

Optical Energy Recovery Linac ICS Gamma-ray Source

Alex Murokh RadiaBeam Technologies LLC.

Physics & Applications of High Efficiency Free-Electron Lasers California NanoSystem Institute, April 12 2018

Optical Energy Recovery ICS Gamma Source

High intensity 10 MeV class gamma ray source, comprising of:

- **1.** NCRF 150 MeV injector operating in pulse train mode
- **2.** ~ 10 TW igniter laser (i.e. 1064 nm)
- **3.** IFEL 1 GeV energy booster stage
- **4.** ICS interaction chamber
- 5. TESSA decelerator for laser power recovery

Outline

Motivation for monochromatic ICS gamma source

- IFEL-ICS gamma ray ICS
- IFEL-TESSA optical energy recovery ICS

Monochromatic MeV gamma rays applications

- Nuclear spectroscopy and NRF for NP R&D
- NRF for SNM detection
- Nuclear waste inspection
- Medical isotopes production
- Stand off active interrogation via photofission
- cargo inspection

R. Hajima, Japan Atomic Agency ERL Group (2008).

J.L. Jones et al., Neutrons Workshop at ONR, 2006

Disadvantages of the bremsstrahlung source

- Materials differentiation requires multi-color imaging
- Bremsstrahlung target produces continuous spectrum

Inverse Compton Scattering (ICS)

- Scattering intense ultrafast optical laser pulse off GeV class e-beam produces narrow bandwidth directional gamma ray beam
- Maximum practical photon flux per interaction ~ 10⁷ in 1 % bandwidth
- Practical applications intensities require 10³ 10⁵ interactions/second

ICS gamma source features

- Uniqueness light sources do not reach MeV energies
- Tunability and high spectral brightness
- High efficiency at high energy $E_{ph}/E_e \sim \gamma$
- Favorable transverse brightness scaling ($\sim \gamma^3$)
- Directionality (~ $1/\gamma$)

F.V. Hartemann et al., PR ST AB 8, 100702, 2005

ICS features yet to be shown at the same time

- High flux
 - Maximized single shot intensity
 - High rep. rate
- Compactness

A. Ovodenko et al., Appl. Phys. Lett. **109**, 253504 (2016)

C. Liu et al. Opt. Lett. **39** (14), 4132 (2014).

Slide **9** of **26**

✓ Motivation

IFEL-ICS source

IFEL-TESSA-ICS source

Outline

- Motivation for monochromatic ICS gamma source
- IFEL-ICS gamma ray ICS
- IFEL-TESSA optical energy recovery ICS

Inverse Free Electron Laser (IFEL)

- Unlike in FEL, to achieve a significant energy exchange rate IFEL employs:
 - 1) much higher intensity laser, and
 - 2) a strong tapering undulator
- IFEL is an in-vacuum accelerator (no losses, high rep rates are possible)
- requires ~10 TW laser to reach GV/m
- the same laser is perfect for ICS

R.B. Palmer, *J. Appl. Phys.* 43, 3014 (1972).
E. D. Courant, C. Pellegrini, and W. Zakowicz, *Phys. Rev. A* 32, 2813 (1985).

IFEL proof-of-concept Experiments

- STELLA2 experiment at ATF, BNL (2001)
 - Gap tapered undulator
 - 30 GW CO₂ laser (10 μm is a convenient wavelength for IFEL)
 - Staged prebuncher + accelerator
 - Good capture
- UCLA Neptune IFEL experiment (2003)
 - Strongly tapered period and amplitude
 - 400 GW CO2 laser
 - Accelerating gradient up to 75 MeV/m
- However in 2006 DOE deprioritized IFEL R&D due to synchrotron radiation losses at TeV energies

W. Kimura et al. PRL 92, 054801 (2004)

P. Musumeci et al. PRL 94, 154801 (2005)

IFEL-TESSA-ICS source

RUBICON

- RUBICON demonstrated 100 MV/m acceleration and ~ 50% capture (2013)
- GeV/m is feasible to achieve in a purpose build system
- Observed high quality beam at the output consistent with ICS requirements

UCLA results from RUBICON experiments J. Duris et al, *Nature Comm*. **5**, 4928, 2014

Motivation	✓ IFEL-ICS source	IFEL-TESSA-ICS source	Slide 14 of 26
------------	-------------------	-----------------------	------------------------------

Double prebuncher

N. Sudar, P. Musumeci, I. Gadjev, Y. Sakai, S. Fabbri Particle Beam Physics Laboratory, Department of Physics and Astronomy University of California Los Angeles Los Angeles, California 90095, USA

M. Polyanskiy, I. Pogorelsky, M. Fedurin, C. Swinson, K. Kusche, M. Babzien, M. Palmer Accelerator Test Facility Brookhaven National Laboratory Upton, New York 11973, USA (Dated: August 21, 2017)

- Double buncher enabled improving IFEL capture to >80%
- Recently demonstrated by N.
 Sudar et al

Recirculated ICS experiment

- Used CO2 active cavity to study ICS in a pulse train regime (40 MHz)
- Demonstration for the first time of the significant ICS photon yield gain via pulse train interaction (2015)

A. Ovodenko et al., Appl. Phys. Lett. 109, 253504 (2016)

Slide **16** of **26**

IFEL-TESSA-ICS source

Recirculated IFEL (work in progress)

- Collaboration of RadiaBeam, UCLA and BNL (2017-18)
- A necessary step before developing a combined IFEL –ICS gamma ray source

Motivation

IFEL-ICS source

IFEL-TESSA-ICS source

IFEL-ICS gamma ray source summary

	2010	2012	2014	2016	2018	2020
Rubicon IFEL						
Recirculated ICS						
Double buncher						
Recirculated IFEL						
High gradient IFEL						
Stand alone IFEL- ICS						

Motivation	✓ IFEL-ICS source	IFEL-TESSA-ICS source	Slide 18 of 26
------------	-------------------	-----------------------	------------------------------

Outline

- Motivation for monochromatic ICS gamma source
- IFEL-ICS gamma ray ICS
- IFEL-TESSA optical energy recovery ICS

Optical Energy Recovery ICS Gamma Source

High intensity 10 MeV class gamma ray source, comprising of:

- 1. NCRF 150 MeV injector operating in pulse train mode
- **2.** ~ 10 TW igniter laser (i.e. 1064 nm)
- **3.** IFEL 1 GeV energy booster stage
- 4. ICS interaction chamber
- 5. TESSA decelerator for laser power recovery

- Pulse trains require substantial laser development
- GeV beam dump

TESSA (Tapering Enhanced Stimulated Superradiant Amplification)

- IFEL in deceleration configuration = TESSA (inspired by Rubicon success)
- Requires seed pulse of high intensity (larger than P_{SAT})

IFEL-ICS source

• Tapering is optimized using GIT algorithm (Genesis Informed Tapering) developed at UCLA for IFEL

Slide 21 of 26

IFEL-TESSA-ICS source

Motivation

TESSA proof-of-concept experiment

- Numerical studies at 13.5 nm are very promising
- Pilot experimental test was carried out • by UCLA at BNL ATF at 10 µm
- Demonstrated > 30% energy extraction from the electron beam in a 50 cm undulator !

Motivation

IFEL-ICS source

PRL 117. 174801 (2016)

IFEL-TESSA-ICS source Slide 22 of 26

TESSA-266

- Next goal is to show high gain amplification and study system dynamics and optimization experimentally at a shorter (and friendlier) wavelength
- The site of the experiment is LEA tunnel at Argonne (former LEUTL)
- A thorough design study for TESSA-266 is underway in collaboration with UCLA, Argonne, and RadiaSoft

Motivation

IFEL-ICS source

✓ IFEL-TESSA-ICS source

Slide **23** of **26**

ICS design study

• 4 x 10⁸ ph/shot

- 100 Hz
- 100 pulses per train
- 4 x 10¹² ph/s
- ~ 10^{11} ph/s in 1% BW

Electron beam	Value	Units	
Normalized emittance ϵ_n	0.2	mm-mrad	
Transverse size σ_x	10	μm	
Energy <i>E</i>	900	MeV	
Energy Spread $\Delta E/E$	10^{-4}	-	
Charge	0.125	nC	
Bunch length $\sigma_{\!z}$	200	fs	
Loon	Malua	Links	
Laser	value	Units	
Transverse size w ₀	20	μm	
Pulse Energy	1	J	
Wavelength λ_L	1053	nm	
Pulse length	200	fs	
Gamma-rays	Value	Units	
Opening angle	8	mrad	
Central energy	14.6	MeV	
Photons per pulse N_{ν}	4.1×10 ⁸	counts	

Conclusions and Acknowledgement

- Compact tunable gamma ray source could find multiple applications
- IFEL driver uniquely enables high flux and compact geometry at the same time
- IFEL accelerator combined with decelerator (TESSA) enables laser energy recovery and very high repetition rates
- Acknowledgement for contributions and useful discussions:
 - P. Musumeci, J. Rosenzweig (UCLA)
 - J. Byrd, S. Zholents (APS)
 - A. Courjaud, P.-M. Paul (Amplitude)
- Thank you !

If anyone is interested in visiting RadiaBeam on <u>Friday after the workshop</u> we are somewhat on the way to LAX, in Santa Monica on Stewart & Olympic

There will be BBQ

