

Variable Gap Tapering for LCLS-II Undulators

Heinz-Dieter Nuhn

Schematic Layout of LCLS-II

New Soft X-ray FEL with adjustable-gap undulator line (SXR)
New Hard X-ray FEL with adjustable-gap undulator line (HXR)

LCLS-II SXR and HXR Component Layouts

Undulator System Layout

LCLS-II SXR Undulator (HPU)

LCLS-II HXR Undulator (VPU)

LCLS-II Undulator Dimensions and Ranges

Parameter	SXU / SCRF	SXU / Cu	HXU / SCRF	HXU / Cu	Unit
Undulator period length	39		26		mm
Total segment length	3.4		3.4		m
Number of periods per strong back	87		130		
X-ray energy range, required*	0.2 – 1.3	0.2 – 10	1.0 – 5.0	1 – 25	keV
Undulator operational gap range	7.2 – 20	7.2 – 20	7.2 – 18	7.2 – 19	mm
Undulator parameter range, K	5.5 – 1.5	5.5 – 1.5	2.4 – 0.57	2.4 – 0.54	
Electron energy range, operational	3.6 - 4.0	2.5 – 9	3.3 - 4.0	2.5 – 15	GeV
Maximum gap taper	300		300		μm

*at 4.0 GeV, the lower limit is 0.25 and 1.5 keV, respectively

LCLS Step Taper Only

Continuous Taper, Apr 12, 2018

LCLS-II Allows Continuous Taper

LCLS-II Undulator Segment

 $\Delta K/K \approx -(5.08 - 3.08g/\lambda \downarrow u) \Delta g/\lambda \downarrow u$

LCLS-II HXR Maximum Gap Taper

LCLS-II SXR Maximum Gap Taper

Large Taper Ranges at LCLS-II

Continuous Taper, Apr 12, 2018

LCLS-II HXR Undulator Line 24.1% Continuous Post-Saturation Taper

SXU-007 Field Measurements: (1) Untapered

SXU-007 Field Measurements: (2) Tapered

- Measured K_{pole} values for SXU tapers of +100 μm and +300 μm and reversed taper of -100 μm at 8 mm and 20 mm gap.
- Difference between tapered and untapered K_{pole} values is only according to gap change. (No distortion at large tapers observed)

Field Evaluations for Tapered Undulators

- Standard calculations of phase shake and total phase assume constant beam energy and can not be applied to tapered undulators.
- Instead assume that taper is necessary because of energy loss along undulator segment, i.e., $\gamma = \gamma(z) = \gamma \downarrow start (1 \alpha \downarrow z)$
- A value for $\alpha f_{\mathcal{P}}$ be found that minimizes the change of phase advance per period.

 $\gamma(z) = \gamma \downarrow start \ f \downarrow tp(z)$

 $f \downarrow tp(z) = \{\blacksquare 1 \& \text{for } z < z \downarrow u, start @1 - \alpha \downarrow \gamma (z) \}$

Phase Calculations

• The phase slippage for changing energy along undulator segment is

$$\Delta \varphi \downarrow taper(z) = 2\pi / \lambda \downarrow u (1 + 1/2 K(g \downarrow start) \uparrow 2) \int 0 \uparrow z = 1/f \downarrow tp(z) \uparrow 2 (1 + 1/2 K(g \downarrow start) \uparrow 2)$$

The field integrals are calculated as usual

 $I1x(z) = \int 0 \uparrow z = B \downarrow x(z) dE y(z) = \int 0 \uparrow z = B \downarrow y(z) dz$

The slopes and trajectories are

$$d/dz y(z) = -1/(Bp) \downarrow startd f dx(x(z)) = 0$$

 $(B\rho)\downarrow start = \gamma \downarrow start m c/e$

$$y(z) = -1/(B\rho) \downarrow start \int 0 \Re(B\rho) \iint f(z) = 0$$

Phase Measurements

SXU-007 Trajectories

- BBA corrected horizontal and vertical trajectories for +300 µm SXU taper based on field measurements.
- Only insignificant deviation from untapered trajectories observed.

Summary

- The LCLS-II undulators allow continuous gap tapering
- Limits are ±300 µm over segment length (~±88 µrad)
- SXU taper measurements look promising:
- If adjusted to compensate for energy loss, tapering
 - will mostly change the downstream phase advance
 - will only slightly increase overall phase shake
 - will not significantly steer the electron beam
- HXU (vertically polarizing undulator) taper measurements will follow soon

Thank you for your attention!