0.020.8 <Ipk> = 2988 Aoffset=-0.11+-0.01 MeV 0.6 ا ط/ط FEL Energy Loss (MeV) 0.4 0.2 0.0 2 0 0 -2^{L}_{-6} -2-40 2 4 XCOR:UND1:180 (kG-m) $x 10^{-3}$ $\eta(x') = \exp\left(-\frac{(x')^2}{2\sigma_{x'}^2}\right)$ $\sigma_{x'} = \frac{1}{3.3} \sqrt{\frac{\lambda_r}{L_q}} = 4.6 \ \mu rad$

Undulator de-tuning

radiabeam

ECHNOLOGIES

Example of "derived error"

• If the undulator is offset by Δx , the magnetic field is stronger:

$$K/K_0 = 1 + k_u^2 \Delta x^2/4$$

- Installation instructions general have: $\Delta x \sim U(-a,a)$
- What does this mean for the FEL power?
- Conservation of probability density says χ is not uniform, and the ensemble average for the output power is

Total errors for AGU

 Repeat the previous until you run out of patience/money and then play around with your tolerances to find:

Parameter	Tolerance	Units	\mathbf{P}/\mathbf{P}_0
Injection Angle	$2. imes 10^{-6}$	rad	0.969
Und. Current $(\triangle I/I)$	$1. imes 10^{-4}$		0.991
Und. Offset $(\triangle x)$	1. $ imes$ 10 ⁻⁴	m	0.967
Und. Offset $(\triangle \mathbf{y})$	1. $ imes$ 10 ⁻⁴	m	0.967
Und. Pitch	1. $ imes$ 10 ⁻⁴	rad	0.999
Und. Yaw	1. $ imes$ 10 ⁻⁴	rad	0.999
Und. Phase	5.	deg	0.990
Und. Roll	$1. imes 10^{-3}$	rad	0.974
Relative P.S. Error	$1. imes 10^{-4}$		0.984
Drift error	$5. imes 10^{-5}$	m	0.960
Quad. Current $(\triangle I/I)$	$1. imes 10^{-2}$		1.000
Quad. Roll	$1. imes 10^{-1}$	rad	0.996
Quad. Offset $(\triangle x)$	$1. imes 10^{-6}$		
Quad. Yaw	$1. imes 10^{-6}$	rad	
Iy	$5. imes 10^{-5}$	Τ·m	
IIy	$1. imes 10^{-4}$	$T \cdot m^2$	0.970
Quad. Offset $(\triangle y)$	$1. imes 10^{-6}$	- <u></u>	
Quad. Pitch	$1. imes 10^{-6}$	rad	
I _x	$5. imes 10^{-5}$	Τ·m	
II _x	$1. imes 10^{-4}$	$T \cdot m^2$	0.970
Total			0.765

These values are somewhat conservative because we haven't included the ability to tune the current of the undulator in-situ. We have also ignored that there will be phase shifters between the undulators helping to fix problems with the inter-undulator drifts.

Nonetheless, these tolerances are all within the realm of possible. Vibrating wire plus beam based alignment can reach 1 μ m. 100 μ m between quadrupole axis and undulator axis is possible. Might be hard, but then we tune the undulator current.

Conclusions

- High level design of the AGU undulator is complete and it shows superlative FEL performance: 3.5 TW in 80 meters at 1.5 Angstrom.
- Phase II goal is to build a prototype (with support from ANL) and show that we can reach the field and tolerance requirements.
- Several hard steps left: especially the end winding returns.

Thank you.