# Dinner at 6.30 pm Napa Valley Grille

1100 Glendon Ave Ste 100, Los Angeles



## Tapering Enhanced Stimulated Superradiant Oscillator

#### Towards very high average power free-electron based radiation sources

P. Musumeci

High efficiency FEL Workshop UCLA April 11-13<sup>th</sup> 2018



# Acknowledgements

- J. Duris, N. Sudar, Y. Park, Graduate Students (UCLA)
- A. Gover ( Tel Aviv University)
- A. Zholents (ANL)
- A. Murokh. (Radiabeam Technologies)
- I. Pogorelsky, M. Polyanskiy, M. Fedurin, M. Babzien, K. Kusche, C. Swinson (ATF, Brookhaven National Laboratory)

Funding agencies : DOE, DTRA, DNDO







# Outline

- Introduction
  - Tapered undulators in FEL oscillators
  - TESSA approach. Strongly tapered helical undulator experiments at BNL
- What are the critical elements to get high extraction efficiency?
- TESSO, high efficiency oscillator
  - A 1  $\mu$ m test-case
  - Optical cavity and stability study
  - Slippage and pulse propagation effects
- Conclusions

### Tapered undulators in FEL oscillators

- Old idea with interesting literature and surprising results
- Small signal formalism and only mild linear tapering
- Start-up analysis
- Benefits of reverse tapering !
- Pulse propagation effects considered



$$\mu_T = 2N \frac{\Delta B}{B} \frac{K_0^2}{1 + \frac{K_0^2}{2}},$$



- E. L. Saldin, E. A. Schneidmiller and M. Y. Yurkov. Optics Communications 103 297 (1993)
- G. Dattoli, S. Pagnutti, P. L. Ottaviani and V. Asgekar. Phys. Rev. STAB, 15, 030708 (2012)

#### **NOCIBUR IFEL deceleration experiment**

- Use RUBICON IFEL set up in reverse at BNL ATF
- Reversed and retapered the 0.5 m undulator for high gradient deceleration

æ

Demonstrated >30% efficiency from a relativistic electron beam in half a meter



- Maximized capture with variable gap prebuncher chicane
- Up to 45% of 100 pC beam captured and decelerated





High Efficiency Energy Extraction from a Relativistic Electron Beam in a Strongly Tapered Undulator

Ś

#### Tapering Enhanced Stimulated Superradiant Amplification

- <u>Reversing the laser-acceleration process</u>, we can extract a large fraction of the energy from an electron beam provided:
  - A high current, microbunched input e-beam
  - An intense input seed
  - Gradient matching to exploit the growing radiation field
     GIT algorithm @ UCLA, but many others around (SLAC, DESY, Lund)



# TESSA in conjunction with high rep-rate electron beams

>30% efficiency \* high average power e-beams
=> high peak AND average power laser

- Where to get the high repetition rate high intensity seed pulse?
- Oscillator configuration
  - Starting from noise : start-up analysis
  - Ramp-up undulator tapering
  - Starting from igniter pulse

Ignition Feedback Regenerative Amplifier (IFRA) (Zholents et al. Proc. SPIE'98).



TESSO. J. Duris et al. Under review in PRAB arXiv:1704.05030v2

## High average power electron beams

|                      | XFEL      | LCLS2       | FAST          |
|----------------------|-----------|-------------|---------------|
| Bunch charge         | 1 nC      | 200 pC      | 1 nC          |
| Bunch spacing        | 200 ns    | 1 us        | >10 ns        |
| Bunch train duration | 600 us    | CW          | 1 ms          |
| Reprate              | 10 Hz     | 1 MHz       | 5 Hz          |
| Transverse emittance | 1 mm-mrad | 0.5 mm-mrad | 1-100 mm-mrad |
| Bunch length         | 100 fs    | 40 fs       | 1 ps          |
| Beam energy          | 17.5 GeV  | 8 GeV       | 300 MeV       |
| Peak power           | 30 TW     | 20 TW       | 300 GW        |
| Average beam power   | 500 kW    | 1 MW        | 300 kW        |





# Applications

De-activated

- Power beaming 1 um wavelength
  - Deorbit burning of space debris
  - Boosting satellites to higher orbit
  - MW average power, pulse format ?
- EUV Lithography 13.5 nm wavelength
  - >10 kW average power



- Laser acceleration (see next talk from A. Murokh)
- Longer wavelength (THz?)

#### High Power Laser Performance Worldwide The Need for Power Scaling



High power Lasers for Science and Society.

# High power 1 $\mu\text{m}$ oscillator design

| Parameter            | Value         |
|----------------------|---------------|
| E-beam energy        | 250 MeV       |
| Current              | 500 A         |
| Charge               | 1 nC          |
| Emittance            | 1 µm          |
| Repetition rate      | 1 MHz         |
| Undulator length     | 4 m           |
| Laser wavelength     | 1 µm          |
| Rayleigh range       | 48 cm         |
| Laser waist          | 1.8 m         |
| Input peak power     | 50 GW         |
| Output peak power    | 127 GW        |
| Net efficiency       | 54%           |
| <u>Average power</u> | <u>120 kW</u> |

- 250 MeV \* 500 A = 125 GW peak beam power
- 250 MeV \* 1 mA = 250 kW average beam power
- Seed laser power is 50 GW (40% of beam power)
- Diffraction of stimulated radiation limits undulator length to 4 m to keep gap small
- Prebunching to capture more (nearly all) charge increases net efficiency to 50%



### **TESSO undulator**

#### Helical geometry

Tapering both period and amplitude to maximize efficiency

Parameters consistent with Halbach permanent magnet undulator technology with 5 mm gap



# Oscillator cavity design

- Assuming LCLS2-like 1 MHz injector c / 1 MHz = 300 m
- Calculate steady state efficiency (input power dependent).
- Analyze stable resonator design using two spherical mirrors and a beam splitter for outcoupling.
- Intensity on optics  $\rightarrow$  spot size  $\rightarrow$  cavity length  $\rightarrow$  rep rate



Impose that at steady state the recirculated power is constant Interestingly, if one computes the total amount of output energy

$$N_{ph} \approx \alpha N_e^2$$

# Simulation model of oscillator

- Use field propagator + GENESIS to simulate multi-pass in cavity
- Optimize output coupler / return fraction



# Full 3D simulations Transverse mode quality

- Loop Genesis simulations + numerical radiation propagation (Huygens integral method)
- Output converges to steady state mode in a few passes





- Mode quality not perfect.
  - Adjust beam focusing in undulator.
- Mirrors may require cooling depending on absorption losses
  - > 1 kW/cm2 average incident intensity

# E-beam current stability analysis

E-beam current will vary. How much variation can the design tolerate?

- Investigate with combined current and power map (assuming output radiation mode is same as seed)
- Randomly draw subsequent currents ulletfrom a normal distribution

For 5% rms current fluctuations:







Average output after 1000 passes of 100 oscillators



# Slippage effects

#### For flat-top electron current distribution

Consider pulse propagation 200 periods @ 3 fs = 600 fs

Need to re-stretch output pulse to fully cover electron beam before next pass

Absorption / dispersion filter

30 % losses taken into account in efficiency calculation



In the oscillator study bunch length was set by 500 A max current achievable with high rep-rate linac at 250 – 300 MeV energy, but....

# Aside: What happens as we increase the compression ratio of the beam before TESSA ?

- Efficiency in high gain is proportional to current, but at some point slippage will play a role.
- In exponential gain regime, the cooperation length provides a temporal scale to measure the e-beam
- In post-saturation regime, gain length is no longer a fundamental scale length for the system. Dynamics occurs on different scales: what is the relevant quantity ? Slippage in a synchrotron period, .... ?

Y. Park TESSA-266 nm simulation study

Efficiency vs. FWHM electron bunch length (constant charge)



## Slippage effects in post-saturation regime

 $(\partial/\partial z - 1/c\beta \downarrow z (1 - \beta \downarrow z) \partial/\partial t) \alpha = k/2 \iota$ 

- Coupled non linear equations
- The design tapering steepness can be used control trapping along the beam and therefore radiation pulse length.

 $H = k \downarrow w \, \delta \gamma \, 12 \, / \gamma \downarrow r \, - k K a(z,t) / \gamma \downarrow r \, \cos(\psi) + \psi \partial \gamma \downarrow r \, / \partial z$ 



# **Time-dependent TESSO simulation**

- We can take advantage of this intrinsic pulse-lengthening to avoid the introduction of stretching/ dispersive elements in the cavity
- Note that it is still required to filter out sideband power to avoid ripple on pulse intensity
- *Perave* animation of time-dependent oscillator simulation



# Conclusion

- High gradient IFEL deceleration can achieve very high electrical-to-optical energy conversion efficiency.
  - Nocibur experiment recently demonstrated 30 % energy extraction
- Exploit mature high rep-rate beam technology for high peak power + high average power lasers
- TESSA in an oscillator configuration (TESSO) has potential for > 50% efficiency for high average power light sources
- Many issues to consider such as
  - Dispersion control in cavity
  - Mirrors and stretcher optics may require cooling
  - Sidebands build up over hundreds of passes
  - Startup from smaller seed power (ramp up undulator field)