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Why tapering to reach TW XFEL?
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4 y tapering

* Typical numbers for XFEL:
E.=10 GeV, I =1 kA, Ppeam =10 TW, o = 10-3
=> Pgc ~10 GW

* For TW we want~ 100x increase in efficiency to ~10 %

magnetic field K(z) to match the e-beam energy loss y(z)
* QQuestions are:
© * How do you optimize the taper to achieve the max efficiency?

* What 1s the maximum achievable efficiency?



1-D effects: How to choose the taper for max. power

o 7

(e | WY g \ 4
Power scalingin | 1 i = sz
post-sat regime | £ rad = 10 +P12+ P2 ........ ) » K=Ky-bz——

. Dominant for short i Dominant for :
i undulators or large seed i i long undulators :



1-D effects: How to choose the taper for max. power
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1-D effects: How to choose the taper for max. power
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1-D effects: How to choose the taper for max. power
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Take home messages from 1-D theory

Resonant phase ¢ sets the speed of the taper and
the size of the bucket

. Trade-off between number of electron trapped and how
quickly the electrons are decelerated

Power scales like (f; singy)?
. Increasing the trapping by e.g. pre-bunching can increase P

Power scales like 12/6.2 =12/ B¢,

. Brighter beam/smaller beta conducive to high efficiency
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1-D effects: How to choose the taper for max. power
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. Increasing the trapping by e.g. pre-bunching can increase P

Take home messages from 1-D theory 1.5

Resonant phase ¢ sets the speed of the taper and
the size of the bucket

Normalized &y

. Trade-off between number of electron trapped and how | |
quickly the electrons are decelerated ' Wi

See N. Sudar talk on
Friday

Power scales like (f; singy)?

' _ft for clold beam

. _ft for warm beam |

Power scales like 12/6.2 =12/ B¢, See J. Rosenzweig
talk today
. Brighter beam/smaller beta conducive to high efficiency -. -. =




1-D effects: trade-offs and design considerations
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1-D effects: trade-offs and design considerations
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3-D effects: diffraction limits to the 1-D model
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Time Dependent effects: limits to the 1 frequency model

Electron beam shot noise and synchrotron motion
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“ ..the electron motion in a FEL will become chaotic when the sideband l

amplitude exceeds a certain threshold. This, in turn, will result in significant
electron detrapping. Since 1t 1s the deceleration of the trapped electron bucket
that provides the energy for the radiation in the case of tapered wigglers,
detrapping will cause loss of amplification for the FEL signal”

Sideband Instability

S. Riyopoulos, C.M. Tang, Phys. Fluids (1988) “Chaotic electron

motion caused by sidebands in free electron lasers”



Time Dependent effects: limits to the 1 frequency model
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Electron beam shot noise and synchrotron motion
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Radiation field saturation from
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constant Lsynch

Take home messages from TDP theor l
i Sideband instability can cause second saturation of radiation power
in tapered FEL Sideband Instability
Want to reduce the sideband growth along tapered undulator to S. Riyopoulos, C.M. Tang, Phys. Fluids (1988) “Chaotic electron

continue extracting power motion caused by sidebands in free electron lasers”
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2. Optimization of tapered FELs
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2.2 Tatloring the initial conditions
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Simulation example:

Multi-TW XFEL with an Advanced Gradient Undulator
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C. Emma et al., “High efficiency, multi-TW X-ray free electron lasers”,PRAB 19, 020705 (20106)

See E. O’Shea talk tomorrow
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Multi-TW possible in ~100 m undulator.
Sideband instability causes second
saturation of power
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Overcoming the sideband instability with fresh bunch
self-seeding
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C. Emma et al., PRAB 19, 020705 (2016)

* GENESIS simulations show time dependent losses from sideband instability can be
overcome using a large seed (Psced/ Proise~ 103).
*In a self-seeded FEL having a large seed comes at the expense of a large energy spread at

the start of the seeded section.

*Escaping the trade-off between seed power and energy spread requires fresh bunch self-

seeding.




Fresh slice self seeding experiment at LCLS
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C. Emma ¢z al. App Phys. Lett. 110, 154101 (2017)



Fresh slice self seeding experiment at LCLS
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Fresh slice self seeding experiment at LCLS

Brightness ratio Average Average filtered on e-beam energy Peak Scientific Achievements
Brpss/Bsask 12.5 15.5 35.4 Short ~ 10fs pulses with 50 GW
BFBSS/Bself—seedz‘ng ":_é_?fi ____________________________________________ 2- ;1- __________________________________________ _2-:-:5)_’ POW@I’ and <104 b.w.

Table 6.1: Comparison between the average and peak brightness of the FBSS scheme with I8 2* increase in X'ray power /

SASE and self-seeding at the same photon energy. The left column is an average without filtering
the data based on the incoming electron beam energy. The middle column is an average of the
data within the energy jitter window AFE/FEy = 0.5%. The right column is calculating using the

best shot for each of the three schemes.
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http://pbpl.physics.ucla.edu/Computing/Code Development/Perave/

Tapered FELs with pre-bunched beams
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an C. Emma, et. al., PRAB 20, 110701 (2017)
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http://pbpl.physics.ucla.edu/Computing/Code_Development/Perave/

Future studies: TW-Attosecond pulses from PWFA-FEL + eSASE
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20 pC of nm scale

For single spikes you want o, ~ Lcoop

For FACET-II PWFA case we have Lcoop = Ar/A Lg ~ (1 nm/1 cm) * 30 cm = 100 as

Coming out of the PWFA we have o, ~ 800 as so we need laser-based compression to give
factor 8 reduction in spike length.

Modulation (delta gamma) scales like sqrt(laser power) see Zholents PRSTAB

See J. Duris talk tomorrow



GENESIS SIMULATION
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® Simulation assumes current profile from slide before. The undulators are from LCLS-II SXR.
- ® Power reaches 2 TW in 5 m (1.5 undulators) with FWHM 42 as and 46 eV bandwidth. The time-
102 bandwidth product is 1.93 eV*fs, very close to the Fourier limit (1.8 eV*fs). After super radiant spike
saturates the SASE from the shoulders keeps growing exponentially and eventually broadens the pulse.
- 25 em ¢ Adding more undulators SASE will grow behind the leading spike spoiling the coherence. Maybe this
can be suppressed with faster tapering, studies are ongoing,
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Conclusion
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(1) We studied undulator tapering strategies to increase the efficiency of XFELs and reach TW

peak power levels.

(2) Diffraction and the sideband instability were identified as the fundamental processes which
limits the efficiency of tapered XFELs.

(3) We presented the design of an advanced superconducting undulator for maximal energy

extraction (> 10 %) in the shortest possible undulator length (100 m) to overcome diffraction limits.

(4) We presented a solution to the sideband problem, the fresh bunch self-seeding method, and
demonstrated it experimentally at the LCLS.

(5) Our demonstration of FBSS shows a brightness increase of 12/2 times compared to SASE /

regular self-seeding.

(6) We have studied a combination of pre-bunching and FBSS as a sort of “ideal system” for a TW

level tapered XFELs. Results from 1-D sims are encouraging, 3-D sims to come.

What Next?
(1)Detailed studies of high efficiency/tapered FELSs with advanced accelerator beams.

(2)More exploratory studies of advanced schemes: e.g. tapered eSASE, superradiance, tailored beam

profiles, pre-bunching...
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Fresh slice self seeding experiment at LCLS
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Sideband suppression via gain modulation
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FIG. 5. (Top) Undulator taper profile for a gain modulated
tapered FEL. The modulation section at N, = 750 changes the
synchrotron frequency and damps the sideband growth (see
Fig. 6). (Bottom) The trapping fraction drops after the modulation
section but remains constant compared to the unmodulated case
which suffers from severe sideband-induced detrapping after
N, = 1500.

t/ Tbeam

FIG. 6. Radiation spectrum (top) and temporal profile (bottom)
with and without gain modulation showing sideband reduction
for a gain modulated high efficiency FEL. The ratio of sideband
to total power 1s 55% in the unmodulated case and 4% in the
modulated case.



