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• Why	  linear	  tape	  undulators?	  
•  Transverse	  gradient	  undulator	  (TGU)	  
- How	  to	  introduce	  a	  linear	  taper?	  

•  In-‐vacuum	  planar	  undulator,	  U15	  @	  SwissFEL	  
- Off	  axis	  operaJon	  
- Mover	  system	  
- In-‐situ	  alignment	  

•  Apple	  undulators,	  U38	  @	  SwissFEL	  
- IntroducJon	  of	  complex	  formalism	  to	  define	  K	  &	  its	  gradient	  
- Example	  of	  Apple	  X	  operaJon	  

•  Open	  issues	  
- Orbit	  distorJon	  
- MagneJc	  errors	  (ΔK/K)	  

•  Conclusions	  
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•  The	  strategy	  of	  approximaJng	  linear	  taper	  with	  stepwise	  taper	  with	  
short	  undulator	  module	  is	  quickly	  ineffecJve	  especially	  when	  going	  
smaller	  than	  a	  gain	  length:	  
- Filling	  factor	  (effecJve	  undulator	  length	  over	  full	  length)	  	  
- Alignment	  
- Phase	  matching	  

•  There	  are	  applicaJons	  where	  the	  required	  taper	  is	  strong:	  
- 	  example	  of	  slicing	  of	  an	  energy	  modulated	  pulse	  that	  within	  one	  or	  
two	  gain	  lengths	  the	  beam	  should	  be	  shi]ed	  out	  of	  resonance	  
unless	  the	  slippage	  compensate	  it	  by	  a	  change	  in	  local	  mean	  energy	  
of	  the	  slice	  over	  which	  the	  field	  (spike)	  slips.	  

•  ApplicaJon	  in	  high	  power	  FELs:	  a	  conJnuous	  taper	  will	  give	  higher	  
power	  than	  a	  step-‐wise	  taper.	  

Why linear tape undulators? 
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Linear taper undulators 
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Linear taper undulators 
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If	  you	  have	  such	  an	  undulator,	  good	  for	  you	  and	  use	  it….	  
But	  if	  you	  do	  not	  have	  this	  feature,	  like	  many	  of	  us,	  then	  you	  
can	  try	  with	  a	  TGU	  



• Why	  linear	  tape	  undulators?	  
•  Transverse	  gradient	  undulator	  (TGU)	  
- How	  to	  introduce	  a	  linear	  taper?	  

•  Example	  of	  In-‐vacuum	  planar	  undulator,	  U15	  @	  SwissFEL	  
- Off	  axis	  operaJon	  
- Mover	  system	  
- In-‐situ	  alignment	  

•  Apple	  undulators:	  
- IntroducJon	  of	  complex	  formalism	  to	  define	  K	  &	  its	  gradient	  
- Example	  of	  Apple	  X	  operaJon	  

•  Open	  issues	  
- Orbit	  distorJon	  
- MagneJc	  errors	  (ΔK/K)	  

•  Conclusions	  

Overview 
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Tapering 
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The definition of taper (t) used 
all along this presentation:



Classical TGU 
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Classical TGU 
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Classical TGU 
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x	  &	  w	  can	  be	  confused	  
for	  any	  pracJcal	  
applicaJon	  



• Why	  linear	  tape	  undulators?	  
•  Transverse	  gradient	  undulator	  (TGU)	  
- How	  to	  introduce	  a	  linear	  taper?	  

•  In-‐vacuum	  planar	  undulator,	  U15	  @	  SwissFEL	  
- Off	  axis	  operaJon	  
- Mover	  system	  
- In-‐situ	  alignment	  

•  Apple	  undulators:	  
- IntroducJon	  of	  complex	  formalism	  to	  define	  K	  &	  its	  gradient	  
- Example	  of	  Apple	  X	  operaJon	  

•  Open	  issues	  
- Orbit	  distorJon	  
- MagneJc	  errors	  (ΔK/K)	  

•  Conclusions	  
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In-vacuum undulator 
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Magnetic assessment and modelling of the
Aramis undulator beamline

M. Calvi,a* C. Camenzuli,b R. Ganter,a N. Sammutb and Th. Schmidta

aPaul Scherrer Institute, CH-5232 Villigen PSI, Switzerland, and bDepartment of Microelectronics and

Nanoelectronics, University of Malta, Msida, Malta. *Correspondence e-mail: marco.calvi@psi.ch

Within the SwissFEL project at the Paul Scherrer Institute (PSI), the hard X-ray
line (Aramis) has been equipped with short-period in-vacuum undulators,
known as the U15 series. The undulator design has been developed within the
institute itself, while the prototyping and the series production have been
implemented through a close collaboration with a Swiss industrial partner, Max
Daetwyler AG, and several subcontractors. The magnetic measurement system
has been built at PSI, together with all the data analysis tools. The Hall probe
has been designed for PSI by the Swiss company SENIS. In this paper the
general concepts of both the mechanical and the magnetic properties of the U15
series of undulators are presented. A description of the magnetic measurement
equipment is given and the results of the magnetic measurement campaign
are reported. Lastly, the data reduction methods and the associated models are
presented and their actual implementation in the control system is detailed.

1. Introduction

As part of the general strategy of the Paul Scherrer Institute
(PSI) regarding the development of light sources for research,
a compact free-electron laser (FEL) called SwissFEL has been
designed and constructed (Milne et al., 2017).

SwissFEL consists of a low-emittance injector (Schietinger
et al., 2016), a linac based on C-band accelerating technology
and two beamlines: a soft X-ray beamline, Athos, which is
under construction, covering the photon wavelength range
between 0.6 and 4.9 nm, and a hard X-ray beamline, Aramis,
which is under commissioning, covering the wavelength range
between 1 and 7 Å (see Fig. 1). Short-period in-vacuum
undulators have been designed and installed within Aramis to
achieve short emission wavelengths down to the interatomic
scale with relatively low electron energies (see Table 1). Their
magnetic structure has been designed only for on-axis
operation, enough for a linac-driven FEL, thus reducing the
magnetic forces while enhancing the field on the magnetic axis
(see x2 for more details). To compromise between the total
length of the beamline and the logistics of a single module, a
length of 4.0 m has been selected. A distance of about 0.75 m
between each pair of modules has been allocated for the
installation of focusing elements, phase shifters, alignment
devices and beam diagnostics (see Fig. 2 for more details).

The modelling of the undulator beamline will be addressed
in detail following a description of the U15 design and a
summary of the magnetic measurement results. The phase
shifters will then be discussed since they are essential to be
able to operate the different modules together as a single long
undulator as well as the active feed-forward orbit correction
scheme based on the results of the magnetic measurements.
This complex multi-system model is referred to as SUBLIME

ISSN 1600-5775
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Magnetic assessment and modelling of the
Aramis undulator beamline
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aPaul Scherrer Institute, CH-5232 Villigen PSI, Switzerland, and bDepartment of Microelectronics and

Nanoelectronics, University of Malta, Msida, Malta. *Correspondence e-mail: marco.calvi@psi.ch

Within the SwissFEL project at the Paul Scherrer Institute (PSI), the hard X-ray
line (Aramis) has been equipped with short-period in-vacuum undulators,
known as the U15 series. The undulator design has been developed within the
institute itself, while the prototyping and the series production have been
implemented through a close collaboration with a Swiss industrial partner, Max
Daetwyler AG, and several subcontractors. The magnetic measurement system
has been built at PSI, together with all the data analysis tools. The Hall probe
has been designed for PSI by the Swiss company SENIS. In this paper the
general concepts of both the mechanical and the magnetic properties of the U15
series of undulators are presented. A description of the magnetic measurement
equipment is given and the results of the magnetic measurement campaign
are reported. Lastly, the data reduction methods and the associated models are
presented and their actual implementation in the control system is detailed.

1. Introduction

As part of the general strategy of the Paul Scherrer Institute
(PSI) regarding the development of light sources for research,
a compact free-electron laser (FEL) called SwissFEL has been
designed and constructed (Milne et al., 2017).

SwissFEL consists of a low-emittance injector (Schietinger
et al., 2016), a linac based on C-band accelerating technology
and two beamlines: a soft X-ray beamline, Athos, which is
under construction, covering the photon wavelength range
between 0.6 and 4.9 nm, and a hard X-ray beamline, Aramis,
which is under commissioning, covering the wavelength range
between 1 and 7 Å (see Fig. 1). Short-period in-vacuum
undulators have been designed and installed within Aramis to
achieve short emission wavelengths down to the interatomic
scale with relatively low electron energies (see Table 1). Their
magnetic structure has been designed only for on-axis
operation, enough for a linac-driven FEL, thus reducing the
magnetic forces while enhancing the field on the magnetic axis
(see x2 for more details). To compromise between the total
length of the beamline and the logistics of a single module, a
length of 4.0 m has been selected. A distance of about 0.75 m
between each pair of modules has been allocated for the
installation of focusing elements, phase shifters, alignment
devices and beam diagnostics (see Fig. 2 for more details).

The modelling of the undulator beamline will be addressed
in detail following a description of the U15 design and a
summary of the magnetic measurement results. The phase
shifters will then be discussed since they are essential to be
able to operate the different modules together as a single long
undulator as well as the active feed-forward orbit correction
scheme based on the results of the magnetic measurements.
This complex multi-system model is referred to as SUBLIME
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In-vacuum undulator: operation example 
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Since an Apple undulator with four independent arrays no
longer requires a gap drive system to set a different K-value
(Carr, 1991), the implementation of novel devices was trig-
gered. The first of these undulators was developed at the Swiss
Light Source (Schmidt et al., 2007): the device had an Apple II
cross section, no gap drive system (fixed gap) and four inde-
pendent arrays. Recently a new type of device, called Delta
LEPP-CHESS due to the specific shape of its magnets
(Temnykh, 2008), was proposed. Its cross section not only
satisfies the usual axis (x and y) symmetry but also the 90!

rotational symmetry which simplifies the operation. This
device is based on the same operational principles as the
previous fixed-gap undulator type but with a cross section
rotated by 45!, as seen in Fig. 2. This device has now been
adopted as an afterburner at the Linac Coherent Light Source
(LCLS) facility but with the cross section rotated back to the
original symmetry. It is now referred to as Delta (Nuhn et al.,
2015). In 2016 the Apple X was proposed at the Paul Scherrer
Institute for the soft X-ray line of the SwissFEL. It consists of
a Delta cross section where the four arrays can be indepen-
dently displaced both longitudinally and radially. If the four
arrays are displaced radially by the same amount, the 90!

symmetry is preserved for all gaps. At the same time, it is also
possible to displace them to break the symmetry, thus even-
tually introducing a gradient on-axis. The same development is
ongoing at the LCLS and the device is referred as a Delta II
(H.-D. Nuhn, private comunication).

1.1. Advantages and disadvantages of fix-gap operation

The new operational mode, now called energy mode, is
based on the parallel movement of two neighbouring arrays:
the two top arrays (1 and 2) against the two bottom arrays
(3 and 4) or the two left arrays (2 and 3) against the two right
arrays (1 and 4), as illustrated in Fig. 1. The lack of a gap drive
system to change the K-value increases cost effectiveness,
while decreasing design complexity and the weight of the
device. However, this comes with some drawbacks. The
experimental evidence of these limitations was measured at
the Swiss Light Source (Schmidt et al., 2013) and was
explained by the presence of a transversal K gradient. The
resonance condition, expressed in equation (1) below,

! ¼ !U

2"2
1þ K 2

2

! "
; ð1Þ

where !U is the undulator period length and " is the Lorenz
factor, gives the relation between K and the radiation wave-
length !. In standard operation it is not desired that the
radiation wavelength depends on the transverse position of
the beam because it reduces the intensity of the interference
peaks of the undulator spectrum. However, Schmidt’s work
highlighted for the first time the possibility to operate an
Apple undulator as a variable transverse gradient undulator
(TGU).

Recently, many authors have demonstrated that TGUs may
be useful for certain applications. They can be used to produce
FEL radiation with large energy spread beams generated in
laser-plasma accelerators (Huang et al., 2012). If the electron
energy is correlated to a transverse offset via dispersion and
a TGU is set such that the resonance condition expressed in
equation (1) is preserved for all the electrons, the performance
of the FEL radiation will significantly improve.

A TGU can also be employed to generate ultra-large
bandwidth radiation above the 10% level, which is needed for
selected applications such as crystallography and spectroscopy
(Prat et al., 2016). This will occur when the beam is presented
with a transverse tilt (correlation between the transverse and
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Figure 1
The four magnetic arrays of an Apple undulator are schematically
represented to highlight the basic topology involved in this undulator
concept: array pairs 1–2, 2–3, 3–4 and 4–1 are called neighbouring arrays,
while pairs 1–3 and 2–4 are called opposite arrays.

Figure 2
The different cross sections of Apple-type undulators in chronological
order. In the first row one can find the standard Apple cross sections,
starting with Apple I and II, which are designed for synchrotrons
operated with elliptical vacuum chambers, followed by Apple III for
linac-driven FELs. All three types are regularly equipped with a gap drive
system which is changing the distance between the upper and lower
arrays. In the second row there are the new cross sections called Delta
LEPP-CHESS and Delta, which are designed for linac-driven FELs
without a gap drive system. The last type is called Apple X (at the
SwissFEL project) or Delta II (at the LCLS project), where a new gap
drive system is moving an Apple III cross section in a way that both axis
symmetries and 90! symmetry are guaranteed.

Since an Apple undulator with four independent arrays no
longer requires a gap drive system to set a different K-value
(Carr, 1991), the implementation of novel devices was trig-
gered. The first of these undulators was developed at the Swiss
Light Source (Schmidt et al., 2007): the device had an Apple II
cross section, no gap drive system (fixed gap) and four inde-
pendent arrays. Recently a new type of device, called Delta
LEPP-CHESS due to the specific shape of its magnets
(Temnykh, 2008), was proposed. Its cross section not only
satisfies the usual axis (x and y) symmetry but also the 90!

rotational symmetry which simplifies the operation. This
device is based on the same operational principles as the
previous fixed-gap undulator type but with a cross section
rotated by 45!, as seen in Fig. 2. This device has now been
adopted as an afterburner at the Linac Coherent Light Source
(LCLS) facility but with the cross section rotated back to the
original symmetry. It is now referred to as Delta (Nuhn et al.,
2015). In 2016 the Apple X was proposed at the Paul Scherrer
Institute for the soft X-ray line of the SwissFEL. It consists of
a Delta cross section where the four arrays can be indepen-
dently displaced both longitudinally and radially. If the four
arrays are displaced radially by the same amount, the 90!

symmetry is preserved for all gaps. At the same time, it is also
possible to displace them to break the symmetry, thus even-
tually introducing a gradient on-axis. The same development is
ongoing at the LCLS and the device is referred as a Delta II
(H.-D. Nuhn, private comunication).

1.1. Advantages and disadvantages of fix-gap operation

The new operational mode, now called energy mode, is
based on the parallel movement of two neighbouring arrays:
the two top arrays (1 and 2) against the two bottom arrays
(3 and 4) or the two left arrays (2 and 3) against the two right
arrays (1 and 4), as illustrated in Fig. 1. The lack of a gap drive
system to change the K-value increases cost effectiveness,
while decreasing design complexity and the weight of the
device. However, this comes with some drawbacks. The
experimental evidence of these limitations was measured at
the Swiss Light Source (Schmidt et al., 2013) and was
explained by the presence of a transversal K gradient. The
resonance condition, expressed in equation (1) below,

! ¼ !U

2"2
1þ K 2

2

! "
; ð1Þ

where !U is the undulator period length and " is the Lorenz
factor, gives the relation between K and the radiation wave-
length !. In standard operation it is not desired that the
radiation wavelength depends on the transverse position of
the beam because it reduces the intensity of the interference
peaks of the undulator spectrum. However, Schmidt’s work
highlighted for the first time the possibility to operate an
Apple undulator as a variable transverse gradient undulator
(TGU).

Recently, many authors have demonstrated that TGUs may
be useful for certain applications. They can be used to produce
FEL radiation with large energy spread beams generated in
laser-plasma accelerators (Huang et al., 2012). If the electron
energy is correlated to a transverse offset via dispersion and
a TGU is set such that the resonance condition expressed in
equation (1) is preserved for all the electrons, the performance
of the FEL radiation will significantly improve.

A TGU can also be employed to generate ultra-large
bandwidth radiation above the 10% level, which is needed for
selected applications such as crystallography and spectroscopy
(Prat et al., 2016). This will occur when the beam is presented
with a transverse tilt (correlation between the transverse and
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Figure 1
The four magnetic arrays of an Apple undulator are schematically
represented to highlight the basic topology involved in this undulator
concept: array pairs 1–2, 2–3, 3–4 and 4–1 are called neighbouring arrays,
while pairs 1–3 and 2–4 are called opposite arrays.

Figure 2
The different cross sections of Apple-type undulators in chronological
order. In the first row one can find the standard Apple cross sections,
starting with Apple I and II, which are designed for synchrotrons
operated with elliptical vacuum chambers, followed by Apple III for
linac-driven FELs. All three types are regularly equipped with a gap drive
system which is changing the distance between the upper and lower
arrays. In the second row there are the new cross sections called Delta
LEPP-CHESS and Delta, which are designed for linac-driven FELs
without a gap drive system. The last type is called Apple X (at the
SwissFEL project) or Delta II (at the LCLS project), where a new gap
drive system is moving an Apple III cross section in a way that both axis
symmetries and 90! symmetry are guaranteed.

Since an Apple undulator with four independent arrays no
longer requires a gap drive system to set a different K-value
(Carr, 1991), the implementation of novel devices was trig-
gered. The first of these undulators was developed at the Swiss
Light Source (Schmidt et al., 2007): the device had an Apple II
cross section, no gap drive system (fixed gap) and four inde-
pendent arrays. Recently a new type of device, called Delta
LEPP-CHESS due to the specific shape of its magnets
(Temnykh, 2008), was proposed. Its cross section not only
satisfies the usual axis (x and y) symmetry but also the 90!

rotational symmetry which simplifies the operation. This
device is based on the same operational principles as the
previous fixed-gap undulator type but with a cross section
rotated by 45!, as seen in Fig. 2. This device has now been
adopted as an afterburner at the Linac Coherent Light Source
(LCLS) facility but with the cross section rotated back to the
original symmetry. It is now referred to as Delta (Nuhn et al.,
2015). In 2016 the Apple X was proposed at the Paul Scherrer
Institute for the soft X-ray line of the SwissFEL. It consists of
a Delta cross section where the four arrays can be indepen-
dently displaced both longitudinally and radially. If the four
arrays are displaced radially by the same amount, the 90!

symmetry is preserved for all gaps. At the same time, it is also
possible to displace them to break the symmetry, thus even-
tually introducing a gradient on-axis. The same development is
ongoing at the LCLS and the device is referred as a Delta II
(H.-D. Nuhn, private comunication).

1.1. Advantages and disadvantages of fix-gap operation

The new operational mode, now called energy mode, is
based on the parallel movement of two neighbouring arrays:
the two top arrays (1 and 2) against the two bottom arrays
(3 and 4) or the two left arrays (2 and 3) against the two right
arrays (1 and 4), as illustrated in Fig. 1. The lack of a gap drive
system to change the K-value increases cost effectiveness,
while decreasing design complexity and the weight of the
device. However, this comes with some drawbacks. The
experimental evidence of these limitations was measured at
the Swiss Light Source (Schmidt et al., 2013) and was
explained by the presence of a transversal K gradient. The
resonance condition, expressed in equation (1) below,

! ¼ !U

2"2
1þ K 2

2

! "
; ð1Þ

where !U is the undulator period length and " is the Lorenz
factor, gives the relation between K and the radiation wave-
length !. In standard operation it is not desired that the
radiation wavelength depends on the transverse position of
the beam because it reduces the intensity of the interference
peaks of the undulator spectrum. However, Schmidt’s work
highlighted for the first time the possibility to operate an
Apple undulator as a variable transverse gradient undulator
(TGU).

Recently, many authors have demonstrated that TGUs may
be useful for certain applications. They can be used to produce
FEL radiation with large energy spread beams generated in
laser-plasma accelerators (Huang et al., 2012). If the electron
energy is correlated to a transverse offset via dispersion and
a TGU is set such that the resonance condition expressed in
equation (1) is preserved for all the electrons, the performance
of the FEL radiation will significantly improve.

A TGU can also be employed to generate ultra-large
bandwidth radiation above the 10% level, which is needed for
selected applications such as crystallography and spectroscopy
(Prat et al., 2016). This will occur when the beam is presented
with a transverse tilt (correlation between the transverse and
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Figure 1
The four magnetic arrays of an Apple undulator are schematically
represented to highlight the basic topology involved in this undulator
concept: array pairs 1–2, 2–3, 3–4 and 4–1 are called neighbouring arrays,
while pairs 1–3 and 2–4 are called opposite arrays.

Figure 2
The different cross sections of Apple-type undulators in chronological
order. In the first row one can find the standard Apple cross sections,
starting with Apple I and II, which are designed for synchrotrons
operated with elliptical vacuum chambers, followed by Apple III for
linac-driven FELs. All three types are regularly equipped with a gap drive
system which is changing the distance between the upper and lower
arrays. In the second row there are the new cross sections called Delta
LEPP-CHESS and Delta, which are designed for linac-driven FELs
without a gap drive system. The last type is called Apple X (at the
SwissFEL project) or Delta II (at the LCLS project), where a new gap
drive system is moving an Apple III cross section in a way that both axis
symmetries and 90! symmetry are guaranteed.
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Since an Apple undulator with four independent arrays no
longer requires a gap drive system to set a different K-value
(Carr, 1991), the implementation of novel devices was trig-
gered. The first of these undulators was developed at the Swiss
Light Source (Schmidt et al., 2007): the device had an Apple II
cross section, no gap drive system (fixed gap) and four inde-
pendent arrays. Recently a new type of device, called Delta
LEPP-CHESS due to the specific shape of its magnets
(Temnykh, 2008), was proposed. Its cross section not only
satisfies the usual axis (x and y) symmetry but also the 90!

rotational symmetry which simplifies the operation. This
device is based on the same operational principles as the
previous fixed-gap undulator type but with a cross section
rotated by 45!, as seen in Fig. 2. This device has now been
adopted as an afterburner at the Linac Coherent Light Source
(LCLS) facility but with the cross section rotated back to the
original symmetry. It is now referred to as Delta (Nuhn et al.,
2015). In 2016 the Apple X was proposed at the Paul Scherrer
Institute for the soft X-ray line of the SwissFEL. It consists of
a Delta cross section where the four arrays can be indepen-
dently displaced both longitudinally and radially. If the four
arrays are displaced radially by the same amount, the 90!

symmetry is preserved for all gaps. At the same time, it is also
possible to displace them to break the symmetry, thus even-
tually introducing a gradient on-axis. The same development is
ongoing at the LCLS and the device is referred as a Delta II
(H.-D. Nuhn, private comunication).

1.1. Advantages and disadvantages of fix-gap operation

The new operational mode, now called energy mode, is
based on the parallel movement of two neighbouring arrays:
the two top arrays (1 and 2) against the two bottom arrays
(3 and 4) or the two left arrays (2 and 3) against the two right
arrays (1 and 4), as illustrated in Fig. 1. The lack of a gap drive
system to change the K-value increases cost effectiveness,
while decreasing design complexity and the weight of the
device. However, this comes with some drawbacks. The
experimental evidence of these limitations was measured at
the Swiss Light Source (Schmidt et al., 2013) and was
explained by the presence of a transversal K gradient. The
resonance condition, expressed in equation (1) below,

! ¼ !U

2"2
1þ K 2

2

! "
; ð1Þ

where !U is the undulator period length and " is the Lorenz
factor, gives the relation between K and the radiation wave-
length !. In standard operation it is not desired that the
radiation wavelength depends on the transverse position of
the beam because it reduces the intensity of the interference
peaks of the undulator spectrum. However, Schmidt’s work
highlighted for the first time the possibility to operate an
Apple undulator as a variable transverse gradient undulator
(TGU).

Recently, many authors have demonstrated that TGUs may
be useful for certain applications. They can be used to produce
FEL radiation with large energy spread beams generated in
laser-plasma accelerators (Huang et al., 2012). If the electron
energy is correlated to a transverse offset via dispersion and
a TGU is set such that the resonance condition expressed in
equation (1) is preserved for all the electrons, the performance
of the FEL radiation will significantly improve.

A TGU can also be employed to generate ultra-large
bandwidth radiation above the 10% level, which is needed for
selected applications such as crystallography and spectroscopy
(Prat et al., 2016). This will occur when the beam is presented
with a transverse tilt (correlation between the transverse and
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Figure 1
The four magnetic arrays of an Apple undulator are schematically
represented to highlight the basic topology involved in this undulator
concept: array pairs 1–2, 2–3, 3–4 and 4–1 are called neighbouring arrays,
while pairs 1–3 and 2–4 are called opposite arrays.

Figure 2
The different cross sections of Apple-type undulators in chronological
order. In the first row one can find the standard Apple cross sections,
starting with Apple I and II, which are designed for synchrotrons
operated with elliptical vacuum chambers, followed by Apple III for
linac-driven FELs. All three types are regularly equipped with a gap drive
system which is changing the distance between the upper and lower
arrays. In the second row there are the new cross sections called Delta
LEPP-CHESS and Delta, which are designed for linac-driven FELs
without a gap drive system. The last type is called Apple X (at the
SwissFEL project) or Delta II (at the LCLS project), where a new gap
drive system is moving an Apple III cross section in a way that both axis
symmetries and 90! symmetry are guaranteed.

Since an Apple undulator with four independent arrays no
longer requires a gap drive system to set a different K-value
(Carr, 1991), the implementation of novel devices was trig-
gered. The first of these undulators was developed at the Swiss
Light Source (Schmidt et al., 2007): the device had an Apple II
cross section, no gap drive system (fixed gap) and four inde-
pendent arrays. Recently a new type of device, called Delta
LEPP-CHESS due to the specific shape of its magnets
(Temnykh, 2008), was proposed. Its cross section not only
satisfies the usual axis (x and y) symmetry but also the 90!

rotational symmetry which simplifies the operation. This
device is based on the same operational principles as the
previous fixed-gap undulator type but with a cross section
rotated by 45!, as seen in Fig. 2. This device has now been
adopted as an afterburner at the Linac Coherent Light Source
(LCLS) facility but with the cross section rotated back to the
original symmetry. It is now referred to as Delta (Nuhn et al.,
2015). In 2016 the Apple X was proposed at the Paul Scherrer
Institute for the soft X-ray line of the SwissFEL. It consists of
a Delta cross section where the four arrays can be indepen-
dently displaced both longitudinally and radially. If the four
arrays are displaced radially by the same amount, the 90!

symmetry is preserved for all gaps. At the same time, it is also
possible to displace them to break the symmetry, thus even-
tually introducing a gradient on-axis. The same development is
ongoing at the LCLS and the device is referred as a Delta II
(H.-D. Nuhn, private comunication).

1.1. Advantages and disadvantages of fix-gap operation

The new operational mode, now called energy mode, is
based on the parallel movement of two neighbouring arrays:
the two top arrays (1 and 2) against the two bottom arrays
(3 and 4) or the two left arrays (2 and 3) against the two right
arrays (1 and 4), as illustrated in Fig. 1. The lack of a gap drive
system to change the K-value increases cost effectiveness,
while decreasing design complexity and the weight of the
device. However, this comes with some drawbacks. The
experimental evidence of these limitations was measured at
the Swiss Light Source (Schmidt et al., 2013) and was
explained by the presence of a transversal K gradient. The
resonance condition, expressed in equation (1) below,

! ¼ !U

2"2
1þ K 2

2
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where !U is the undulator period length and " is the Lorenz
factor, gives the relation between K and the radiation wave-
length !. In standard operation it is not desired that the
radiation wavelength depends on the transverse position of
the beam because it reduces the intensity of the interference
peaks of the undulator spectrum. However, Schmidt’s work
highlighted for the first time the possibility to operate an
Apple undulator as a variable transverse gradient undulator
(TGU).

Recently, many authors have demonstrated that TGUs may
be useful for certain applications. They can be used to produce
FEL radiation with large energy spread beams generated in
laser-plasma accelerators (Huang et al., 2012). If the electron
energy is correlated to a transverse offset via dispersion and
a TGU is set such that the resonance condition expressed in
equation (1) is preserved for all the electrons, the performance
of the FEL radiation will significantly improve.

A TGU can also be employed to generate ultra-large
bandwidth radiation above the 10% level, which is needed for
selected applications such as crystallography and spectroscopy
(Prat et al., 2016). This will occur when the beam is presented
with a transverse tilt (correlation between the transverse and
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Figure 1
The four magnetic arrays of an Apple undulator are schematically
represented to highlight the basic topology involved in this undulator
concept: array pairs 1–2, 2–3, 3–4 and 4–1 are called neighbouring arrays,
while pairs 1–3 and 2–4 are called opposite arrays.

Figure 2
The different cross sections of Apple-type undulators in chronological
order. In the first row one can find the standard Apple cross sections,
starting with Apple I and II, which are designed for synchrotrons
operated with elliptical vacuum chambers, followed by Apple III for
linac-driven FELs. All three types are regularly equipped with a gap drive
system which is changing the distance between the upper and lower
arrays. In the second row there are the new cross sections called Delta
LEPP-CHESS and Delta, which are designed for linac-driven FELs
without a gap drive system. The last type is called Apple X (at the
SwissFEL project) or Delta II (at the LCLS project), where a new gap
drive system is moving an Apple III cross section in a way that both axis
symmetries and 90! symmetry are guaranteed.

• Parallel	  mode	  (p):	  	  
ellipJcal	  polarisaJon	  

This	  last	  mode	  introduces	  gradients	  
on	  axis	  for	  ellipJcal	  polarisaJon!!	  

p	  	  • AnJ	  parallel	  mode	  (	  	  	  ):	  
linear	  polarisaJon	  with	  arbitrary	  angle	  

• Energy	  mode	  (e):	  	  
to	  change	  the	  photon	  energy	  
@	  fix	  gap	  



longitudinal positions of the electrons). Standard facilities use
a stepwise tapering of the undulator field (Kroll et al., 1981)
(i.e. the undulator K is constant within an undulator module)
to maximize the extracted FEL pulse energy. A TGU with
variable gap can be used to generate a continuous taper within
the undulator by transversely tilting the module. A continuous
taper allows the extraction of more FEL pulse energy than a
stepwise taper, which can only approximate the optimum
taper along the undulator beamline. The continuous taper
achievable with a TGU can be used to passively lock the FEL
signal to an external laser signal (Saldin et al., 2006). For the
Athos beamline at SwissFEL, a continuous taper over an
undulator modulator via a TGU is mandatory to achieve good
performances since no significant contrast ratios can be
achieved for a stepwise taper (Prat & Reiche, 2015).

In x2 and x3, a general and new theoretical framework
is introduced to demonstrate the presence of a transverse
gradient in an Apple undulator under certain operation
conditions and to provide practical formulas for the actual
operation of these devices. It is interesting to show that this
analytical model also yields the same results published before
(Schmidt & Zimoch, 2007). In addition, new conclusions can
be derived, e.g. a simple relation between the energy shift and
the transverse gradient in elliptical polarization, useful to tune
the device for the new set of operations previously described.

2. Magnetic field model of an Apple undulator

The purpose of this section is to estimate the magnetic field
and its Jacobian in an Apple undulator knowing the field and
the Jacobian of one magnetic array. There are several
computer codes available to calculate the magnetic field
produced by permanent magnets. In this paper, all magnetic
computations are made with the RADIA code (Chubar et al.,
1998).

In an Apple undulator, the magnetic field can be approxi-
mated, with good accuracy, by the sum of the contributions of
the four magnetic arrays, assuming that the permeability of the
magnet material !r = 1. This is a reasonable assumption that
can be made for NdFeB and SmCo magnets. Specifically,
SmCo5 magnets have the lowest permeability (!r < 1.02)
among these families of rare-earth materials and thus they are
the first choice for these applications where the low field
integral over the full operational range is specified and high
remanence (above 1 T) is not required. Thus, the following
mathematical description is traditionally the starting point for
modelling the transverse magnetic field (B = Bxx̂xþ Byŷy) of all
these devices,

BðX; zÞ ¼
P4

n¼ 1

Bn X; z% znð Þ; ð2Þ

where Bn is the transversal magnetic field of the nth array, X is
the vector representing the cross-section plane (xy-plane), z is
the coordinate along the beam axis and zn is the position of the
nth magnetic array along the z-axis. The four arrays are
identical (the field error contributions are not relevant for the

purpose of this study and they are not discussed in this paper)
and their relative positions follow a given symmetry. The
magnetic field generated by each of the four arrays can be
expressed using a linear transformation starting from one of
the arrays. In equation (3) below, the first array is used for this
purpose,

BnðX; zÞ ¼ Rn & B1ðR%1
n & X; zÞ: ð3Þ

For standard Apple devices, the following matrices can be
used to describe the relative position and symmetries among
the arrays (the Delta LEPP-CHESS type does not directly
follow this role but can easily be included in this theoretical
framework as will be clarified later in x4.3),

R1 ¼
þ1 0

0 þ1

! "
; R2 ¼

%1 0

0 þ1

! "
;

R3 ¼
%1 0

0 %1

! "
; R4 ¼

þ1 0

0 %1

! "
:

ð4Þ

The next step in this analysis is the description of the z-axis in
the Fourier domain. The field generated by the nth array
transforms as follows,

B̂BnðX; !Þ ¼
Rþ1

%1
BnðX; zÞ exp %i!zð Þ dz; ð5Þ

where the circumflex (^) indicates that the function is defined
in the Fourier domain. There are two main advantages of
adopting this formal description. The first advantage is related
to the periodicity of the magnetic field along the z-axis of an
undulator and its natural description of the Fourier domain.
Moreover, it is usually enough to use the first harmonic to give
an estimation of the field profile, thus reducing it to a single
complex number (i.e. a phasor). The second advantage is
related to the substitution of a translation into a product with
a complex number.

Assuming a pure sinusoidal profile of the field along the
z-axis with the periodicity of the undulator (the theoretical
framework of this analysis can be extended to the full Fourier
spectrum but it is beyond the purpose of the present publi-
cation), the n-array field profile can be simplified,

B̂BnðX; !Þ ¼ B̂BnðXÞ & ð"=2Þ1=2##ð!% !0Þ þ #ð!þ !0Þ
$
; ð6Þ

where the xy-plane dependence is factorized with the Fourier
space part. Here, the same symbol is used for two different
functions to simplify the notation since the ! dependence will
not play an active role any longer. For the same reason, the
# functions will no longer be considered in the following
equations,

B̂BðXÞ ¼
P4

n¼ 1

exp i$nð ÞRn & B̂B1 R%1
n & X

% &
; ð7Þ

where the shifts in the z-axis are now substituted by four
complex numbers with phase $n = 2"zn=%U. As a result of this
approach, it is now simpler to express the Jacobian

ĴJðXÞ ¼
P4

n¼ 1

exp i$nð ÞRn & ĴJ1ðR%1
n & XÞ & R%1

n ð8Þ
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longitudinal positions of the electrons). Standard facilities use
a stepwise tapering of the undulator field (Kroll et al., 1981)
(i.e. the undulator K is constant within an undulator module)
to maximize the extracted FEL pulse energy. A TGU with
variable gap can be used to generate a continuous taper within
the undulator by transversely tilting the module. A continuous
taper allows the extraction of more FEL pulse energy than a
stepwise taper, which can only approximate the optimum
taper along the undulator beamline. The continuous taper
achievable with a TGU can be used to passively lock the FEL
signal to an external laser signal (Saldin et al., 2006). For the
Athos beamline at SwissFEL, a continuous taper over an
undulator modulator via a TGU is mandatory to achieve good
performances since no significant contrast ratios can be
achieved for a stepwise taper (Prat & Reiche, 2015).

In x2 and x3, a general and new theoretical framework
is introduced to demonstrate the presence of a transverse
gradient in an Apple undulator under certain operation
conditions and to provide practical formulas for the actual
operation of these devices. It is interesting to show that this
analytical model also yields the same results published before
(Schmidt & Zimoch, 2007). In addition, new conclusions can
be derived, e.g. a simple relation between the energy shift and
the transverse gradient in elliptical polarization, useful to tune
the device for the new set of operations previously described.

2. Magnetic field model of an Apple undulator

The purpose of this section is to estimate the magnetic field
and its Jacobian in an Apple undulator knowing the field and
the Jacobian of one magnetic array. There are several
computer codes available to calculate the magnetic field
produced by permanent magnets. In this paper, all magnetic
computations are made with the RADIA code (Chubar et al.,
1998).

In an Apple undulator, the magnetic field can be approxi-
mated, with good accuracy, by the sum of the contributions of
the four magnetic arrays, assuming that the permeability of the
magnet material !r = 1. This is a reasonable assumption that
can be made for NdFeB and SmCo magnets. Specifically,
SmCo5 magnets have the lowest permeability (!r < 1.02)
among these families of rare-earth materials and thus they are
the first choice for these applications where the low field
integral over the full operational range is specified and high
remanence (above 1 T) is not required. Thus, the following
mathematical description is traditionally the starting point for
modelling the transverse magnetic field (B = Bxx̂xþ Byŷy) of all
these devices,

BðX; zÞ ¼
P4

n¼ 1

Bn X; z% znð Þ; ð2Þ

where Bn is the transversal magnetic field of the nth array, X is
the vector representing the cross-section plane (xy-plane), z is
the coordinate along the beam axis and zn is the position of the
nth magnetic array along the z-axis. The four arrays are
identical (the field error contributions are not relevant for the

purpose of this study and they are not discussed in this paper)
and their relative positions follow a given symmetry. The
magnetic field generated by each of the four arrays can be
expressed using a linear transformation starting from one of
the arrays. In equation (3) below, the first array is used for this
purpose,

BnðX; zÞ ¼ Rn & B1ðR%1
n & X; zÞ: ð3Þ

For standard Apple devices, the following matrices can be
used to describe the relative position and symmetries among
the arrays (the Delta LEPP-CHESS type does not directly
follow this role but can easily be included in this theoretical
framework as will be clarified later in x4.3),

R1 ¼
þ1 0

0 þ1

! "
; R2 ¼

%1 0

0 þ1

! "
;

R3 ¼
%1 0

0 %1

! "
; R4 ¼

þ1 0

0 %1

! "
:

ð4Þ

The next step in this analysis is the description of the z-axis in
the Fourier domain. The field generated by the nth array
transforms as follows,

B̂BnðX; !Þ ¼
Rþ1

%1
BnðX; zÞ exp %i!zð Þ dz; ð5Þ

where the circumflex (^) indicates that the function is defined
in the Fourier domain. There are two main advantages of
adopting this formal description. The first advantage is related
to the periodicity of the magnetic field along the z-axis of an
undulator and its natural description of the Fourier domain.
Moreover, it is usually enough to use the first harmonic to give
an estimation of the field profile, thus reducing it to a single
complex number (i.e. a phasor). The second advantage is
related to the substitution of a translation into a product with
a complex number.

Assuming a pure sinusoidal profile of the field along the
z-axis with the periodicity of the undulator (the theoretical
framework of this analysis can be extended to the full Fourier
spectrum but it is beyond the purpose of the present publi-
cation), the n-array field profile can be simplified,

B̂BnðX; !Þ ¼ B̂BnðXÞ & ð"=2Þ1=2##ð!% !0Þ þ #ð!þ !0Þ
$
; ð6Þ

where the xy-plane dependence is factorized with the Fourier
space part. Here, the same symbol is used for two different
functions to simplify the notation since the ! dependence will
not play an active role any longer. For the same reason, the
# functions will no longer be considered in the following
equations,

B̂BðXÞ ¼
P4

n¼ 1

exp i$nð ÞRn & B̂B1 R%1
n & X

% &
; ð7Þ

where the shifts in the z-axis are now substituted by four
complex numbers with phase $n = 2"zn=%U. As a result of this
approach, it is now simpler to express the Jacobian

ĴJðXÞ ¼
P4

n¼ 1

exp i$nð ÞRn & ĴJ1ðR%1
n & XÞ & R%1

n ð8Þ
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to equation (10) and to equation (11), respectively, QB̂B and
QĴJQ!1. This approach also allows the use of the previously
calculated magnetic field and Jacobian in the original refer-
ence frame and their properties: B̂Bx1 = B̂By1 and @xB̂B1x = @yB̂B1y.
Therefore, the main results of this calculation are expressed as
follows,

B̂Bx

B̂yBy

" #

¼ 1ffiffiffi
2
p Zx !Zy

Zx Zy

" #
# 1

1

" #
B̂B1x; ð56Þ

@xB̂Bx

@yB̂By

" #

¼ Zxx !Zxy

Zxx Zxy

" #
# @xB̂B1x

@yB̂B1x

" #

; ð57Þ

@yB̂Bx ¼ @xB̂By ¼ 0: ð58Þ

The K-value for the parallel mode is identical to the one
evaluated for the Apple X case and is repeated for comple-
teness’ sake in equation (59) below,

K ¼ 4!B̂Bx1 cos 1
2"e: ð59Þ

The K gradient, on the contrary, is present simultaneously in
both planes as calculated in equation (60) below,

@xK ¼ & 1ffiffi
2
p G0 sin 1

2"e sin"p;

@yK ¼ þ 1ffiffi
2
p G0 sin 1

2"e sin"p;
ð60Þ

where the positive sign (+) represents the top–bottom energy
shift and the negative sign (!) stands for the left–right energy
shift. This is the major difference between this device and all
other devices that are analysed in this paper. Its imple-
mentation in a facility has to be carefully evaluated by also
taking into account the result of equation (60).

For the antiparallel mode, the results follow the general
rule: no K gradient is present. The expression of K is very
similar to that observed for Apple X [equation (53)], except
for a change in sign. No change in signs is seen for the top–
bottom and the left–right shifts, as shown in equation (61)
below,

K ¼ 2!B̂B1x 2þ cos"e þ cos "e þ 2" !pp

$ %& '1=2
: ð61Þ

5. Model versus simulation for the Apple X

The transversal gradient of an Apple X undulator has been
evaluated with the help of the computer code RADIA to
verify the quality of the analytical approach presented in this
article and to highlight its limitations. The formulas derived for
K have already been proven by other authors and are widely
supported by experimental results. Thus, only the results
concerning the transverse gradient are reported in this section.
The geometry and the material properties of the magnetic
structure are presented in Fig. 3 and in Table 1, respectively.

To evaluate equation (51), the first step is to numerically
calculate K0 and G0 as formulated in equations (50) and (49),
respectively (see Fig. 4). The results of both calculations are

fitted with the following function (used for the K versus gap of
a hybrid magnetic structure),

A exp !b
g

#U

þ c
g2

#2
U

( )
; ð62Þ

where the independent variable g is the gap. In Table 2 the
coefficients are listed for both K0ðgÞ and G0ðgÞ. In Fig. 5,
equation (51) is estimated both analytically (solid line) and
numerically (markers). For completeness’ sake, equation (52)
is presented in Fig. 6. There is a very good agreement between
the analytical model and the numerical calculation, and the
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Figure 3
Magnetic model of the Apple X undulator used for the example. The
actual model consists of eight periods while in this picture only four have
been drawn.

Table 1
Simulation parameters for the Apple X example.

Parameter Unit

#U 40.0 mm
Magnet material Sm2Co17 –
Remanence 1.08 T
Number of periods 8 –
Magnet edge 30.0 mm
Magnet chamfer 5.0 mm

Figure 4
The values of K0 and G0 have been calculated as a function of the
undulator (Apple X) gap. The numerical calculation (red markers) are
presented together with the fitting functions (solid black line) introduced
in equation (62).
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longitudinal positions of the electrons). Standard facilities use
a stepwise tapering of the undulator field (Kroll et al., 1981)
(i.e. the undulator K is constant within an undulator module)
to maximize the extracted FEL pulse energy. A TGU with
variable gap can be used to generate a continuous taper within
the undulator by transversely tilting the module. A continuous
taper allows the extraction of more FEL pulse energy than a
stepwise taper, which can only approximate the optimum
taper along the undulator beamline. The continuous taper
achievable with a TGU can be used to passively lock the FEL
signal to an external laser signal (Saldin et al., 2006). For the
Athos beamline at SwissFEL, a continuous taper over an
undulator modulator via a TGU is mandatory to achieve good
performances since no significant contrast ratios can be
achieved for a stepwise taper (Prat & Reiche, 2015).

In x2 and x3, a general and new theoretical framework
is introduced to demonstrate the presence of a transverse
gradient in an Apple undulator under certain operation
conditions and to provide practical formulas for the actual
operation of these devices. It is interesting to show that this
analytical model also yields the same results published before
(Schmidt & Zimoch, 2007). In addition, new conclusions can
be derived, e.g. a simple relation between the energy shift and
the transverse gradient in elliptical polarization, useful to tune
the device for the new set of operations previously described.

2. Magnetic field model of an Apple undulator

The purpose of this section is to estimate the magnetic field
and its Jacobian in an Apple undulator knowing the field and
the Jacobian of one magnetic array. There are several
computer codes available to calculate the magnetic field
produced by permanent magnets. In this paper, all magnetic
computations are made with the RADIA code (Chubar et al.,
1998).

In an Apple undulator, the magnetic field can be approxi-
mated, with good accuracy, by the sum of the contributions of
the four magnetic arrays, assuming that the permeability of the
magnet material !r = 1. This is a reasonable assumption that
can be made for NdFeB and SmCo magnets. Specifically,
SmCo5 magnets have the lowest permeability (!r < 1.02)
among these families of rare-earth materials and thus they are
the first choice for these applications where the low field
integral over the full operational range is specified and high
remanence (above 1 T) is not required. Thus, the following
mathematical description is traditionally the starting point for
modelling the transverse magnetic field (B = Bxx̂xþ Byŷy) of all
these devices,

BðX; zÞ ¼
P4

n¼ 1

Bn X; z% znð Þ; ð2Þ

where Bn is the transversal magnetic field of the nth array, X is
the vector representing the cross-section plane (xy-plane), z is
the coordinate along the beam axis and zn is the position of the
nth magnetic array along the z-axis. The four arrays are
identical (the field error contributions are not relevant for the

purpose of this study and they are not discussed in this paper)
and their relative positions follow a given symmetry. The
magnetic field generated by each of the four arrays can be
expressed using a linear transformation starting from one of
the arrays. In equation (3) below, the first array is used for this
purpose,

BnðX; zÞ ¼ Rn & B1ðR%1
n & X; zÞ: ð3Þ

For standard Apple devices, the following matrices can be
used to describe the relative position and symmetries among
the arrays (the Delta LEPP-CHESS type does not directly
follow this role but can easily be included in this theoretical
framework as will be clarified later in x4.3),

R1 ¼
þ1 0

0 þ1

! "
; R2 ¼

%1 0

0 þ1

! "
;

R3 ¼
%1 0

0 %1

! "
; R4 ¼

þ1 0

0 %1

! "
:

ð4Þ

The next step in this analysis is the description of the z-axis in
the Fourier domain. The field generated by the nth array
transforms as follows,

B̂BnðX; !Þ ¼
Rþ1

%1
BnðX; zÞ exp %i!zð Þ dz; ð5Þ

where the circumflex (^) indicates that the function is defined
in the Fourier domain. There are two main advantages of
adopting this formal description. The first advantage is related
to the periodicity of the magnetic field along the z-axis of an
undulator and its natural description of the Fourier domain.
Moreover, it is usually enough to use the first harmonic to give
an estimation of the field profile, thus reducing it to a single
complex number (i.e. a phasor). The second advantage is
related to the substitution of a translation into a product with
a complex number.

Assuming a pure sinusoidal profile of the field along the
z-axis with the periodicity of the undulator (the theoretical
framework of this analysis can be extended to the full Fourier
spectrum but it is beyond the purpose of the present publi-
cation), the n-array field profile can be simplified,

B̂BnðX; !Þ ¼ B̂BnðXÞ & ð"=2Þ1=2##ð!% !0Þ þ #ð!þ !0Þ
$
; ð6Þ

where the xy-plane dependence is factorized with the Fourier
space part. Here, the same symbol is used for two different
functions to simplify the notation since the ! dependence will
not play an active role any longer. For the same reason, the
# functions will no longer be considered in the following
equations,

B̂BðXÞ ¼
P4

n¼ 1

exp i$nð ÞRn & B̂B1 R%1
n & X

% &
; ð7Þ

where the shifts in the z-axis are now substituted by four
complex numbers with phase $n = 2"zn=%U. As a result of this
approach, it is now simpler to express the Jacobian

ĴJðXÞ ¼
P4

n¼ 1

exp i$nð ÞRn & ĴJ1ðR%1
n & XÞ & R%1

n ð8Þ
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longitudinal positions of the electrons). Standard facilities use
a stepwise tapering of the undulator field (Kroll et al., 1981)
(i.e. the undulator K is constant within an undulator module)
to maximize the extracted FEL pulse energy. A TGU with
variable gap can be used to generate a continuous taper within
the undulator by transversely tilting the module. A continuous
taper allows the extraction of more FEL pulse energy than a
stepwise taper, which can only approximate the optimum
taper along the undulator beamline. The continuous taper
achievable with a TGU can be used to passively lock the FEL
signal to an external laser signal (Saldin et al., 2006). For the
Athos beamline at SwissFEL, a continuous taper over an
undulator modulator via a TGU is mandatory to achieve good
performances since no significant contrast ratios can be
achieved for a stepwise taper (Prat & Reiche, 2015).

In x2 and x3, a general and new theoretical framework
is introduced to demonstrate the presence of a transverse
gradient in an Apple undulator under certain operation
conditions and to provide practical formulas for the actual
operation of these devices. It is interesting to show that this
analytical model also yields the same results published before
(Schmidt & Zimoch, 2007). In addition, new conclusions can
be derived, e.g. a simple relation between the energy shift and
the transverse gradient in elliptical polarization, useful to tune
the device for the new set of operations previously described.

2. Magnetic field model of an Apple undulator

The purpose of this section is to estimate the magnetic field
and its Jacobian in an Apple undulator knowing the field and
the Jacobian of one magnetic array. There are several
computer codes available to calculate the magnetic field
produced by permanent magnets. In this paper, all magnetic
computations are made with the RADIA code (Chubar et al.,
1998).

In an Apple undulator, the magnetic field can be approxi-
mated, with good accuracy, by the sum of the contributions of
the four magnetic arrays, assuming that the permeability of the
magnet material !r = 1. This is a reasonable assumption that
can be made for NdFeB and SmCo magnets. Specifically,
SmCo5 magnets have the lowest permeability (!r < 1.02)
among these families of rare-earth materials and thus they are
the first choice for these applications where the low field
integral over the full operational range is specified and high
remanence (above 1 T) is not required. Thus, the following
mathematical description is traditionally the starting point for
modelling the transverse magnetic field (B = Bxx̂xþ Byŷy) of all
these devices,

BðX; zÞ ¼
P4

n¼ 1

Bn X; z% znð Þ; ð2Þ

where Bn is the transversal magnetic field of the nth array, X is
the vector representing the cross-section plane (xy-plane), z is
the coordinate along the beam axis and zn is the position of the
nth magnetic array along the z-axis. The four arrays are
identical (the field error contributions are not relevant for the

purpose of this study and they are not discussed in this paper)
and their relative positions follow a given symmetry. The
magnetic field generated by each of the four arrays can be
expressed using a linear transformation starting from one of
the arrays. In equation (3) below, the first array is used for this
purpose,

BnðX; zÞ ¼ Rn & B1ðR%1
n & X; zÞ: ð3Þ

For standard Apple devices, the following matrices can be
used to describe the relative position and symmetries among
the arrays (the Delta LEPP-CHESS type does not directly
follow this role but can easily be included in this theoretical
framework as will be clarified later in x4.3),

R1 ¼
þ1 0

0 þ1

! "
; R2 ¼

%1 0

0 þ1

! "
;

R3 ¼
%1 0

0 %1

! "
; R4 ¼

þ1 0

0 %1

! "
:

ð4Þ

The next step in this analysis is the description of the z-axis in
the Fourier domain. The field generated by the nth array
transforms as follows,

B̂BnðX; !Þ ¼
Rþ1

%1
BnðX; zÞ exp %i!zð Þ dz; ð5Þ

where the circumflex (^) indicates that the function is defined
in the Fourier domain. There are two main advantages of
adopting this formal description. The first advantage is related
to the periodicity of the magnetic field along the z-axis of an
undulator and its natural description of the Fourier domain.
Moreover, it is usually enough to use the first harmonic to give
an estimation of the field profile, thus reducing it to a single
complex number (i.e. a phasor). The second advantage is
related to the substitution of a translation into a product with
a complex number.

Assuming a pure sinusoidal profile of the field along the
z-axis with the periodicity of the undulator (the theoretical
framework of this analysis can be extended to the full Fourier
spectrum but it is beyond the purpose of the present publi-
cation), the n-array field profile can be simplified,

B̂BnðX; !Þ ¼ B̂BnðXÞ & ð"=2Þ1=2##ð!% !0Þ þ #ð!þ !0Þ
$
; ð6Þ

where the xy-plane dependence is factorized with the Fourier
space part. Here, the same symbol is used for two different
functions to simplify the notation since the ! dependence will
not play an active role any longer. For the same reason, the
# functions will no longer be considered in the following
equations,

B̂BðXÞ ¼
P4

n¼ 1

exp i$nð ÞRn & B̂B1 R%1
n & X

% &
; ð7Þ

where the shifts in the z-axis are now substituted by four
complex numbers with phase $n = 2"zn=%U. As a result of this
approach, it is now simpler to express the Jacobian

ĴJðXÞ ¼
P4

n¼ 1

exp i$nð ÞRn & ĴJ1ðR%1
n & XÞ & R%1

n ð8Þ
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longitudinal positions of the electrons). Standard facilities use
a stepwise tapering of the undulator field (Kroll et al., 1981)
(i.e. the undulator K is constant within an undulator module)
to maximize the extracted FEL pulse energy. A TGU with
variable gap can be used to generate a continuous taper within
the undulator by transversely tilting the module. A continuous
taper allows the extraction of more FEL pulse energy than a
stepwise taper, which can only approximate the optimum
taper along the undulator beamline. The continuous taper
achievable with a TGU can be used to passively lock the FEL
signal to an external laser signal (Saldin et al., 2006). For the
Athos beamline at SwissFEL, a continuous taper over an
undulator modulator via a TGU is mandatory to achieve good
performances since no significant contrast ratios can be
achieved for a stepwise taper (Prat & Reiche, 2015).

In x2 and x3, a general and new theoretical framework
is introduced to demonstrate the presence of a transverse
gradient in an Apple undulator under certain operation
conditions and to provide practical formulas for the actual
operation of these devices. It is interesting to show that this
analytical model also yields the same results published before
(Schmidt & Zimoch, 2007). In addition, new conclusions can
be derived, e.g. a simple relation between the energy shift and
the transverse gradient in elliptical polarization, useful to tune
the device for the new set of operations previously described.

2. Magnetic field model of an Apple undulator

The purpose of this section is to estimate the magnetic field
and its Jacobian in an Apple undulator knowing the field and
the Jacobian of one magnetic array. There are several
computer codes available to calculate the magnetic field
produced by permanent magnets. In this paper, all magnetic
computations are made with the RADIA code (Chubar et al.,
1998).

In an Apple undulator, the magnetic field can be approxi-
mated, with good accuracy, by the sum of the contributions of
the four magnetic arrays, assuming that the permeability of the
magnet material !r = 1. This is a reasonable assumption that
can be made for NdFeB and SmCo magnets. Specifically,
SmCo5 magnets have the lowest permeability (!r < 1.02)
among these families of rare-earth materials and thus they are
the first choice for these applications where the low field
integral over the full operational range is specified and high
remanence (above 1 T) is not required. Thus, the following
mathematical description is traditionally the starting point for
modelling the transverse magnetic field (B = Bxx̂xþ Byŷy) of all
these devices,

BðX; zÞ ¼
P4

n¼ 1

Bn X; z% znð Þ; ð2Þ

where Bn is the transversal magnetic field of the nth array, X is
the vector representing the cross-section plane (xy-plane), z is
the coordinate along the beam axis and zn is the position of the
nth magnetic array along the z-axis. The four arrays are
identical (the field error contributions are not relevant for the

purpose of this study and they are not discussed in this paper)
and their relative positions follow a given symmetry. The
magnetic field generated by each of the four arrays can be
expressed using a linear transformation starting from one of
the arrays. In equation (3) below, the first array is used for this
purpose,

BnðX; zÞ ¼ Rn & B1ðR%1
n & X; zÞ: ð3Þ

For standard Apple devices, the following matrices can be
used to describe the relative position and symmetries among
the arrays (the Delta LEPP-CHESS type does not directly
follow this role but can easily be included in this theoretical
framework as will be clarified later in x4.3),

R1 ¼
þ1 0

0 þ1

! "
; R2 ¼

%1 0

0 þ1

! "
;

R3 ¼
%1 0

0 %1

! "
; R4 ¼

þ1 0

0 %1

! "
:

ð4Þ

The next step in this analysis is the description of the z-axis in
the Fourier domain. The field generated by the nth array
transforms as follows,

B̂BnðX; !Þ ¼
Rþ1

%1
BnðX; zÞ exp %i!zð Þ dz; ð5Þ

where the circumflex (^) indicates that the function is defined
in the Fourier domain. There are two main advantages of
adopting this formal description. The first advantage is related
to the periodicity of the magnetic field along the z-axis of an
undulator and its natural description of the Fourier domain.
Moreover, it is usually enough to use the first harmonic to give
an estimation of the field profile, thus reducing it to a single
complex number (i.e. a phasor). The second advantage is
related to the substitution of a translation into a product with
a complex number.

Assuming a pure sinusoidal profile of the field along the
z-axis with the periodicity of the undulator (the theoretical
framework of this analysis can be extended to the full Fourier
spectrum but it is beyond the purpose of the present publi-
cation), the n-array field profile can be simplified,

B̂BnðX; !Þ ¼ B̂BnðXÞ & ð"=2Þ1=2##ð!% !0Þ þ #ð!þ !0Þ
$
; ð6Þ

where the xy-plane dependence is factorized with the Fourier
space part. Here, the same symbol is used for two different
functions to simplify the notation since the ! dependence will
not play an active role any longer. For the same reason, the
# functions will no longer be considered in the following
equations,

B̂BðXÞ ¼
P4

n¼ 1

exp i$nð ÞRn & B̂B1 R%1
n & X

% &
; ð7Þ

where the shifts in the z-axis are now substituted by four
complex numbers with phase $n = 2"zn=%U. As a result of this
approach, it is now simpler to express the Jacobian

ĴJðXÞ ¼
P4

n¼ 1

exp i$nð ÞRn & ĴJ1ðR%1
n & XÞ & R%1

n ð8Þ
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longitudinal positions of the electrons). Standard facilities use
a stepwise tapering of the undulator field (Kroll et al., 1981)
(i.e. the undulator K is constant within an undulator module)
to maximize the extracted FEL pulse energy. A TGU with
variable gap can be used to generate a continuous taper within
the undulator by transversely tilting the module. A continuous
taper allows the extraction of more FEL pulse energy than a
stepwise taper, which can only approximate the optimum
taper along the undulator beamline. The continuous taper
achievable with a TGU can be used to passively lock the FEL
signal to an external laser signal (Saldin et al., 2006). For the
Athos beamline at SwissFEL, a continuous taper over an
undulator modulator via a TGU is mandatory to achieve good
performances since no significant contrast ratios can be
achieved for a stepwise taper (Prat & Reiche, 2015).

In x2 and x3, a general and new theoretical framework
is introduced to demonstrate the presence of a transverse
gradient in an Apple undulator under certain operation
conditions and to provide practical formulas for the actual
operation of these devices. It is interesting to show that this
analytical model also yields the same results published before
(Schmidt & Zimoch, 2007). In addition, new conclusions can
be derived, e.g. a simple relation between the energy shift and
the transverse gradient in elliptical polarization, useful to tune
the device for the new set of operations previously described.

2. Magnetic field model of an Apple undulator

The purpose of this section is to estimate the magnetic field
and its Jacobian in an Apple undulator knowing the field and
the Jacobian of one magnetic array. There are several
computer codes available to calculate the magnetic field
produced by permanent magnets. In this paper, all magnetic
computations are made with the RADIA code (Chubar et al.,
1998).

In an Apple undulator, the magnetic field can be approxi-
mated, with good accuracy, by the sum of the contributions of
the four magnetic arrays, assuming that the permeability of the
magnet material !r = 1. This is a reasonable assumption that
can be made for NdFeB and SmCo magnets. Specifically,
SmCo5 magnets have the lowest permeability (!r < 1.02)
among these families of rare-earth materials and thus they are
the first choice for these applications where the low field
integral over the full operational range is specified and high
remanence (above 1 T) is not required. Thus, the following
mathematical description is traditionally the starting point for
modelling the transverse magnetic field (B = Bxx̂xþ Byŷy) of all
these devices,

BðX; zÞ ¼
P4

n¼ 1

Bn X; z% znð Þ; ð2Þ

where Bn is the transversal magnetic field of the nth array, X is
the vector representing the cross-section plane (xy-plane), z is
the coordinate along the beam axis and zn is the position of the
nth magnetic array along the z-axis. The four arrays are
identical (the field error contributions are not relevant for the

purpose of this study and they are not discussed in this paper)
and their relative positions follow a given symmetry. The
magnetic field generated by each of the four arrays can be
expressed using a linear transformation starting from one of
the arrays. In equation (3) below, the first array is used for this
purpose,

BnðX; zÞ ¼ Rn & B1ðR%1
n & X; zÞ: ð3Þ

For standard Apple devices, the following matrices can be
used to describe the relative position and symmetries among
the arrays (the Delta LEPP-CHESS type does not directly
follow this role but can easily be included in this theoretical
framework as will be clarified later in x4.3),

R1 ¼
þ1 0

0 þ1

! "
; R2 ¼

%1 0

0 þ1

! "
;

R3 ¼
%1 0

0 %1

! "
; R4 ¼

þ1 0

0 %1

! "
:

ð4Þ

The next step in this analysis is the description of the z-axis in
the Fourier domain. The field generated by the nth array
transforms as follows,

B̂BnðX; !Þ ¼
Rþ1

%1
BnðX; zÞ exp %i!zð Þ dz; ð5Þ

where the circumflex (^) indicates that the function is defined
in the Fourier domain. There are two main advantages of
adopting this formal description. The first advantage is related
to the periodicity of the magnetic field along the z-axis of an
undulator and its natural description of the Fourier domain.
Moreover, it is usually enough to use the first harmonic to give
an estimation of the field profile, thus reducing it to a single
complex number (i.e. a phasor). The second advantage is
related to the substitution of a translation into a product with
a complex number.

Assuming a pure sinusoidal profile of the field along the
z-axis with the periodicity of the undulator (the theoretical
framework of this analysis can be extended to the full Fourier
spectrum but it is beyond the purpose of the present publi-
cation), the n-array field profile can be simplified,

B̂BnðX; !Þ ¼ B̂BnðXÞ & ð"=2Þ1=2##ð!% !0Þ þ #ð!þ !0Þ
$
; ð6Þ

where the xy-plane dependence is factorized with the Fourier
space part. Here, the same symbol is used for two different
functions to simplify the notation since the ! dependence will
not play an active role any longer. For the same reason, the
# functions will no longer be considered in the following
equations,

B̂BðXÞ ¼
P4

n¼ 1

exp i$nð ÞRn & B̂B1 R%1
n & X

% &
; ð7Þ

where the shifts in the z-axis are now substituted by four
complex numbers with phase $n = 2"zn=%U. As a result of this
approach, it is now simpler to express the Jacobian

ĴJðXÞ ¼
P4

n¼ 1

exp i$nð ÞRn & ĴJ1ðR%1
n & XÞ & R%1

n ð8Þ
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longitudinal positions of the electrons). Standard facilities use
a stepwise tapering of the undulator field (Kroll et al., 1981)
(i.e. the undulator K is constant within an undulator module)
to maximize the extracted FEL pulse energy. A TGU with
variable gap can be used to generate a continuous taper within
the undulator by transversely tilting the module. A continuous
taper allows the extraction of more FEL pulse energy than a
stepwise taper, which can only approximate the optimum
taper along the undulator beamline. The continuous taper
achievable with a TGU can be used to passively lock the FEL
signal to an external laser signal (Saldin et al., 2006). For the
Athos beamline at SwissFEL, a continuous taper over an
undulator modulator via a TGU is mandatory to achieve good
performances since no significant contrast ratios can be
achieved for a stepwise taper (Prat & Reiche, 2015).

In x2 and x3, a general and new theoretical framework
is introduced to demonstrate the presence of a transverse
gradient in an Apple undulator under certain operation
conditions and to provide practical formulas for the actual
operation of these devices. It is interesting to show that this
analytical model also yields the same results published before
(Schmidt & Zimoch, 2007). In addition, new conclusions can
be derived, e.g. a simple relation between the energy shift and
the transverse gradient in elliptical polarization, useful to tune
the device for the new set of operations previously described.

2. Magnetic field model of an Apple undulator

The purpose of this section is to estimate the magnetic field
and its Jacobian in an Apple undulator knowing the field and
the Jacobian of one magnetic array. There are several
computer codes available to calculate the magnetic field
produced by permanent magnets. In this paper, all magnetic
computations are made with the RADIA code (Chubar et al.,
1998).

In an Apple undulator, the magnetic field can be approxi-
mated, with good accuracy, by the sum of the contributions of
the four magnetic arrays, assuming that the permeability of the
magnet material !r = 1. This is a reasonable assumption that
can be made for NdFeB and SmCo magnets. Specifically,
SmCo5 magnets have the lowest permeability (!r < 1.02)
among these families of rare-earth materials and thus they are
the first choice for these applications where the low field
integral over the full operational range is specified and high
remanence (above 1 T) is not required. Thus, the following
mathematical description is traditionally the starting point for
modelling the transverse magnetic field (B = Bxx̂xþ Byŷy) of all
these devices,

BðX; zÞ ¼
P4

n¼ 1

Bn X; z% znð Þ; ð2Þ

where Bn is the transversal magnetic field of the nth array, X is
the vector representing the cross-section plane (xy-plane), z is
the coordinate along the beam axis and zn is the position of the
nth magnetic array along the z-axis. The four arrays are
identical (the field error contributions are not relevant for the

purpose of this study and they are not discussed in this paper)
and their relative positions follow a given symmetry. The
magnetic field generated by each of the four arrays can be
expressed using a linear transformation starting from one of
the arrays. In equation (3) below, the first array is used for this
purpose,

BnðX; zÞ ¼ Rn & B1ðR%1
n & X; zÞ: ð3Þ

For standard Apple devices, the following matrices can be
used to describe the relative position and symmetries among
the arrays (the Delta LEPP-CHESS type does not directly
follow this role but can easily be included in this theoretical
framework as will be clarified later in x4.3),

R1 ¼
þ1 0

0 þ1

! "
; R2 ¼

%1 0

0 þ1

! "
;

R3 ¼
%1 0

0 %1

! "
; R4 ¼

þ1 0

0 %1

! "
:

ð4Þ

The next step in this analysis is the description of the z-axis in
the Fourier domain. The field generated by the nth array
transforms as follows,

B̂BnðX; !Þ ¼
Rþ1

%1
BnðX; zÞ exp %i!zð Þ dz; ð5Þ

where the circumflex (^) indicates that the function is defined
in the Fourier domain. There are two main advantages of
adopting this formal description. The first advantage is related
to the periodicity of the magnetic field along the z-axis of an
undulator and its natural description of the Fourier domain.
Moreover, it is usually enough to use the first harmonic to give
an estimation of the field profile, thus reducing it to a single
complex number (i.e. a phasor). The second advantage is
related to the substitution of a translation into a product with
a complex number.

Assuming a pure sinusoidal profile of the field along the
z-axis with the periodicity of the undulator (the theoretical
framework of this analysis can be extended to the full Fourier
spectrum but it is beyond the purpose of the present publi-
cation), the n-array field profile can be simplified,

B̂BnðX; !Þ ¼ B̂BnðXÞ & ð"=2Þ1=2##ð!% !0Þ þ #ð!þ !0Þ
$
; ð6Þ

where the xy-plane dependence is factorized with the Fourier
space part. Here, the same symbol is used for two different
functions to simplify the notation since the ! dependence will
not play an active role any longer. For the same reason, the
# functions will no longer be considered in the following
equations,

B̂BðXÞ ¼
P4

n¼ 1

exp i$nð ÞRn & B̂B1 R%1
n & X

% &
; ð7Þ

where the shifts in the z-axis are now substituted by four
complex numbers with phase $n = 2"zn=%U. As a result of this
approach, it is now simpler to express the Jacobian

ĴJðXÞ ¼
P4

n¼ 1

exp i$nð ÞRn & ĴJ1ðR%1
n & XÞ & R%1

n ð8Þ
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Since an Apple undulator with four independent arrays no
longer requires a gap drive system to set a different K-value
(Carr, 1991), the implementation of novel devices was trig-
gered. The first of these undulators was developed at the Swiss
Light Source (Schmidt et al., 2007): the device had an Apple II
cross section, no gap drive system (fixed gap) and four inde-
pendent arrays. Recently a new type of device, called Delta
LEPP-CHESS due to the specific shape of its magnets
(Temnykh, 2008), was proposed. Its cross section not only
satisfies the usual axis (x and y) symmetry but also the 90!

rotational symmetry which simplifies the operation. This
device is based on the same operational principles as the
previous fixed-gap undulator type but with a cross section
rotated by 45!, as seen in Fig. 2. This device has now been
adopted as an afterburner at the Linac Coherent Light Source
(LCLS) facility but with the cross section rotated back to the
original symmetry. It is now referred to as Delta (Nuhn et al.,
2015). In 2016 the Apple X was proposed at the Paul Scherrer
Institute for the soft X-ray line of the SwissFEL. It consists of
a Delta cross section where the four arrays can be indepen-
dently displaced both longitudinally and radially. If the four
arrays are displaced radially by the same amount, the 90!

symmetry is preserved for all gaps. At the same time, it is also
possible to displace them to break the symmetry, thus even-
tually introducing a gradient on-axis. The same development is
ongoing at the LCLS and the device is referred as a Delta II
(H.-D. Nuhn, private comunication).

1.1. Advantages and disadvantages of fix-gap operation

The new operational mode, now called energy mode, is
based on the parallel movement of two neighbouring arrays:
the two top arrays (1 and 2) against the two bottom arrays
(3 and 4) or the two left arrays (2 and 3) against the two right
arrays (1 and 4), as illustrated in Fig. 1. The lack of a gap drive
system to change the K-value increases cost effectiveness,
while decreasing design complexity and the weight of the
device. However, this comes with some drawbacks. The
experimental evidence of these limitations was measured at
the Swiss Light Source (Schmidt et al., 2013) and was
explained by the presence of a transversal K gradient. The
resonance condition, expressed in equation (1) below,

! ¼ !U

2"2
1þ K 2

2

! "
; ð1Þ

where !U is the undulator period length and " is the Lorenz
factor, gives the relation between K and the radiation wave-
length !. In standard operation it is not desired that the
radiation wavelength depends on the transverse position of
the beam because it reduces the intensity of the interference
peaks of the undulator spectrum. However, Schmidt’s work
highlighted for the first time the possibility to operate an
Apple undulator as a variable transverse gradient undulator
(TGU).

Recently, many authors have demonstrated that TGUs may
be useful for certain applications. They can be used to produce
FEL radiation with large energy spread beams generated in
laser-plasma accelerators (Huang et al., 2012). If the electron
energy is correlated to a transverse offset via dispersion and
a TGU is set such that the resonance condition expressed in
equation (1) is preserved for all the electrons, the performance
of the FEL radiation will significantly improve.

A TGU can also be employed to generate ultra-large
bandwidth radiation above the 10% level, which is needed for
selected applications such as crystallography and spectroscopy
(Prat et al., 2016). This will occur when the beam is presented
with a transverse tilt (correlation between the transverse and
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Figure 1
The four magnetic arrays of an Apple undulator are schematically
represented to highlight the basic topology involved in this undulator
concept: array pairs 1–2, 2–3, 3–4 and 4–1 are called neighbouring arrays,
while pairs 1–3 and 2–4 are called opposite arrays.

Figure 2
The different cross sections of Apple-type undulators in chronological
order. In the first row one can find the standard Apple cross sections,
starting with Apple I and II, which are designed for synchrotrons
operated with elliptical vacuum chambers, followed by Apple III for
linac-driven FELs. All three types are regularly equipped with a gap drive
system which is changing the distance between the upper and lower
arrays. In the second row there are the new cross sections called Delta
LEPP-CHESS and Delta, which are designed for linac-driven FELs
without a gap drive system. The last type is called Apple X (at the
SwissFEL project) or Delta II (at the LCLS project), where a new gap
drive system is moving an Apple III cross section in a way that both axis
symmetries and 90! symmetry are guaranteed.



to equation (10) and to equation (11), respectively, QB̂B and
QĴJQ!1. This approach also allows the use of the previously
calculated magnetic field and Jacobian in the original refer-
ence frame and their properties: B̂Bx1 = B̂By1 and @xB̂B1x = @yB̂B1y.
Therefore, the main results of this calculation are expressed as
follows,

B̂Bx

B̂yBy

" #

¼ 1ffiffiffi
2
p Zx !Zy

Zx Zy

" #
# 1

1

" #
B̂B1x; ð56Þ

@xB̂Bx

@yB̂By

" #

¼ Zxx !Zxy

Zxx Zxy

" #
# @xB̂B1x

@yB̂B1x

" #

; ð57Þ

@yB̂Bx ¼ @xB̂By ¼ 0: ð58Þ

The K-value for the parallel mode is identical to the one
evaluated for the Apple X case and is repeated for comple-
teness’ sake in equation (59) below,

K ¼ 4!B̂Bx1 cos 1
2"e: ð59Þ

The K gradient, on the contrary, is present simultaneously in
both planes as calculated in equation (60) below,

@xK ¼ & 1ffiffi
2
p G0 sin 1

2"e sin"p;

@yK ¼ þ 1ffiffi
2
p G0 sin 1

2"e sin"p;
ð60Þ

where the positive sign (+) represents the top–bottom energy
shift and the negative sign (!) stands for the left–right energy
shift. This is the major difference between this device and all
other devices that are analysed in this paper. Its imple-
mentation in a facility has to be carefully evaluated by also
taking into account the result of equation (60).

For the antiparallel mode, the results follow the general
rule: no K gradient is present. The expression of K is very
similar to that observed for Apple X [equation (53)], except
for a change in sign. No change in signs is seen for the top–
bottom and the left–right shifts, as shown in equation (61)
below,

K ¼ 2!B̂B1x 2þ cos"e þ cos "e þ 2" !pp

$ %& '1=2
: ð61Þ

5. Model versus simulation for the Apple X

The transversal gradient of an Apple X undulator has been
evaluated with the help of the computer code RADIA to
verify the quality of the analytical approach presented in this
article and to highlight its limitations. The formulas derived for
K have already been proven by other authors and are widely
supported by experimental results. Thus, only the results
concerning the transverse gradient are reported in this section.
The geometry and the material properties of the magnetic
structure are presented in Fig. 3 and in Table 1, respectively.

To evaluate equation (51), the first step is to numerically
calculate K0 and G0 as formulated in equations (50) and (49),
respectively (see Fig. 4). The results of both calculations are

fitted with the following function (used for the K versus gap of
a hybrid magnetic structure),

A exp !b
g

#U

þ c
g2

#2
U

( )
; ð62Þ

where the independent variable g is the gap. In Table 2 the
coefficients are listed for both K0ðgÞ and G0ðgÞ. In Fig. 5,
equation (51) is estimated both analytically (solid line) and
numerically (markers). For completeness’ sake, equation (52)
is presented in Fig. 6. There is a very good agreement between
the analytical model and the numerical calculation, and the
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Figure 3
Magnetic model of the Apple X undulator used for the example. The
actual model consists of eight periods while in this picture only four have
been drawn.

Table 1
Simulation parameters for the Apple X example.

Parameter Unit

#U 40.0 mm
Magnet material Sm2Co17 –
Remanence 1.08 T
Number of periods 8 –
Magnet edge 30.0 mm
Magnet chamfer 5.0 mm

Figure 4
The values of K0 and G0 have been calculated as a function of the
undulator (Apple X) gap. The numerical calculation (red markers) are
presented together with the fitting functions (solid black line) introduced
in equation (62).
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longitudinal positions of the electrons). Standard facilities use
a stepwise tapering of the undulator field (Kroll et al., 1981)
(i.e. the undulator K is constant within an undulator module)
to maximize the extracted FEL pulse energy. A TGU with
variable gap can be used to generate a continuous taper within
the undulator by transversely tilting the module. A continuous
taper allows the extraction of more FEL pulse energy than a
stepwise taper, which can only approximate the optimum
taper along the undulator beamline. The continuous taper
achievable with a TGU can be used to passively lock the FEL
signal to an external laser signal (Saldin et al., 2006). For the
Athos beamline at SwissFEL, a continuous taper over an
undulator modulator via a TGU is mandatory to achieve good
performances since no significant contrast ratios can be
achieved for a stepwise taper (Prat & Reiche, 2015).

In x2 and x3, a general and new theoretical framework
is introduced to demonstrate the presence of a transverse
gradient in an Apple undulator under certain operation
conditions and to provide practical formulas for the actual
operation of these devices. It is interesting to show that this
analytical model also yields the same results published before
(Schmidt & Zimoch, 2007). In addition, new conclusions can
be derived, e.g. a simple relation between the energy shift and
the transverse gradient in elliptical polarization, useful to tune
the device for the new set of operations previously described.

2. Magnetic field model of an Apple undulator

The purpose of this section is to estimate the magnetic field
and its Jacobian in an Apple undulator knowing the field and
the Jacobian of one magnetic array. There are several
computer codes available to calculate the magnetic field
produced by permanent magnets. In this paper, all magnetic
computations are made with the RADIA code (Chubar et al.,
1998).

In an Apple undulator, the magnetic field can be approxi-
mated, with good accuracy, by the sum of the contributions of
the four magnetic arrays, assuming that the permeability of the
magnet material !r = 1. This is a reasonable assumption that
can be made for NdFeB and SmCo magnets. Specifically,
SmCo5 magnets have the lowest permeability (!r < 1.02)
among these families of rare-earth materials and thus they are
the first choice for these applications where the low field
integral over the full operational range is specified and high
remanence (above 1 T) is not required. Thus, the following
mathematical description is traditionally the starting point for
modelling the transverse magnetic field (B = Bxx̂xþ Byŷy) of all
these devices,

BðX; zÞ ¼
P4

n¼ 1

Bn X; z% znð Þ; ð2Þ

where Bn is the transversal magnetic field of the nth array, X is
the vector representing the cross-section plane (xy-plane), z is
the coordinate along the beam axis and zn is the position of the
nth magnetic array along the z-axis. The four arrays are
identical (the field error contributions are not relevant for the

purpose of this study and they are not discussed in this paper)
and their relative positions follow a given symmetry. The
magnetic field generated by each of the four arrays can be
expressed using a linear transformation starting from one of
the arrays. In equation (3) below, the first array is used for this
purpose,

BnðX; zÞ ¼ Rn & B1ðR%1
n & X; zÞ: ð3Þ

For standard Apple devices, the following matrices can be
used to describe the relative position and symmetries among
the arrays (the Delta LEPP-CHESS type does not directly
follow this role but can easily be included in this theoretical
framework as will be clarified later in x4.3),

R1 ¼
þ1 0

0 þ1

! "
; R2 ¼

%1 0

0 þ1

! "
;

R3 ¼
%1 0

0 %1

! "
; R4 ¼

þ1 0

0 %1

! "
:

ð4Þ

The next step in this analysis is the description of the z-axis in
the Fourier domain. The field generated by the nth array
transforms as follows,

B̂BnðX; !Þ ¼
Rþ1

%1
BnðX; zÞ exp %i!zð Þ dz; ð5Þ

where the circumflex (^) indicates that the function is defined
in the Fourier domain. There are two main advantages of
adopting this formal description. The first advantage is related
to the periodicity of the magnetic field along the z-axis of an
undulator and its natural description of the Fourier domain.
Moreover, it is usually enough to use the first harmonic to give
an estimation of the field profile, thus reducing it to a single
complex number (i.e. a phasor). The second advantage is
related to the substitution of a translation into a product with
a complex number.

Assuming a pure sinusoidal profile of the field along the
z-axis with the periodicity of the undulator (the theoretical
framework of this analysis can be extended to the full Fourier
spectrum but it is beyond the purpose of the present publi-
cation), the n-array field profile can be simplified,

B̂BnðX; !Þ ¼ B̂BnðXÞ & ð"=2Þ1=2##ð!% !0Þ þ #ð!þ !0Þ
$
; ð6Þ

where the xy-plane dependence is factorized with the Fourier
space part. Here, the same symbol is used for two different
functions to simplify the notation since the ! dependence will
not play an active role any longer. For the same reason, the
# functions will no longer be considered in the following
equations,

B̂BðXÞ ¼
P4

n¼ 1

exp i$nð ÞRn & B̂B1 R%1
n & X

% &
; ð7Þ

where the shifts in the z-axis are now substituted by four
complex numbers with phase $n = 2"zn=%U. As a result of this
approach, it is now simpler to express the Jacobian

ĴJðXÞ ¼
P4

n¼ 1

exp i$nð ÞRn & ĴJ1ðR%1
n & XÞ & R%1

n ð8Þ
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as a function of the Jacobian of the first-term array,

ĴJ1 ¼
@xB̂B1x @yB̂B1x

@xB̂B1y @yB̂B1y

" #

: ð9Þ

For the purpose of this publication, the main interest is
focused on the field properties on the undulator axis, i.e. for
X = ð0; 0Þ. To further simplify the notation, all functions
without explicit xy-plane dependence must be assumed to be
evaluated on the axis from this point onwards. Following this
rule, equations (7) and (8), respectively, become

B̂B ¼
P4

n¼ 1

exp i!nð ÞRn

! "
$ B̂B1 ð10Þ

and

ĴJ ¼
P4

n¼ 1

exp i!nð ÞRn $ ĴJ1 $ R%1
n : ð11Þ

The components of B̂B1 and ĴJ1 are assumed to be real numbers
for the remainder of the paper. Since the average row phase is
arbitrary, it will not affect the final results. Hence, it can be
equated to zero for the sake of convenience.

Using the following change of variables,

’1 ¼ !1; ’2 ¼ !2; ’3 ¼ !3 þ "; ’4 ¼ !4 þ "; ð12Þ

the linear horizontal polarization (pure vertical field) is
recovered when ’1 = ’2 = ’3 = ’4 = 0, which is the config-
uration where all arrays are traditionally considered at zero
mechanical position, i.e. zero shift position. Defining the
following auxiliary Z#ð’1; ’2; ’3; ’4Þ functions,

Zx ¼ exp i’1ð Þ % exp i’2ð Þ þ exp i’3ð Þ % exp i’4ð Þ;
Zy ¼ exp i’1ð Þ þ exp i’2ð Þ þ exp i’3ð Þ þ exp i’4ð Þ;

Zxx ¼ exp i’1ð Þ þ exp i’2ð Þ % exp i’3ð Þ % exp i’4ð Þ;
Zxy ¼ exp i’1ð Þ % exp i’2ð Þ % exp i’3ð Þ þ exp i’4ð Þ;

ð13Þ

it is possible to write equations (10) and (11) in the following
explicit forms,

B̂B ¼ Zx 0
0 Zy

! "
B̂B1 ¼ Z $ B̂B1; ð14Þ

ĴJ ¼ Zxx
@xB̂B1x 0

0 @yB̂B1y

! "
þ Zxy@xB̂B1y

0 1
1 0

! "
; ð15Þ

and for the highly symmetric case (relevant for later discus-
sion), where @xB̂B1x = @yB̂B1y, the Jacobian is simplified to the
following expression,

ĴJ ¼ Zxx@xB̂B1xIþ Zxy@xB̂B1yE; ð16Þ

where I and E are, respectively, the identity and exchange
matrix of rank 2. To summarize, there are four complex
numbers which fully describe the status of the magnetic system
in the neighbourhood of the undulator axis, and depend on the
relative phase of the four arrays. Each Z# is the sum of four
complex numbers  #n (note that j j = 1) representing the
status of the array,

Z# ¼
P4

n¼ 1

 #
n : ð17Þ

As a bookkeeping device, it is convenient to define the
following matrix,

W ¼ ff #
n

# $
; ð18Þ

where the phase of each complex number is explicitly saved.
To be more specific, an application for equation (18) for linear
horizontal polarization is shown in equation (19) below,

n¼ 1 2 3 4

# # # #
#¼ x ! 0 " 0 " ! Bx

y ! 0 0 0 0 ! By
xx ! 0 0 " " ! @xBx; @yBy
xy ! 0 " " 0 ! @xBy

ð19Þ

where each column represents one magnetic array and each
row shows a specific property of the magnetic field. For
instance, the first line represents the phases of the four
complex numbers defining the x component of the magnetic
field. In this matrix representation, a shift of a magnetic array
is equivalent to the addition of the same phase to the column
corresponding to the magnetic array. Following this pattern,
the elliptical polarization (parallel operational mode, p) and
the linear inclined polarization (antiparallel operational mode,
!pp) are, respectively, summarized by the following matrices,

!p !p

# #
0 " 0 "
0 0 0 0
0 0 " "
0 " " 0

;

! !pp

#
0 " 0 "
0 0 0 0
0 0 " "
0 " " 0

"
%! !pp

; ð20Þ

while the energy shift modes (mandatory modes for fixed-gap
devices to set the K-value and change the photon energy) are
represented by the following matrices, for the top–bottom
mode (arrays 1 and 2) and for the left–right mode (arrays 2
and 3), respectively (as seen in Fig. 1),

!e !e

# #
0 " 0 "
0 0 0 0
0 0 " "
0 " " 0

;

!e !e

# #
0 " 0 "
0 0 0 0
0 0 " "
0 " " 0

: ð21Þ

Knowing the magnetic field and its gradient is the first step
towards a correct understanding of the electron dynamic along
the undulator axis. A detailed study of the actual orbit is
beyond the scope of this paper. During this investigation, the
electrons are assumed to wiggle in a parallel and closed
fashion (i.e. in the neighbourhood) to the undulator axis. In
the following section, the undulator K and its gradient are
estimated by starting with the results and assumptions
presented in x2.
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as a function of the Jacobian of the first-term array,
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For the purpose of this publication, the main interest is
focused on the field properties on the undulator axis, i.e. for
X = ð0; 0Þ. To further simplify the notation, all functions
without explicit xy-plane dependence must be assumed to be
evaluated on the axis from this point onwards. Following this
rule, equations (7) and (8), respectively, become

B̂B ¼
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! "
$ B̂B1 ð10Þ

and

ĴJ ¼
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n¼ 1

exp i!nð ÞRn $ ĴJ1 $ R%1
n : ð11Þ

The components of B̂B1 and ĴJ1 are assumed to be real numbers
for the remainder of the paper. Since the average row phase is
arbitrary, it will not affect the final results. Hence, it can be
equated to zero for the sake of convenience.

Using the following change of variables,

’1 ¼ !1; ’2 ¼ !2; ’3 ¼ !3 þ "; ’4 ¼ !4 þ "; ð12Þ

the linear horizontal polarization (pure vertical field) is
recovered when ’1 = ’2 = ’3 = ’4 = 0, which is the config-
uration where all arrays are traditionally considered at zero
mechanical position, i.e. zero shift position. Defining the
following auxiliary Z#ð’1; ’2; ’3; ’4Þ functions,

Zx ¼ exp i’1ð Þ % exp i’2ð Þ þ exp i’3ð Þ % exp i’4ð Þ;
Zy ¼ exp i’1ð Þ þ exp i’2ð Þ þ exp i’3ð Þ þ exp i’4ð Þ;

Zxx ¼ exp i’1ð Þ þ exp i’2ð Þ % exp i’3ð Þ % exp i’4ð Þ;
Zxy ¼ exp i’1ð Þ % exp i’2ð Þ % exp i’3ð Þ þ exp i’4ð Þ;

ð13Þ

it is possible to write equations (10) and (11) in the following
explicit forms,

B̂B ¼ Zx 0
0 Zy

! "
B̂B1 ¼ Z $ B̂B1; ð14Þ

ĴJ ¼ Zxx
@xB̂B1x 0

0 @yB̂B1y

! "
þ Zxy@xB̂B1y

0 1
1 0

! "
; ð15Þ

and for the highly symmetric case (relevant for later discus-
sion), where @xB̂B1x = @yB̂B1y, the Jacobian is simplified to the
following expression,

ĴJ ¼ Zxx@xB̂B1xIþ Zxy@xB̂B1yE; ð16Þ

where I and E are, respectively, the identity and exchange
matrix of rank 2. To summarize, there are four complex
numbers which fully describe the status of the magnetic system
in the neighbourhood of the undulator axis, and depend on the
relative phase of the four arrays. Each Z# is the sum of four
complex numbers  #n (note that j j = 1) representing the
status of the array,

Z# ¼
P4

n¼ 1

 #
n : ð17Þ

As a bookkeeping device, it is convenient to define the
following matrix,

W ¼ ff #
n

# $
; ð18Þ

where the phase of each complex number is explicitly saved.
To be more specific, an application for equation (18) for linear
horizontal polarization is shown in equation (19) below,

n¼ 1 2 3 4

# # # #
#¼ x ! 0 " 0 " ! Bx

y ! 0 0 0 0 ! By
xx ! 0 0 " " ! @xBx; @yBy
xy ! 0 " " 0 ! @xBy

ð19Þ

where each column represents one magnetic array and each
row shows a specific property of the magnetic field. For
instance, the first line represents the phases of the four
complex numbers defining the x component of the magnetic
field. In this matrix representation, a shift of a magnetic array
is equivalent to the addition of the same phase to the column
corresponding to the magnetic array. Following this pattern,
the elliptical polarization (parallel operational mode, p) and
the linear inclined polarization (antiparallel operational mode,
!pp) are, respectively, summarized by the following matrices,

!p !p

# #
0 " 0 "
0 0 0 0
0 0 " "
0 " " 0

;

! !pp

#
0 " 0 "
0 0 0 0
0 0 " "
0 " " 0

"
%! !pp

; ð20Þ

while the energy shift modes (mandatory modes for fixed-gap
devices to set the K-value and change the photon energy) are
represented by the following matrices, for the top–bottom
mode (arrays 1 and 2) and for the left–right mode (arrays 2
and 3), respectively (as seen in Fig. 1),

!e !e

# #
0 " 0 "
0 0 0 0
0 0 " "
0 " " 0

;

!e !e

# #
0 " 0 "
0 0 0 0
0 0 " "
0 " " 0

: ð21Þ

Knowing the magnetic field and its gradient is the first step
towards a correct understanding of the electron dynamic along
the undulator axis. A detailed study of the actual orbit is
beyond the scope of this paper. During this investigation, the
electrons are assumed to wiggle in a parallel and closed
fashion (i.e. in the neighbourhood) to the undulator axis. In
the following section, the undulator K and its gradient are
estimated by starting with the results and assumptions
presented in x2.
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longitudinal positions of the electrons). Standard facilities use
a stepwise tapering of the undulator field (Kroll et al., 1981)
(i.e. the undulator K is constant within an undulator module)
to maximize the extracted FEL pulse energy. A TGU with
variable gap can be used to generate a continuous taper within
the undulator by transversely tilting the module. A continuous
taper allows the extraction of more FEL pulse energy than a
stepwise taper, which can only approximate the optimum
taper along the undulator beamline. The continuous taper
achievable with a TGU can be used to passively lock the FEL
signal to an external laser signal (Saldin et al., 2006). For the
Athos beamline at SwissFEL, a continuous taper over an
undulator modulator via a TGU is mandatory to achieve good
performances since no significant contrast ratios can be
achieved for a stepwise taper (Prat & Reiche, 2015).

In x2 and x3, a general and new theoretical framework
is introduced to demonstrate the presence of a transverse
gradient in an Apple undulator under certain operation
conditions and to provide practical formulas for the actual
operation of these devices. It is interesting to show that this
analytical model also yields the same results published before
(Schmidt & Zimoch, 2007). In addition, new conclusions can
be derived, e.g. a simple relation between the energy shift and
the transverse gradient in elliptical polarization, useful to tune
the device for the new set of operations previously described.

2. Magnetic field model of an Apple undulator

The purpose of this section is to estimate the magnetic field
and its Jacobian in an Apple undulator knowing the field and
the Jacobian of one magnetic array. There are several
computer codes available to calculate the magnetic field
produced by permanent magnets. In this paper, all magnetic
computations are made with the RADIA code (Chubar et al.,
1998).

In an Apple undulator, the magnetic field can be approxi-
mated, with good accuracy, by the sum of the contributions of
the four magnetic arrays, assuming that the permeability of the
magnet material !r = 1. This is a reasonable assumption that
can be made for NdFeB and SmCo magnets. Specifically,
SmCo5 magnets have the lowest permeability (!r < 1.02)
among these families of rare-earth materials and thus they are
the first choice for these applications where the low field
integral over the full operational range is specified and high
remanence (above 1 T) is not required. Thus, the following
mathematical description is traditionally the starting point for
modelling the transverse magnetic field (B = Bxx̂xþ Byŷy) of all
these devices,

BðX; zÞ ¼
P4

n¼ 1

Bn X; z% znð Þ; ð2Þ

where Bn is the transversal magnetic field of the nth array, X is
the vector representing the cross-section plane (xy-plane), z is
the coordinate along the beam axis and zn is the position of the
nth magnetic array along the z-axis. The four arrays are
identical (the field error contributions are not relevant for the

purpose of this study and they are not discussed in this paper)
and their relative positions follow a given symmetry. The
magnetic field generated by each of the four arrays can be
expressed using a linear transformation starting from one of
the arrays. In equation (3) below, the first array is used for this
purpose,

BnðX; zÞ ¼ Rn & B1ðR%1
n & X; zÞ: ð3Þ

For standard Apple devices, the following matrices can be
used to describe the relative position and symmetries among
the arrays (the Delta LEPP-CHESS type does not directly
follow this role but can easily be included in this theoretical
framework as will be clarified later in x4.3),

R1 ¼
þ1 0

0 þ1

! "
; R2 ¼

%1 0

0 þ1

! "
;

R3 ¼
%1 0

0 %1

! "
; R4 ¼

þ1 0

0 %1

! "
:

ð4Þ

The next step in this analysis is the description of the z-axis in
the Fourier domain. The field generated by the nth array
transforms as follows,

B̂BnðX; !Þ ¼
Rþ1

%1
BnðX; zÞ exp %i!zð Þ dz; ð5Þ

where the circumflex (^) indicates that the function is defined
in the Fourier domain. There are two main advantages of
adopting this formal description. The first advantage is related
to the periodicity of the magnetic field along the z-axis of an
undulator and its natural description of the Fourier domain.
Moreover, it is usually enough to use the first harmonic to give
an estimation of the field profile, thus reducing it to a single
complex number (i.e. a phasor). The second advantage is
related to the substitution of a translation into a product with
a complex number.

Assuming a pure sinusoidal profile of the field along the
z-axis with the periodicity of the undulator (the theoretical
framework of this analysis can be extended to the full Fourier
spectrum but it is beyond the purpose of the present publi-
cation), the n-array field profile can be simplified,

B̂BnðX; !Þ ¼ B̂BnðXÞ & ð"=2Þ1=2##ð!% !0Þ þ #ð!þ !0Þ
$
; ð6Þ

where the xy-plane dependence is factorized with the Fourier
space part. Here, the same symbol is used for two different
functions to simplify the notation since the ! dependence will
not play an active role any longer. For the same reason, the
# functions will no longer be considered in the following
equations,

B̂BðXÞ ¼
P4

n¼ 1

exp i$nð ÞRn & B̂B1 R%1
n & X

% &
; ð7Þ

where the shifts in the z-axis are now substituted by four
complex numbers with phase $n = 2"zn=%U. As a result of this
approach, it is now simpler to express the Jacobian

ĴJðXÞ ¼
P4

n¼ 1

exp i$nð ÞRn & ĴJ1ðR%1
n & XÞ & R%1

n ð8Þ
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longitudinal positions of the electrons). Standard facilities use
a stepwise tapering of the undulator field (Kroll et al., 1981)
(i.e. the undulator K is constant within an undulator module)
to maximize the extracted FEL pulse energy. A TGU with
variable gap can be used to generate a continuous taper within
the undulator by transversely tilting the module. A continuous
taper allows the extraction of more FEL pulse energy than a
stepwise taper, which can only approximate the optimum
taper along the undulator beamline. The continuous taper
achievable with a TGU can be used to passively lock the FEL
signal to an external laser signal (Saldin et al., 2006). For the
Athos beamline at SwissFEL, a continuous taper over an
undulator modulator via a TGU is mandatory to achieve good
performances since no significant contrast ratios can be
achieved for a stepwise taper (Prat & Reiche, 2015).

In x2 and x3, a general and new theoretical framework
is introduced to demonstrate the presence of a transverse
gradient in an Apple undulator under certain operation
conditions and to provide practical formulas for the actual
operation of these devices. It is interesting to show that this
analytical model also yields the same results published before
(Schmidt & Zimoch, 2007). In addition, new conclusions can
be derived, e.g. a simple relation between the energy shift and
the transverse gradient in elliptical polarization, useful to tune
the device for the new set of operations previously described.

2. Magnetic field model of an Apple undulator

The purpose of this section is to estimate the magnetic field
and its Jacobian in an Apple undulator knowing the field and
the Jacobian of one magnetic array. There are several
computer codes available to calculate the magnetic field
produced by permanent magnets. In this paper, all magnetic
computations are made with the RADIA code (Chubar et al.,
1998).

In an Apple undulator, the magnetic field can be approxi-
mated, with good accuracy, by the sum of the contributions of
the four magnetic arrays, assuming that the permeability of the
magnet material !r = 1. This is a reasonable assumption that
can be made for NdFeB and SmCo magnets. Specifically,
SmCo5 magnets have the lowest permeability (!r < 1.02)
among these families of rare-earth materials and thus they are
the first choice for these applications where the low field
integral over the full operational range is specified and high
remanence (above 1 T) is not required. Thus, the following
mathematical description is traditionally the starting point for
modelling the transverse magnetic field (B = Bxx̂xþ Byŷy) of all
these devices,

BðX; zÞ ¼
P4

n¼ 1

Bn X; z% znð Þ; ð2Þ

where Bn is the transversal magnetic field of the nth array, X is
the vector representing the cross-section plane (xy-plane), z is
the coordinate along the beam axis and zn is the position of the
nth magnetic array along the z-axis. The four arrays are
identical (the field error contributions are not relevant for the

purpose of this study and they are not discussed in this paper)
and their relative positions follow a given symmetry. The
magnetic field generated by each of the four arrays can be
expressed using a linear transformation starting from one of
the arrays. In equation (3) below, the first array is used for this
purpose,

BnðX; zÞ ¼ Rn & B1ðR%1
n & X; zÞ: ð3Þ

For standard Apple devices, the following matrices can be
used to describe the relative position and symmetries among
the arrays (the Delta LEPP-CHESS type does not directly
follow this role but can easily be included in this theoretical
framework as will be clarified later in x4.3),

R1 ¼
þ1 0

0 þ1

! "
; R2 ¼

%1 0

0 þ1

! "
;

R3 ¼
%1 0

0 %1

! "
; R4 ¼

þ1 0

0 %1

! "
:

ð4Þ

The next step in this analysis is the description of the z-axis in
the Fourier domain. The field generated by the nth array
transforms as follows,

B̂BnðX; !Þ ¼
Rþ1

%1
BnðX; zÞ exp %i!zð Þ dz; ð5Þ

where the circumflex (^) indicates that the function is defined
in the Fourier domain. There are two main advantages of
adopting this formal description. The first advantage is related
to the periodicity of the magnetic field along the z-axis of an
undulator and its natural description of the Fourier domain.
Moreover, it is usually enough to use the first harmonic to give
an estimation of the field profile, thus reducing it to a single
complex number (i.e. a phasor). The second advantage is
related to the substitution of a translation into a product with
a complex number.

Assuming a pure sinusoidal profile of the field along the
z-axis with the periodicity of the undulator (the theoretical
framework of this analysis can be extended to the full Fourier
spectrum but it is beyond the purpose of the present publi-
cation), the n-array field profile can be simplified,

B̂BnðX; !Þ ¼ B̂BnðXÞ & ð"=2Þ1=2##ð!% !0Þ þ #ð!þ !0Þ
$
; ð6Þ

where the xy-plane dependence is factorized with the Fourier
space part. Here, the same symbol is used for two different
functions to simplify the notation since the ! dependence will
not play an active role any longer. For the same reason, the
# functions will no longer be considered in the following
equations,

B̂BðXÞ ¼
P4

n¼ 1

exp i$nð ÞRn & B̂B1 R%1
n & X

% &
; ð7Þ

where the shifts in the z-axis are now substituted by four
complex numbers with phase $n = 2"zn=%U. As a result of this
approach, it is now simpler to express the Jacobian

ĴJðXÞ ¼
P4

n¼ 1

exp i$nð ÞRn & ĴJ1ðR%1
n & XÞ & R%1

n ð8Þ
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longitudinal positions of the electrons). Standard facilities use
a stepwise tapering of the undulator field (Kroll et al., 1981)
(i.e. the undulator K is constant within an undulator module)
to maximize the extracted FEL pulse energy. A TGU with
variable gap can be used to generate a continuous taper within
the undulator by transversely tilting the module. A continuous
taper allows the extraction of more FEL pulse energy than a
stepwise taper, which can only approximate the optimum
taper along the undulator beamline. The continuous taper
achievable with a TGU can be used to passively lock the FEL
signal to an external laser signal (Saldin et al., 2006). For the
Athos beamline at SwissFEL, a continuous taper over an
undulator modulator via a TGU is mandatory to achieve good
performances since no significant contrast ratios can be
achieved for a stepwise taper (Prat & Reiche, 2015).

In x2 and x3, a general and new theoretical framework
is introduced to demonstrate the presence of a transverse
gradient in an Apple undulator under certain operation
conditions and to provide practical formulas for the actual
operation of these devices. It is interesting to show that this
analytical model also yields the same results published before
(Schmidt & Zimoch, 2007). In addition, new conclusions can
be derived, e.g. a simple relation between the energy shift and
the transverse gradient in elliptical polarization, useful to tune
the device for the new set of operations previously described.

2. Magnetic field model of an Apple undulator

The purpose of this section is to estimate the magnetic field
and its Jacobian in an Apple undulator knowing the field and
the Jacobian of one magnetic array. There are several
computer codes available to calculate the magnetic field
produced by permanent magnets. In this paper, all magnetic
computations are made with the RADIA code (Chubar et al.,
1998).

In an Apple undulator, the magnetic field can be approxi-
mated, with good accuracy, by the sum of the contributions of
the four magnetic arrays, assuming that the permeability of the
magnet material !r = 1. This is a reasonable assumption that
can be made for NdFeB and SmCo magnets. Specifically,
SmCo5 magnets have the lowest permeability (!r < 1.02)
among these families of rare-earth materials and thus they are
the first choice for these applications where the low field
integral over the full operational range is specified and high
remanence (above 1 T) is not required. Thus, the following
mathematical description is traditionally the starting point for
modelling the transverse magnetic field (B = Bxx̂xþ Byŷy) of all
these devices,

BðX; zÞ ¼
P4

n¼ 1

Bn X; z% znð Þ; ð2Þ

where Bn is the transversal magnetic field of the nth array, X is
the vector representing the cross-section plane (xy-plane), z is
the coordinate along the beam axis and zn is the position of the
nth magnetic array along the z-axis. The four arrays are
identical (the field error contributions are not relevant for the

purpose of this study and they are not discussed in this paper)
and their relative positions follow a given symmetry. The
magnetic field generated by each of the four arrays can be
expressed using a linear transformation starting from one of
the arrays. In equation (3) below, the first array is used for this
purpose,

BnðX; zÞ ¼ Rn & B1ðR%1
n & X; zÞ: ð3Þ

For standard Apple devices, the following matrices can be
used to describe the relative position and symmetries among
the arrays (the Delta LEPP-CHESS type does not directly
follow this role but can easily be included in this theoretical
framework as will be clarified later in x4.3),

R1 ¼
þ1 0

0 þ1

! "
; R2 ¼

%1 0

0 þ1

! "
;

R3 ¼
%1 0

0 %1

! "
; R4 ¼

þ1 0

0 %1

! "
:

ð4Þ

The next step in this analysis is the description of the z-axis in
the Fourier domain. The field generated by the nth array
transforms as follows,

B̂BnðX; !Þ ¼
Rþ1

%1
BnðX; zÞ exp %i!zð Þ dz; ð5Þ

where the circumflex (^) indicates that the function is defined
in the Fourier domain. There are two main advantages of
adopting this formal description. The first advantage is related
to the periodicity of the magnetic field along the z-axis of an
undulator and its natural description of the Fourier domain.
Moreover, it is usually enough to use the first harmonic to give
an estimation of the field profile, thus reducing it to a single
complex number (i.e. a phasor). The second advantage is
related to the substitution of a translation into a product with
a complex number.

Assuming a pure sinusoidal profile of the field along the
z-axis with the periodicity of the undulator (the theoretical
framework of this analysis can be extended to the full Fourier
spectrum but it is beyond the purpose of the present publi-
cation), the n-array field profile can be simplified,

B̂BnðX; !Þ ¼ B̂BnðXÞ & ð"=2Þ1=2##ð!% !0Þ þ #ð!þ !0Þ
$
; ð6Þ

where the xy-plane dependence is factorized with the Fourier
space part. Here, the same symbol is used for two different
functions to simplify the notation since the ! dependence will
not play an active role any longer. For the same reason, the
# functions will no longer be considered in the following
equations,

B̂BðXÞ ¼
P4

n¼ 1

exp i$nð ÞRn & B̂B1 R%1
n & X

% &
; ð7Þ

where the shifts in the z-axis are now substituted by four
complex numbers with phase $n = 2"zn=%U. As a result of this
approach, it is now simpler to express the Jacobian

ĴJðXÞ ¼
P4

n¼ 1

exp i$nð ÞRn & ĴJ1ðR%1
n & XÞ & R%1

n ð8Þ
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longitudinal positions of the electrons). Standard facilities use
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the Jacobian of one magnetic array. There are several
computer codes available to calculate the magnetic field
produced by permanent magnets. In this paper, all magnetic
computations are made with the RADIA code (Chubar et al.,
1998).

In an Apple undulator, the magnetic field can be approxi-
mated, with good accuracy, by the sum of the contributions of
the four magnetic arrays, assuming that the permeability of the
magnet material !r = 1. This is a reasonable assumption that
can be made for NdFeB and SmCo magnets. Specifically,
SmCo5 magnets have the lowest permeability (!r < 1.02)
among these families of rare-earth materials and thus they are
the first choice for these applications where the low field
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where the circumflex (^) indicates that the function is defined
in the Fourier domain. There are two main advantages of
adopting this formal description. The first advantage is related
to the periodicity of the magnetic field along the z-axis of an
undulator and its natural description of the Fourier domain.
Moreover, it is usually enough to use the first harmonic to give
an estimation of the field profile, thus reducing it to a single
complex number (i.e. a phasor). The second advantage is
related to the substitution of a translation into a product with
a complex number.

Assuming a pure sinusoidal profile of the field along the
z-axis with the periodicity of the undulator (the theoretical
framework of this analysis can be extended to the full Fourier
spectrum but it is beyond the purpose of the present publi-
cation), the n-array field profile can be simplified,
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where the xy-plane dependence is factorized with the Fourier
space part. Here, the same symbol is used for two different
functions to simplify the notation since the ! dependence will
not play an active role any longer. For the same reason, the
# functions will no longer be considered in the following
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where the shifts in the z-axis are now substituted by four
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ĴJðXÞ ¼
P4

n¼ 1

exp i$nð ÞRn & ĴJ1ðR%1
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Reducing	  our	  
invesJgaJon	  to	  the	  
on	  axis	  fields	  

Since an Apple undulator with four independent arrays no
longer requires a gap drive system to set a different K-value
(Carr, 1991), the implementation of novel devices was trig-
gered. The first of these undulators was developed at the Swiss
Light Source (Schmidt et al., 2007): the device had an Apple II
cross section, no gap drive system (fixed gap) and four inde-
pendent arrays. Recently a new type of device, called Delta
LEPP-CHESS due to the specific shape of its magnets
(Temnykh, 2008), was proposed. Its cross section not only
satisfies the usual axis (x and y) symmetry but also the 90!

rotational symmetry which simplifies the operation. This
device is based on the same operational principles as the
previous fixed-gap undulator type but with a cross section
rotated by 45!, as seen in Fig. 2. This device has now been
adopted as an afterburner at the Linac Coherent Light Source
(LCLS) facility but with the cross section rotated back to the
original symmetry. It is now referred to as Delta (Nuhn et al.,
2015). In 2016 the Apple X was proposed at the Paul Scherrer
Institute for the soft X-ray line of the SwissFEL. It consists of
a Delta cross section where the four arrays can be indepen-
dently displaced both longitudinally and radially. If the four
arrays are displaced radially by the same amount, the 90!

symmetry is preserved for all gaps. At the same time, it is also
possible to displace them to break the symmetry, thus even-
tually introducing a gradient on-axis. The same development is
ongoing at the LCLS and the device is referred as a Delta II
(H.-D. Nuhn, private comunication).

1.1. Advantages and disadvantages of fix-gap operation

The new operational mode, now called energy mode, is
based on the parallel movement of two neighbouring arrays:
the two top arrays (1 and 2) against the two bottom arrays
(3 and 4) or the two left arrays (2 and 3) against the two right
arrays (1 and 4), as illustrated in Fig. 1. The lack of a gap drive
system to change the K-value increases cost effectiveness,
while decreasing design complexity and the weight of the
device. However, this comes with some drawbacks. The
experimental evidence of these limitations was measured at
the Swiss Light Source (Schmidt et al., 2013) and was
explained by the presence of a transversal K gradient. The
resonance condition, expressed in equation (1) below,

! ¼ !U

2"2
1þ K 2

2

! "
; ð1Þ

where !U is the undulator period length and " is the Lorenz
factor, gives the relation between K and the radiation wave-
length !. In standard operation it is not desired that the
radiation wavelength depends on the transverse position of
the beam because it reduces the intensity of the interference
peaks of the undulator spectrum. However, Schmidt’s work
highlighted for the first time the possibility to operate an
Apple undulator as a variable transverse gradient undulator
(TGU).

Recently, many authors have demonstrated that TGUs may
be useful for certain applications. They can be used to produce
FEL radiation with large energy spread beams generated in
laser-plasma accelerators (Huang et al., 2012). If the electron
energy is correlated to a transverse offset via dispersion and
a TGU is set such that the resonance condition expressed in
equation (1) is preserved for all the electrons, the performance
of the FEL radiation will significantly improve.

A TGU can also be employed to generate ultra-large
bandwidth radiation above the 10% level, which is needed for
selected applications such as crystallography and spectroscopy
(Prat et al., 2016). This will occur when the beam is presented
with a transverse tilt (correlation between the transverse and
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Figure 1
The four magnetic arrays of an Apple undulator are schematically
represented to highlight the basic topology involved in this undulator
concept: array pairs 1–2, 2–3, 3–4 and 4–1 are called neighbouring arrays,
while pairs 1–3 and 2–4 are called opposite arrays.

Figure 2
The different cross sections of Apple-type undulators in chronological
order. In the first row one can find the standard Apple cross sections,
starting with Apple I and II, which are designed for synchrotrons
operated with elliptical vacuum chambers, followed by Apple III for
linac-driven FELs. All three types are regularly equipped with a gap drive
system which is changing the distance between the upper and lower
arrays. In the second row there are the new cross sections called Delta
LEPP-CHESS and Delta, which are designed for linac-driven FELs
without a gap drive system. The last type is called Apple X (at the
SwissFEL project) or Delta II (at the LCLS project), where a new gap
drive system is moving an Apple III cross section in a way that both axis
symmetries and 90! symmetry are guaranteed.



Apple Undulators 

Page	  29	  

3. Estimation of the K-value and its gradient

Defining ! as the coefficient to convert the magnetic field
domain into the K domain,

! ¼ e"U

2#mc
¼ 0:9336 ½1=ðT cmÞ% "U; ð22Þ

where "U is the undulator period length, e and m represent the
charge and the mass of the electron, respectively, and c defines
the speed of light, it is practical to describe the vector

K ¼ !B̂B; ð23Þ

which simplifies the definition of K directly in the Fourier
space (there is no need to transform back to the z-axis
domain),

K 2 & K ' K( ¼ Kx

!! !!2þ Ky

!! !!2: ð24Þ

From equation (24) it is possible to estimate K for all oper-
ating modes as it is presented in x4. Continuing with the
estimation of the K gradient, the first step is the differentiation
of equation (24) both in x and y (for this intermediate step it is
simpler to go back to x and y components separately),

2K@xK ¼ @x Kx

!! !!2þ @x Ky

!! !!2;

2K@yK ¼ @y Kx

!! !!2þ @y Ky

!! !!2:
ð25Þ

Re-using the definition of the complex conjugate (zz( = jzj2),
expression (25) above can be further simplified, giving

@xK ¼ <ð@xKx!
(
x þ @xKy!

(
yÞ;

@yK ¼ <ð@yKx!
(
x þ @yKy!

(
yÞ;

ð26Þ

where C = K=K. To further summarize this important result, it
is possible to express it in matrix form in terms of the eval-
uated magnetic field. Noting that the Jacobian of K is
proportional to the Jacobian of B, as is inferred from (11), the
gradient of K can be finally expressed in the following
compact form,

rrrK ¼ ! ' < ĴJ ' C (
" #

; ð27Þ

or explicitly as a function of the magnetic field,

KrK ¼ !2 ' < ĴJ ' B̂B
($ %
: ð28Þ

The right-hand side of equation (28) can be written as a
function of the Z$ numbers,

ĴJ ' B̂B
(
¼ Zxx

@xB1x 0
0 @yB1y

& '
Z(B̂B

(
1 þ Zxy@xB1yEZ(B̂B

(
1; ð29Þ

as well as K,

K ¼ ! ZB̂B1 ' Z(B̂B
(
1

$ %1=2

: ð30Þ

In the symmetric case where @xB1x = @yB1y, equation (29)
simplifies to the following final expression,

ĴJ ' B̂B
(
¼ Zxx@xB1xIþ Zxy@xB1yE
" #

Z( ' B(1 : ð31Þ

4. Analysis of the operational modes

In this section, equations (24) and (27) are solved for the two
operational modes: parallel (%p) and antiparallel (% "pp). In both
cases, the equations are directly derived by also assuming an
energy shift (%e). The domain of %e 2 ½*#;#% is restricted to
simplify the formulas and to guarantee that all functions are
analytical, especially the gradient. From equations (24) and
(27) it is effortless to demonstrate that K and its gradient are
invariant with respect to an arbitrary phase, as it should be for
this calculation to become consistent with the evidence that
the properties of the undulator do not depend on its long-
itudinal location. Subsequently, this result will also be used
to simplify the phase shift definition, even when the shift
produces a net displacement of the undulator structure. On
the contrary, in a device which is installed on a beamline, it is
important to keep its longitudinal position fixed, in order to
prevent the actual source point from moving.

4.1. Apple I, II and III

In standard Apple undulators (I, II, III), only the symmetry
expressed in equation (4) is satisfied and usually B1y=B1x =
r > 1. Solving for equation (24) for the parallel operational
mode (elliptical light) using the following phase values for ’n,

’1 ¼ þ%e þ %p; ’2 ¼ þ%e;

’3 ¼ þ%p; ’4 ¼ 0;
ð32Þ

the K-value is equal to

K ¼ 2
ffiffiffi
2
p
!B̂B1 cos 1

2%e; ð33Þ

where

B̂B1 ¼ B̂B2
1x 1* cos %p

" #
þ B̂B2

1y 1þ cos%p

" #) *1=2
: ð34Þ

The K gradient can be obtained by solving equation (27).
Equation (35) shows the results for top–bottom shift,

@xK ¼ G0 sin 1
2%e sin%p;

@yK ¼ 0;
ð35Þ

where G0 = 2
ffiffiffi
2
p
!ðB̂B1x@xB̂B1x * B̂B1y@xB̂B1yÞ=B̂B1, while equation

(36) shows the results for the left–right shift,

@xK ¼ 0;

@yK ¼ G0 sin 1
2%e sin%p:

ð36Þ

The relative variation of K with respect to K is the actual
relevant parameter for some applications,

@xK

K
¼ G0

K0

tan 1
2%e sin%p; ð37Þ

where K0 = 2
ffiffiffi
2
p
!B̂B1. The condition to move from elliptical

polarization to circular polarization is jKxj = jKyj, which
corresponds to a phase

%p ¼ +%c ¼ +2 arctan r; ð38Þ

where the positive sign (+) indicates the anticlockwise circular
polarization and the negative sign (*) shows its clockwise
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Defining ! as the coefficient to convert the magnetic field
domain into the K domain,

! ¼ e"U

2#mc
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where "U is the undulator period length, e and m represent the
charge and the mass of the electron, respectively, and c defines
the speed of light, it is practical to describe the vector

K ¼ !B̂B; ð23Þ

which simplifies the definition of K directly in the Fourier
space (there is no need to transform back to the z-axis
domain),

K 2 & K ' K( ¼ Kx

!! !!2þ Ky

!! !!2: ð24Þ

From equation (24) it is possible to estimate K for all oper-
ating modes as it is presented in x4. Continuing with the
estimation of the K gradient, the first step is the differentiation
of equation (24) both in x and y (for this intermediate step it is
simpler to go back to x and y components separately),
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Re-using the definition of the complex conjugate (zz( = jzj2),
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where C = K=K. To further summarize this important result, it
is possible to express it in matrix form in terms of the eval-
uated magnetic field. Noting that the Jacobian of K is
proportional to the Jacobian of B, as is inferred from (11), the
gradient of K can be finally expressed in the following
compact form,
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or explicitly as a function of the magnetic field,

KrK ¼ !2 ' < ĴJ ' B̂B
($ %
: ð28Þ

The right-hand side of equation (28) can be written as a
function of the Z$ numbers,
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(
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as well as K,

K ¼ ! ZB̂B1 ' Z(B̂B
(
1

$ %1=2

: ð30Þ

In the symmetric case where @xB1x = @yB1y, equation (29)
simplifies to the following final expression,

ĴJ ' B̂B
(
¼ Zxx@xB1xIþ Zxy@xB1yE
" #

Z( ' B(1 : ð31Þ

4. Analysis of the operational modes

In this section, equations (24) and (27) are solved for the two
operational modes: parallel (%p) and antiparallel (% "pp). In both
cases, the equations are directly derived by also assuming an
energy shift (%e). The domain of %e 2 ½*#;#% is restricted to
simplify the formulas and to guarantee that all functions are
analytical, especially the gradient. From equations (24) and
(27) it is effortless to demonstrate that K and its gradient are
invariant with respect to an arbitrary phase, as it should be for
this calculation to become consistent with the evidence that
the properties of the undulator do not depend on its long-
itudinal location. Subsequently, this result will also be used
to simplify the phase shift definition, even when the shift
produces a net displacement of the undulator structure. On
the contrary, in a device which is installed on a beamline, it is
important to keep its longitudinal position fixed, in order to
prevent the actual source point from moving.

4.1. Apple I, II and III

In standard Apple undulators (I, II, III), only the symmetry
expressed in equation (4) is satisfied and usually B1y=B1x =
r > 1. Solving for equation (24) for the parallel operational
mode (elliptical light) using the following phase values for ’n,
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the K-value is equal to

K ¼ 2
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where

B̂B1 ¼ B̂B2
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þ B̂B2
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The K gradient can be obtained by solving equation (27).
Equation (35) shows the results for top–bottom shift,

@xK ¼ G0 sin 1
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@yK ¼ 0;
ð35Þ

where G0 = 2
ffiffiffi
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!ðB̂B1x@xB̂B1x * B̂B1y@xB̂B1yÞ=B̂B1, while equation

(36) shows the results for the left–right shift,

@xK ¼ 0;
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The relative variation of K with respect to K is the actual
relevant parameter for some applications,

@xK

K
¼ G0

K0

tan 1
2%e sin%p; ð37Þ

where K0 = 2
ffiffiffi
2
p
!B̂B1. The condition to move from elliptical

polarization to circular polarization is jKxj = jKyj, which
corresponds to a phase
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where the positive sign (+) indicates the anticlockwise circular
polarization and the negative sign (*) shows its clockwise
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Defining ! as the coefficient to convert the magnetic field
domain into the K domain,
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where "U is the undulator period length, e and m represent the
charge and the mass of the electron, respectively, and c defines
the speed of light, it is practical to describe the vector
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which simplifies the definition of K directly in the Fourier
space (there is no need to transform back to the z-axis
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From equation (24) it is possible to estimate K for all oper-
ating modes as it is presented in x4. Continuing with the
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of equation (24) both in x and y (for this intermediate step it is
simpler to go back to x and y components separately),
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where C = K=K. To further summarize this important result, it
is possible to express it in matrix form in terms of the eval-
uated magnetic field. Noting that the Jacobian of K is
proportional to the Jacobian of B, as is inferred from (11), the
gradient of K can be finally expressed in the following
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4. Analysis of the operational modes

In this section, equations (24) and (27) are solved for the two
operational modes: parallel (%p) and antiparallel (% "pp). In both
cases, the equations are directly derived by also assuming an
energy shift (%e). The domain of %e 2 ½*#;#% is restricted to
simplify the formulas and to guarantee that all functions are
analytical, especially the gradient. From equations (24) and
(27) it is effortless to demonstrate that K and its gradient are
invariant with respect to an arbitrary phase, as it should be for
this calculation to become consistent with the evidence that
the properties of the undulator do not depend on its long-
itudinal location. Subsequently, this result will also be used
to simplify the phase shift definition, even when the shift
produces a net displacement of the undulator structure. On
the contrary, in a device which is installed on a beamline, it is
important to keep its longitudinal position fixed, in order to
prevent the actual source point from moving.
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Equation (35) shows the results for top–bottom shift,

@xK ¼ G0 sin 1
2%e sin%p;

@yK ¼ 0;
ð35Þ

where G0 = 2
ffiffiffi
2
p
!ðB̂B1x@xB̂B1x * B̂B1y@xB̂B1yÞ=B̂B1, while equation

(36) shows the results for the left–right shift,

@xK ¼ 0;

@yK ¼ G0 sin 1
2%e sin%p:

ð36Þ

The relative variation of K with respect to K is the actual
relevant parameter for some applications,

@xK

K
¼ G0

K0

tan 1
2%e sin%p; ð37Þ

where K0 = 2
ffiffiffi
2
p
!B̂B1. The condition to move from elliptical

polarization to circular polarization is jKxj = jKyj, which
corresponds to a phase

%p ¼ +%c ¼ +2 arctan r; ð38Þ

where the positive sign (+) indicates the anticlockwise circular
polarization and the negative sign (*) shows its clockwise
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3. Estimation of the K-value and its gradient

Defining ! as the coefficient to convert the magnetic field
domain into the K domain,

! ¼ e"U

2#mc
¼ 0:9336 ½1=ðT cmÞ% "U; ð22Þ

where "U is the undulator period length, e and m represent the
charge and the mass of the electron, respectively, and c defines
the speed of light, it is practical to describe the vector

K ¼ !B̂B; ð23Þ

which simplifies the definition of K directly in the Fourier
space (there is no need to transform back to the z-axis
domain),

K 2 & K ' K( ¼ Kx

!! !!2þ Ky

!! !!2: ð24Þ

From equation (24) it is possible to estimate K for all oper-
ating modes as it is presented in x4. Continuing with the
estimation of the K gradient, the first step is the differentiation
of equation (24) both in x and y (for this intermediate step it is
simpler to go back to x and y components separately),

2K@xK ¼ @x Kx

!! !!2þ @x Ky

!! !!2;

2K@yK ¼ @y Kx

!! !!2þ @y Ky

!! !!2:
ð25Þ

Re-using the definition of the complex conjugate (zz( = jzj2),
expression (25) above can be further simplified, giving

@xK ¼ <ð@xKx!
(
x þ @xKy!

(
yÞ;

@yK ¼ <ð@yKx!
(
x þ @yKy!

(
yÞ;

ð26Þ

where C = K=K. To further summarize this important result, it
is possible to express it in matrix form in terms of the eval-
uated magnetic field. Noting that the Jacobian of K is
proportional to the Jacobian of B, as is inferred from (11), the
gradient of K can be finally expressed in the following
compact form,

rrrK ¼ ! ' < ĴJ ' C (
" #

; ð27Þ

or explicitly as a function of the magnetic field,

KrK ¼ !2 ' < ĴJ ' B̂B
($ %
: ð28Þ

The right-hand side of equation (28) can be written as a
function of the Z$ numbers,

ĴJ ' B̂B
(
¼ Zxx

@xB1x 0
0 @yB1y

& '
Z(B̂B

(
1 þ Zxy@xB1yEZ(B̂B

(
1; ð29Þ

as well as K,

K ¼ ! ZB̂B1 ' Z(B̂B
(
1

$ %1=2

: ð30Þ

In the symmetric case where @xB1x = @yB1y, equation (29)
simplifies to the following final expression,

ĴJ ' B̂B
(
¼ Zxx@xB1xIþ Zxy@xB1yE
" #

Z( ' B(1 : ð31Þ

4. Analysis of the operational modes

In this section, equations (24) and (27) are solved for the two
operational modes: parallel (%p) and antiparallel (% "pp). In both
cases, the equations are directly derived by also assuming an
energy shift (%e). The domain of %e 2 ½*#;#% is restricted to
simplify the formulas and to guarantee that all functions are
analytical, especially the gradient. From equations (24) and
(27) it is effortless to demonstrate that K and its gradient are
invariant with respect to an arbitrary phase, as it should be for
this calculation to become consistent with the evidence that
the properties of the undulator do not depend on its long-
itudinal location. Subsequently, this result will also be used
to simplify the phase shift definition, even when the shift
produces a net displacement of the undulator structure. On
the contrary, in a device which is installed on a beamline, it is
important to keep its longitudinal position fixed, in order to
prevent the actual source point from moving.

4.1. Apple I, II and III

In standard Apple undulators (I, II, III), only the symmetry
expressed in equation (4) is satisfied and usually B1y=B1x =
r > 1. Solving for equation (24) for the parallel operational
mode (elliptical light) using the following phase values for ’n,

’1 ¼ þ%e þ %p; ’2 ¼ þ%e;

’3 ¼ þ%p; ’4 ¼ 0;
ð32Þ

the K-value is equal to

K ¼ 2
ffiffiffi
2
p
!B̂B1 cos 1

2%e; ð33Þ

where

B̂B1 ¼ B̂B2
1x 1* cos %p

" #
þ B̂B2

1y 1þ cos%p

" #) *1=2
: ð34Þ

The K gradient can be obtained by solving equation (27).
Equation (35) shows the results for top–bottom shift,

@xK ¼ G0 sin 1
2%e sin%p;

@yK ¼ 0;
ð35Þ

where G0 = 2
ffiffiffi
2
p
!ðB̂B1x@xB̂B1x * B̂B1y@xB̂B1yÞ=B̂B1, while equation

(36) shows the results for the left–right shift,

@xK ¼ 0;

@yK ¼ G0 sin 1
2%e sin%p:

ð36Þ

The relative variation of K with respect to K is the actual
relevant parameter for some applications,

@xK

K
¼ G0

K0

tan 1
2%e sin%p; ð37Þ

where K0 = 2
ffiffiffi
2
p
!B̂B1. The condition to move from elliptical

polarization to circular polarization is jKxj = jKyj, which
corresponds to a phase

%p ¼ +%c ¼ +2 arctan r; ð38Þ

where the positive sign (+) indicates the anticlockwise circular
polarization and the negative sign (*) shows its clockwise
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Defining ! as the coefficient to convert the magnetic field
domain into the K domain,

! ¼ e"U

2#mc
¼ 0:9336 ½1=ðT cmÞ% "U; ð22Þ

where "U is the undulator period length, e and m represent the
charge and the mass of the electron, respectively, and c defines
the speed of light, it is practical to describe the vector

K ¼ !B̂B; ð23Þ

which simplifies the definition of K directly in the Fourier
space (there is no need to transform back to the z-axis
domain),
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From equation (24) it is possible to estimate K for all oper-
ating modes as it is presented in x4. Continuing with the
estimation of the K gradient, the first step is the differentiation
of equation (24) both in x and y (for this intermediate step it is
simpler to go back to x and y components separately),
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Re-using the definition of the complex conjugate (zz( = jzj2),
expression (25) above can be further simplified, giving
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where C = K=K. To further summarize this important result, it
is possible to express it in matrix form in terms of the eval-
uated magnetic field. Noting that the Jacobian of K is
proportional to the Jacobian of B, as is inferred from (11), the
gradient of K can be finally expressed in the following
compact form,

rrrK ¼ ! ' < ĴJ ' C (
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; ð27Þ

or explicitly as a function of the magnetic field,
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The right-hand side of equation (28) can be written as a
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as well as K,
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In the symmetric case where @xB1x = @yB1y, equation (29)
simplifies to the following final expression,
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4. Analysis of the operational modes

In this section, equations (24) and (27) are solved for the two
operational modes: parallel (%p) and antiparallel (% "pp). In both
cases, the equations are directly derived by also assuming an
energy shift (%e). The domain of %e 2 ½*#;#% is restricted to
simplify the formulas and to guarantee that all functions are
analytical, especially the gradient. From equations (24) and
(27) it is effortless to demonstrate that K and its gradient are
invariant with respect to an arbitrary phase, as it should be for
this calculation to become consistent with the evidence that
the properties of the undulator do not depend on its long-
itudinal location. Subsequently, this result will also be used
to simplify the phase shift definition, even when the shift
produces a net displacement of the undulator structure. On
the contrary, in a device which is installed on a beamline, it is
important to keep its longitudinal position fixed, in order to
prevent the actual source point from moving.

4.1. Apple I, II and III

In standard Apple undulators (I, II, III), only the symmetry
expressed in equation (4) is satisfied and usually B1y=B1x =
r > 1. Solving for equation (24) for the parallel operational
mode (elliptical light) using the following phase values for ’n,

’1 ¼ þ%e þ %p; ’2 ¼ þ%e;

’3 ¼ þ%p; ’4 ¼ 0;
ð32Þ

the K-value is equal to

K ¼ 2
ffiffiffi
2
p
!B̂B1 cos 1

2%e; ð33Þ

where

B̂B1 ¼ B̂B2
1x 1* cos %p

" #
þ B̂B2

1y 1þ cos%p
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The K gradient can be obtained by solving equation (27).
Equation (35) shows the results for top–bottom shift,

@xK ¼ G0 sin 1
2%e sin%p;

@yK ¼ 0;
ð35Þ

where G0 = 2
ffiffiffi
2
p
!ðB̂B1x@xB̂B1x * B̂B1y@xB̂B1yÞ=B̂B1, while equation

(36) shows the results for the left–right shift,

@xK ¼ 0;

@yK ¼ G0 sin 1
2%e sin%p:

ð36Þ

The relative variation of K with respect to K is the actual
relevant parameter for some applications,

@xK

K
¼ G0

K0

tan 1
2%e sin%p; ð37Þ

where K0 = 2
ffiffiffi
2
p
!B̂B1. The condition to move from elliptical

polarization to circular polarization is jKxj = jKyj, which
corresponds to a phase

%p ¼ +%c ¼ +2 arctan r; ð38Þ

where the positive sign (+) indicates the anticlockwise circular
polarization and the negative sign (*) shows its clockwise
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as a function of the Jacobian of the first-term array,

ĴJ1 ¼
@xB̂B1x @yB̂B1x

@xB̂B1y @yB̂B1y

" #

: ð9Þ

For the purpose of this publication, the main interest is
focused on the field properties on the undulator axis, i.e. for
X = ð0; 0Þ. To further simplify the notation, all functions
without explicit xy-plane dependence must be assumed to be
evaluated on the axis from this point onwards. Following this
rule, equations (7) and (8), respectively, become

B̂B ¼
P4

n¼ 1

exp i!nð ÞRn

! "
$ B̂B1 ð10Þ

and

ĴJ ¼
P4

n¼ 1

exp i!nð ÞRn $ ĴJ1 $ R%1
n : ð11Þ

The components of B̂B1 and ĴJ1 are assumed to be real numbers
for the remainder of the paper. Since the average row phase is
arbitrary, it will not affect the final results. Hence, it can be
equated to zero for the sake of convenience.

Using the following change of variables,

’1 ¼ !1; ’2 ¼ !2; ’3 ¼ !3 þ "; ’4 ¼ !4 þ "; ð12Þ

the linear horizontal polarization (pure vertical field) is
recovered when ’1 = ’2 = ’3 = ’4 = 0, which is the config-
uration where all arrays are traditionally considered at zero
mechanical position, i.e. zero shift position. Defining the
following auxiliary Z#ð’1; ’2; ’3; ’4Þ functions,

Zx ¼ exp i’1ð Þ % exp i’2ð Þ þ exp i’3ð Þ % exp i’4ð Þ;
Zy ¼ exp i’1ð Þ þ exp i’2ð Þ þ exp i’3ð Þ þ exp i’4ð Þ;

Zxx ¼ exp i’1ð Þ þ exp i’2ð Þ % exp i’3ð Þ % exp i’4ð Þ;
Zxy ¼ exp i’1ð Þ % exp i’2ð Þ % exp i’3ð Þ þ exp i’4ð Þ;

ð13Þ

it is possible to write equations (10) and (11) in the following
explicit forms,

B̂B ¼ Zx 0
0 Zy

! "
B̂B1 ¼ Z $ B̂B1; ð14Þ

ĴJ ¼ Zxx
@xB̂B1x 0

0 @yB̂B1y

! "
þ Zxy@xB̂B1y

0 1
1 0

! "
; ð15Þ

and for the highly symmetric case (relevant for later discus-
sion), where @xB̂B1x = @yB̂B1y, the Jacobian is simplified to the
following expression,

ĴJ ¼ Zxx@xB̂B1xIþ Zxy@xB̂B1yE; ð16Þ

where I and E are, respectively, the identity and exchange
matrix of rank 2. To summarize, there are four complex
numbers which fully describe the status of the magnetic system
in the neighbourhood of the undulator axis, and depend on the
relative phase of the four arrays. Each Z# is the sum of four
complex numbers  #n (note that j j = 1) representing the
status of the array,

Z# ¼
P4

n¼ 1

 #
n : ð17Þ

As a bookkeeping device, it is convenient to define the
following matrix,

W ¼ ff #
n

# $
; ð18Þ

where the phase of each complex number is explicitly saved.
To be more specific, an application for equation (18) for linear
horizontal polarization is shown in equation (19) below,

n¼ 1 2 3 4

# # # #
#¼ x ! 0 " 0 " ! Bx

y ! 0 0 0 0 ! By
xx ! 0 0 " " ! @xBx; @yBy
xy ! 0 " " 0 ! @xBy

ð19Þ

where each column represents one magnetic array and each
row shows a specific property of the magnetic field. For
instance, the first line represents the phases of the four
complex numbers defining the x component of the magnetic
field. In this matrix representation, a shift of a magnetic array
is equivalent to the addition of the same phase to the column
corresponding to the magnetic array. Following this pattern,
the elliptical polarization (parallel operational mode, p) and
the linear inclined polarization (antiparallel operational mode,
!pp) are, respectively, summarized by the following matrices,

!p !p

# #
0 " 0 "
0 0 0 0
0 0 " "
0 " " 0

;

! !pp

#
0 " 0 "
0 0 0 0
0 0 " "
0 " " 0

"
%! !pp

; ð20Þ

while the energy shift modes (mandatory modes for fixed-gap
devices to set the K-value and change the photon energy) are
represented by the following matrices, for the top–bottom
mode (arrays 1 and 2) and for the left–right mode (arrays 2
and 3), respectively (as seen in Fig. 1),

!e !e

# #
0 " 0 "
0 0 0 0
0 0 " "
0 " " 0

;

!e !e

# #
0 " 0 "
0 0 0 0
0 0 " "
0 " " 0

: ð21Þ

Knowing the magnetic field and its gradient is the first step
towards a correct understanding of the electron dynamic along
the undulator axis. A detailed study of the actual orbit is
beyond the scope of this paper. During this investigation, the
electrons are assumed to wiggle in a parallel and closed
fashion (i.e. in the neighbourhood) to the undulator axis. In
the following section, the undulator K and its gradient are
estimated by starting with the results and assumptions
presented in x2.
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For the purpose of this publication, the main interest is
focused on the field properties on the undulator axis, i.e. for
X = ð0; 0Þ. To further simplify the notation, all functions
without explicit xy-plane dependence must be assumed to be
evaluated on the axis from this point onwards. Following this
rule, equations (7) and (8), respectively, become
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and

ĴJ ¼
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The components of B̂B1 and ĴJ1 are assumed to be real numbers
for the remainder of the paper. Since the average row phase is
arbitrary, it will not affect the final results. Hence, it can be
equated to zero for the sake of convenience.

Using the following change of variables,

’1 ¼ !1; ’2 ¼ !2; ’3 ¼ !3 þ "; ’4 ¼ !4 þ "; ð12Þ

the linear horizontal polarization (pure vertical field) is
recovered when ’1 = ’2 = ’3 = ’4 = 0, which is the config-
uration where all arrays are traditionally considered at zero
mechanical position, i.e. zero shift position. Defining the
following auxiliary Z#ð’1; ’2; ’3; ’4Þ functions,
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ð13Þ

it is possible to write equations (10) and (11) in the following
explicit forms,
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B̂B1 ¼ Z $ B̂B1; ð14Þ

ĴJ ¼ Zxx
@xB̂B1x 0

0 @yB̂B1y
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0 1
1 0
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and for the highly symmetric case (relevant for later discus-
sion), where @xB̂B1x = @yB̂B1y, the Jacobian is simplified to the
following expression,

ĴJ ¼ Zxx@xB̂B1xIþ Zxy@xB̂B1yE; ð16Þ

where I and E are, respectively, the identity and exchange
matrix of rank 2. To summarize, there are four complex
numbers which fully describe the status of the magnetic system
in the neighbourhood of the undulator axis, and depend on the
relative phase of the four arrays. Each Z# is the sum of four
complex numbers  #n (note that j j = 1) representing the
status of the array,

Z# ¼
P4

n¼ 1
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n : ð17Þ

As a bookkeeping device, it is convenient to define the
following matrix,

W ¼ ff #
n
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; ð18Þ

where the phase of each complex number is explicitly saved.
To be more specific, an application for equation (18) for linear
horizontal polarization is shown in equation (19) below,

n¼ 1 2 3 4

# # # #
#¼ x ! 0 " 0 " ! Bx

y ! 0 0 0 0 ! By
xx ! 0 0 " " ! @xBx; @yBy
xy ! 0 " " 0 ! @xBy

ð19Þ

where each column represents one magnetic array and each
row shows a specific property of the magnetic field. For
instance, the first line represents the phases of the four
complex numbers defining the x component of the magnetic
field. In this matrix representation, a shift of a magnetic array
is equivalent to the addition of the same phase to the column
corresponding to the magnetic array. Following this pattern,
the elliptical polarization (parallel operational mode, p) and
the linear inclined polarization (antiparallel operational mode,
!pp) are, respectively, summarized by the following matrices,

!p !p

# #
0 " 0 "
0 0 0 0
0 0 " "
0 " " 0

;
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; ð20Þ

while the energy shift modes (mandatory modes for fixed-gap
devices to set the K-value and change the photon energy) are
represented by the following matrices, for the top–bottom
mode (arrays 1 and 2) and for the left–right mode (arrays 2
and 3), respectively (as seen in Fig. 1),
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# #
0 " 0 "
0 0 0 0
0 0 " "
0 " " 0

;

!e !e

# #
0 " 0 "
0 0 0 0
0 0 " "
0 " " 0
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Knowing the magnetic field and its gradient is the first step
towards a correct understanding of the electron dynamic along
the undulator axis. A detailed study of the actual orbit is
beyond the scope of this paper. During this investigation, the
electrons are assumed to wiggle in a parallel and closed
fashion (i.e. in the neighbourhood) to the undulator axis. In
the following section, the undulator K and its gradient are
estimated by starting with the results and assumptions
presented in x2.
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3. Estimation of the K-value and its gradient

Defining ! as the coefficient to convert the magnetic field
domain into the K domain,

! ¼ e"U

2#mc
¼ 0:9336 ½1=ðT cmÞ% "U; ð22Þ

where "U is the undulator period length, e and m represent the
charge and the mass of the electron, respectively, and c defines
the speed of light, it is practical to describe the vector

K ¼ !B̂B; ð23Þ

which simplifies the definition of K directly in the Fourier
space (there is no need to transform back to the z-axis
domain),

K 2 & K ' K( ¼ Kx

!! !!2þ Ky

!! !!2: ð24Þ

From equation (24) it is possible to estimate K for all oper-
ating modes as it is presented in x4. Continuing with the
estimation of the K gradient, the first step is the differentiation
of equation (24) both in x and y (for this intermediate step it is
simpler to go back to x and y components separately),

2K@xK ¼ @x Kx

!! !!2þ @x Ky

!! !!2;

2K@yK ¼ @y Kx

!! !!2þ @y Ky

!! !!2:
ð25Þ

Re-using the definition of the complex conjugate (zz( = jzj2),
expression (25) above can be further simplified, giving

@xK ¼ <ð@xKx!
(
x þ @xKy!

(
yÞ;

@yK ¼ <ð@yKx!
(
x þ @yKy!

(
yÞ;

ð26Þ

where C = K=K. To further summarize this important result, it
is possible to express it in matrix form in terms of the eval-
uated magnetic field. Noting that the Jacobian of K is
proportional to the Jacobian of B, as is inferred from (11), the
gradient of K can be finally expressed in the following
compact form,

rrrK ¼ ! ' < ĴJ ' C (
" #

; ð27Þ

or explicitly as a function of the magnetic field,

KrK ¼ !2 ' < ĴJ ' B̂B
($ %
: ð28Þ

The right-hand side of equation (28) can be written as a
function of the Z$ numbers,

ĴJ ' B̂B
(
¼ Zxx

@xB1x 0
0 @yB1y

& '
Z(B̂B

(
1 þ Zxy@xB1yEZ(B̂B

(
1; ð29Þ

as well as K,

K ¼ ! ZB̂B1 ' Z(B̂B
(
1

$ %1=2

: ð30Þ

In the symmetric case where @xB1x = @yB1y, equation (29)
simplifies to the following final expression,

ĴJ ' B̂B
(
¼ Zxx@xB1xIþ Zxy@xB1yE
" #

Z( ' B(1 : ð31Þ

4. Analysis of the operational modes

In this section, equations (24) and (27) are solved for the two
operational modes: parallel (%p) and antiparallel (% "pp). In both
cases, the equations are directly derived by also assuming an
energy shift (%e). The domain of %e 2 ½*#;#% is restricted to
simplify the formulas and to guarantee that all functions are
analytical, especially the gradient. From equations (24) and
(27) it is effortless to demonstrate that K and its gradient are
invariant with respect to an arbitrary phase, as it should be for
this calculation to become consistent with the evidence that
the properties of the undulator do not depend on its long-
itudinal location. Subsequently, this result will also be used
to simplify the phase shift definition, even when the shift
produces a net displacement of the undulator structure. On
the contrary, in a device which is installed on a beamline, it is
important to keep its longitudinal position fixed, in order to
prevent the actual source point from moving.

4.1. Apple I, II and III

In standard Apple undulators (I, II, III), only the symmetry
expressed in equation (4) is satisfied and usually B1y=B1x =
r > 1. Solving for equation (24) for the parallel operational
mode (elliptical light) using the following phase values for ’n,

’1 ¼ þ%e þ %p; ’2 ¼ þ%e;

’3 ¼ þ%p; ’4 ¼ 0;
ð32Þ

the K-value is equal to

K ¼ 2
ffiffiffi
2
p
!B̂B1 cos 1

2%e; ð33Þ

where

B̂B1 ¼ B̂B2
1x 1* cos %p

" #
þ B̂B2

1y 1þ cos%p

" #) *1=2
: ð34Þ

The K gradient can be obtained by solving equation (27).
Equation (35) shows the results for top–bottom shift,

@xK ¼ G0 sin 1
2%e sin%p;

@yK ¼ 0;
ð35Þ

where G0 = 2
ffiffiffi
2
p
!ðB̂B1x@xB̂B1x * B̂B1y@xB̂B1yÞ=B̂B1, while equation

(36) shows the results for the left–right shift,

@xK ¼ 0;

@yK ¼ G0 sin 1
2%e sin%p:

ð36Þ

The relative variation of K with respect to K is the actual
relevant parameter for some applications,

@xK

K
¼ G0

K0

tan 1
2%e sin%p; ð37Þ

where K0 = 2
ffiffiffi
2
p
!B̂B1. The condition to move from elliptical

polarization to circular polarization is jKxj = jKyj, which
corresponds to a phase

%p ¼ +%c ¼ +2 arctan r; ð38Þ

where the positive sign (+) indicates the anticlockwise circular
polarization and the negative sign (*) shows its clockwise
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3. Estimation of the K-value and its gradient

Defining ! as the coefficient to convert the magnetic field
domain into the K domain,

! ¼ e"U

2#mc
¼ 0:9336 ½1=ðT cmÞ% "U; ð22Þ

where "U is the undulator period length, e and m represent the
charge and the mass of the electron, respectively, and c defines
the speed of light, it is practical to describe the vector

K ¼ !B̂B; ð23Þ

which simplifies the definition of K directly in the Fourier
space (there is no need to transform back to the z-axis
domain),

K 2 & K ' K( ¼ Kx

!! !!2þ Ky

!! !!2: ð24Þ

From equation (24) it is possible to estimate K for all oper-
ating modes as it is presented in x4. Continuing with the
estimation of the K gradient, the first step is the differentiation
of equation (24) both in x and y (for this intermediate step it is
simpler to go back to x and y components separately),

2K@xK ¼ @x Kx

!! !!2þ @x Ky

!! !!2;

2K@yK ¼ @y Kx

!! !!2þ @y Ky

!! !!2:
ð25Þ

Re-using the definition of the complex conjugate (zz( = jzj2),
expression (25) above can be further simplified, giving

@xK ¼ <ð@xKx!
(
x þ @xKy!

(
yÞ;

@yK ¼ <ð@yKx!
(
x þ @yKy!

(
yÞ;

ð26Þ

where C = K=K. To further summarize this important result, it
is possible to express it in matrix form in terms of the eval-
uated magnetic field. Noting that the Jacobian of K is
proportional to the Jacobian of B, as is inferred from (11), the
gradient of K can be finally expressed in the following
compact form,

rrrK ¼ ! ' < ĴJ ' C (
" #

; ð27Þ

or explicitly as a function of the magnetic field,

KrK ¼ !2 ' < ĴJ ' B̂B
($ %
: ð28Þ

The right-hand side of equation (28) can be written as a
function of the Z$ numbers,

ĴJ ' B̂B
(
¼ Zxx

@xB1x 0
0 @yB1y

& '
Z(B̂B

(
1 þ Zxy@xB1yEZ(B̂B

(
1; ð29Þ

as well as K,

K ¼ ! ZB̂B1 ' Z(B̂B
(
1

$ %1=2

: ð30Þ

In the symmetric case where @xB1x = @yB1y, equation (29)
simplifies to the following final expression,

ĴJ ' B̂B
(
¼ Zxx@xB1xIþ Zxy@xB1yE
" #

Z( ' B(1 : ð31Þ

4. Analysis of the operational modes

In this section, equations (24) and (27) are solved for the two
operational modes: parallel (%p) and antiparallel (% "pp). In both
cases, the equations are directly derived by also assuming an
energy shift (%e). The domain of %e 2 ½*#;#% is restricted to
simplify the formulas and to guarantee that all functions are
analytical, especially the gradient. From equations (24) and
(27) it is effortless to demonstrate that K and its gradient are
invariant with respect to an arbitrary phase, as it should be for
this calculation to become consistent with the evidence that
the properties of the undulator do not depend on its long-
itudinal location. Subsequently, this result will also be used
to simplify the phase shift definition, even when the shift
produces a net displacement of the undulator structure. On
the contrary, in a device which is installed on a beamline, it is
important to keep its longitudinal position fixed, in order to
prevent the actual source point from moving.

4.1. Apple I, II and III

In standard Apple undulators (I, II, III), only the symmetry
expressed in equation (4) is satisfied and usually B1y=B1x =
r > 1. Solving for equation (24) for the parallel operational
mode (elliptical light) using the following phase values for ’n,

’1 ¼ þ%e þ %p; ’2 ¼ þ%e;

’3 ¼ þ%p; ’4 ¼ 0;
ð32Þ

the K-value is equal to

K ¼ 2
ffiffiffi
2
p
!B̂B1 cos 1

2%e; ð33Þ

where

B̂B1 ¼ B̂B2
1x 1* cos %p

" #
þ B̂B2

1y 1þ cos%p

" #) *1=2
: ð34Þ

The K gradient can be obtained by solving equation (27).
Equation (35) shows the results for top–bottom shift,

@xK ¼ G0 sin 1
2%e sin%p;

@yK ¼ 0;
ð35Þ

where G0 = 2
ffiffiffi
2
p
!ðB̂B1x@xB̂B1x * B̂B1y@xB̂B1yÞ=B̂B1, while equation

(36) shows the results for the left–right shift,

@xK ¼ 0;

@yK ¼ G0 sin 1
2%e sin%p:

ð36Þ

The relative variation of K with respect to K is the actual
relevant parameter for some applications,

@xK

K
¼ G0

K0

tan 1
2%e sin%p; ð37Þ

where K0 = 2
ffiffiffi
2
p
!B̂B1. The condition to move from elliptical

polarization to circular polarization is jKxj = jKyj, which
corresponds to a phase

%p ¼ +%c ¼ +2 arctan r; ð38Þ

where the positive sign (+) indicates the anticlockwise circular
polarization and the negative sign (*) shows its clockwise
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The	  K	  and	  its	  gradient	  for	  a	  generic	  Apple	  undulator	  in	  
ellipJcal	  polarisaJon	  configuraJon:	  

Since an Apple undulator with four independent arrays no
longer requires a gap drive system to set a different K-value
(Carr, 1991), the implementation of novel devices was trig-
gered. The first of these undulators was developed at the Swiss
Light Source (Schmidt et al., 2007): the device had an Apple II
cross section, no gap drive system (fixed gap) and four inde-
pendent arrays. Recently a new type of device, called Delta
LEPP-CHESS due to the specific shape of its magnets
(Temnykh, 2008), was proposed. Its cross section not only
satisfies the usual axis (x and y) symmetry but also the 90!

rotational symmetry which simplifies the operation. This
device is based on the same operational principles as the
previous fixed-gap undulator type but with a cross section
rotated by 45!, as seen in Fig. 2. This device has now been
adopted as an afterburner at the Linac Coherent Light Source
(LCLS) facility but with the cross section rotated back to the
original symmetry. It is now referred to as Delta (Nuhn et al.,
2015). In 2016 the Apple X was proposed at the Paul Scherrer
Institute for the soft X-ray line of the SwissFEL. It consists of
a Delta cross section where the four arrays can be indepen-
dently displaced both longitudinally and radially. If the four
arrays are displaced radially by the same amount, the 90!

symmetry is preserved for all gaps. At the same time, it is also
possible to displace them to break the symmetry, thus even-
tually introducing a gradient on-axis. The same development is
ongoing at the LCLS and the device is referred as a Delta II
(H.-D. Nuhn, private comunication).

1.1. Advantages and disadvantages of fix-gap operation

The new operational mode, now called energy mode, is
based on the parallel movement of two neighbouring arrays:
the two top arrays (1 and 2) against the two bottom arrays
(3 and 4) or the two left arrays (2 and 3) against the two right
arrays (1 and 4), as illustrated in Fig. 1. The lack of a gap drive
system to change the K-value increases cost effectiveness,
while decreasing design complexity and the weight of the
device. However, this comes with some drawbacks. The
experimental evidence of these limitations was measured at
the Swiss Light Source (Schmidt et al., 2013) and was
explained by the presence of a transversal K gradient. The
resonance condition, expressed in equation (1) below,

! ¼ !U

2"2
1þ K 2

2

! "
; ð1Þ

where !U is the undulator period length and " is the Lorenz
factor, gives the relation between K and the radiation wave-
length !. In standard operation it is not desired that the
radiation wavelength depends on the transverse position of
the beam because it reduces the intensity of the interference
peaks of the undulator spectrum. However, Schmidt’s work
highlighted for the first time the possibility to operate an
Apple undulator as a variable transverse gradient undulator
(TGU).

Recently, many authors have demonstrated that TGUs may
be useful for certain applications. They can be used to produce
FEL radiation with large energy spread beams generated in
laser-plasma accelerators (Huang et al., 2012). If the electron
energy is correlated to a transverse offset via dispersion and
a TGU is set such that the resonance condition expressed in
equation (1) is preserved for all the electrons, the performance
of the FEL radiation will significantly improve.

A TGU can also be employed to generate ultra-large
bandwidth radiation above the 10% level, which is needed for
selected applications such as crystallography and spectroscopy
(Prat et al., 2016). This will occur when the beam is presented
with a transverse tilt (correlation between the transverse and
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Figure 1
The four magnetic arrays of an Apple undulator are schematically
represented to highlight the basic topology involved in this undulator
concept: array pairs 1–2, 2–3, 3–4 and 4–1 are called neighbouring arrays,
while pairs 1–3 and 2–4 are called opposite arrays.

Figure 2
The different cross sections of Apple-type undulators in chronological
order. In the first row one can find the standard Apple cross sections,
starting with Apple I and II, which are designed for synchrotrons
operated with elliptical vacuum chambers, followed by Apple III for
linac-driven FELs. All three types are regularly equipped with a gap drive
system which is changing the distance between the upper and lower
arrays. In the second row there are the new cross sections called Delta
LEPP-CHESS and Delta, which are designed for linac-driven FELs
without a gap drive system. The last type is called Apple X (at the
SwissFEL project) or Delta II (at the LCLS project), where a new gap
drive system is moving an Apple III cross section in a way that both axis
symmetries and 90! symmetry are guaranteed.

3. Estimation of the K-value and its gradient

Defining ! as the coefficient to convert the magnetic field
domain into the K domain,

! ¼ e"U

2#mc
¼ 0:9336 ½1=ðT cmÞ% "U; ð22Þ

where "U is the undulator period length, e and m represent the
charge and the mass of the electron, respectively, and c defines
the speed of light, it is practical to describe the vector

K ¼ !B̂B; ð23Þ

which simplifies the definition of K directly in the Fourier
space (there is no need to transform back to the z-axis
domain),

K 2 & K ' K( ¼ Kx

!! !!2þ Ky

!! !!2: ð24Þ

From equation (24) it is possible to estimate K for all oper-
ating modes as it is presented in x4. Continuing with the
estimation of the K gradient, the first step is the differentiation
of equation (24) both in x and y (for this intermediate step it is
simpler to go back to x and y components separately),

2K@xK ¼ @x Kx

!! !!2þ @x Ky

!! !!2;

2K@yK ¼ @y Kx

!! !!2þ @y Ky

!! !!2:
ð25Þ

Re-using the definition of the complex conjugate (zz( = jzj2),
expression (25) above can be further simplified, giving

@xK ¼ <ð@xKx!
(
x þ @xKy!

(
yÞ;

@yK ¼ <ð@yKx!
(
x þ @yKy!

(
yÞ;

ð26Þ

where C = K=K. To further summarize this important result, it
is possible to express it in matrix form in terms of the eval-
uated magnetic field. Noting that the Jacobian of K is
proportional to the Jacobian of B, as is inferred from (11), the
gradient of K can be finally expressed in the following
compact form,

rrrK ¼ ! ' < ĴJ ' C (
" #

; ð27Þ

or explicitly as a function of the magnetic field,

KrK ¼ !2 ' < ĴJ ' B̂B
($ %
: ð28Þ

The right-hand side of equation (28) can be written as a
function of the Z$ numbers,

ĴJ ' B̂B
(
¼ Zxx

@xB1x 0
0 @yB1y

& '
Z(B̂B

(
1 þ Zxy@xB1yEZ(B̂B

(
1; ð29Þ

as well as K,

K ¼ ! ZB̂B1 ' Z(B̂B
(
1

$ %1=2

: ð30Þ

In the symmetric case where @xB1x = @yB1y, equation (29)
simplifies to the following final expression,

ĴJ ' B̂B
(
¼ Zxx@xB1xIþ Zxy@xB1yE
" #

Z( ' B(1 : ð31Þ

4. Analysis of the operational modes

In this section, equations (24) and (27) are solved for the two
operational modes: parallel (%p) and antiparallel (% "pp). In both
cases, the equations are directly derived by also assuming an
energy shift (%e). The domain of %e 2 ½*#;#% is restricted to
simplify the formulas and to guarantee that all functions are
analytical, especially the gradient. From equations (24) and
(27) it is effortless to demonstrate that K and its gradient are
invariant with respect to an arbitrary phase, as it should be for
this calculation to become consistent with the evidence that
the properties of the undulator do not depend on its long-
itudinal location. Subsequently, this result will also be used
to simplify the phase shift definition, even when the shift
produces a net displacement of the undulator structure. On
the contrary, in a device which is installed on a beamline, it is
important to keep its longitudinal position fixed, in order to
prevent the actual source point from moving.

4.1. Apple I, II and III

In standard Apple undulators (I, II, III), only the symmetry
expressed in equation (4) is satisfied and usually B1y=B1x =
r > 1. Solving for equation (24) for the parallel operational
mode (elliptical light) using the following phase values for ’n,

’1 ¼ þ%e þ %p; ’2 ¼ þ%e;

’3 ¼ þ%p; ’4 ¼ 0;
ð32Þ

the K-value is equal to

K ¼ 2
ffiffiffi
2
p
!B̂B1 cos 1

2%e; ð33Þ

where

B̂B1 ¼ B̂B2
1x 1* cos %p

" #
þ B̂B2

1y 1þ cos%p

" #) *1=2
: ð34Þ

The K gradient can be obtained by solving equation (27).
Equation (35) shows the results for top–bottom shift,

@xK ¼ G0 sin 1
2%e sin%p;

@yK ¼ 0;
ð35Þ

where G0 = 2
ffiffiffi
2
p
!ðB̂B1x@xB̂B1x * B̂B1y@xB̂B1yÞ=B̂B1, while equation

(36) shows the results for the left–right shift,

@xK ¼ 0;

@yK ¼ G0 sin 1
2%e sin%p:

ð36Þ

The relative variation of K with respect to K is the actual
relevant parameter for some applications,

@xK

K
¼ G0

K0

tan 1
2%e sin%p; ð37Þ

where K0 = 2
ffiffiffi
2
p
!B̂B1. The condition to move from elliptical

polarization to circular polarization is jKxj = jKyj, which
corresponds to a phase

%p ¼ +%c ¼ +2 arctan r; ð38Þ

where the positive sign (+) indicates the anticlockwise circular
polarization and the negative sign (*) shows its clockwise
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3. Estimation of the K-value and its gradient

Defining ! as the coefficient to convert the magnetic field
domain into the K domain,

! ¼ e"U

2#mc
¼ 0:9336 ½1=ðT cmÞ% "U; ð22Þ

where "U is the undulator period length, e and m represent the
charge and the mass of the electron, respectively, and c defines
the speed of light, it is practical to describe the vector

K ¼ !B̂B; ð23Þ

which simplifies the definition of K directly in the Fourier
space (there is no need to transform back to the z-axis
domain),

K 2 & K ' K( ¼ Kx

!! !!2þ Ky

!! !!2: ð24Þ

From equation (24) it is possible to estimate K for all oper-
ating modes as it is presented in x4. Continuing with the
estimation of the K gradient, the first step is the differentiation
of equation (24) both in x and y (for this intermediate step it is
simpler to go back to x and y components separately),

2K@xK ¼ @x Kx

!! !!2þ @x Ky

!! !!2;

2K@yK ¼ @y Kx

!! !!2þ @y Ky

!! !!2:
ð25Þ

Re-using the definition of the complex conjugate (zz( = jzj2),
expression (25) above can be further simplified, giving

@xK ¼ <ð@xKx!
(
x þ @xKy!

(
yÞ;

@yK ¼ <ð@yKx!
(
x þ @yKy!

(
yÞ;

ð26Þ

where C = K=K. To further summarize this important result, it
is possible to express it in matrix form in terms of the eval-
uated magnetic field. Noting that the Jacobian of K is
proportional to the Jacobian of B, as is inferred from (11), the
gradient of K can be finally expressed in the following
compact form,

rrrK ¼ ! ' < ĴJ ' C (
" #

; ð27Þ

or explicitly as a function of the magnetic field,

KrK ¼ !2 ' < ĴJ ' B̂B
($ %
: ð28Þ

The right-hand side of equation (28) can be written as a
function of the Z$ numbers,

ĴJ ' B̂B
(
¼ Zxx

@xB1x 0
0 @yB1y

& '
Z(B̂B

(
1 þ Zxy@xB1yEZ(B̂B

(
1; ð29Þ

as well as K,

K ¼ ! ZB̂B1 ' Z(B̂B
(
1

$ %1=2

: ð30Þ

In the symmetric case where @xB1x = @yB1y, equation (29)
simplifies to the following final expression,

ĴJ ' B̂B
(
¼ Zxx@xB1xIþ Zxy@xB1yE
" #

Z( ' B(1 : ð31Þ

4. Analysis of the operational modes

In this section, equations (24) and (27) are solved for the two
operational modes: parallel (%p) and antiparallel (% "pp). In both
cases, the equations are directly derived by also assuming an
energy shift (%e). The domain of %e 2 ½*#;#% is restricted to
simplify the formulas and to guarantee that all functions are
analytical, especially the gradient. From equations (24) and
(27) it is effortless to demonstrate that K and its gradient are
invariant with respect to an arbitrary phase, as it should be for
this calculation to become consistent with the evidence that
the properties of the undulator do not depend on its long-
itudinal location. Subsequently, this result will also be used
to simplify the phase shift definition, even when the shift
produces a net displacement of the undulator structure. On
the contrary, in a device which is installed on a beamline, it is
important to keep its longitudinal position fixed, in order to
prevent the actual source point from moving.

4.1. Apple I, II and III

In standard Apple undulators (I, II, III), only the symmetry
expressed in equation (4) is satisfied and usually B1y=B1x =
r > 1. Solving for equation (24) for the parallel operational
mode (elliptical light) using the following phase values for ’n,

’1 ¼ þ%e þ %p; ’2 ¼ þ%e;

’3 ¼ þ%p; ’4 ¼ 0;
ð32Þ

the K-value is equal to

K ¼ 2
ffiffiffi
2
p
!B̂B1 cos 1

2%e; ð33Þ

where

B̂B1 ¼ B̂B2
1x 1* cos %p

" #
þ B̂B2

1y 1þ cos%p

" #) *1=2
: ð34Þ

The K gradient can be obtained by solving equation (27).
Equation (35) shows the results for top–bottom shift,

@xK ¼ G0 sin 1
2%e sin%p;

@yK ¼ 0;
ð35Þ

where G0 = 2
ffiffiffi
2
p
!ðB̂B1x@xB̂B1x * B̂B1y@xB̂B1yÞ=B̂B1, while equation

(36) shows the results for the left–right shift,

@xK ¼ 0;

@yK ¼ G0 sin 1
2%e sin%p:

ð36Þ

The relative variation of K with respect to K is the actual
relevant parameter for some applications,

@xK

K
¼ G0

K0

tan 1
2%e sin%p; ð37Þ

where K0 = 2
ffiffiffi
2
p
!B̂B1. The condition to move from elliptical

polarization to circular polarization is jKxj = jKyj, which
corresponds to a phase

%p ¼ +%c ¼ +2 arctan r; ð38Þ

where the positive sign (+) indicates the anticlockwise circular
polarization and the negative sign (*) shows its clockwise
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small deviations (the analytical approximation underestimates
the gradient) are due mainly to the nonlinearity of the
magnetic material which has been neglected and not to the
single harmonic approximation.

It is also important to study the behaviour of the function in
the neighbourhood of K = 0. From the definition of K in
equation (24), it is already clear that the gradient must be zero
when K is zero and a smooth transition is expected while
approaching this value but this is not present in the analytical
approximation.

In Fig. 7, a simulation is presented for a gap of 3.0 mm with
a finer mesh of K. Depending on the definition of the

numerical derivative (in the specific example the calculations
are made with !x equal to 0.1 mm and 2.0 mm), it is possible
to estimate the transition to zero. For the applications it is
important to estimate the extension of the linear region where
the gradient is correctly approximating the field profile. From
the example there is a clear difference between the region of
0.1 mm, where the analytical approximation very accurately
describes the value of gradient almost down to K = 0, and the
region of 2 mm, where the analytical approximation already
fails below K = 1.

6. Conclusions

In Apple undulators it is mandatory to implement a gap drive
system to decouple K from its gradient. The possibility to
independently introduce a K gradient both in the x- and in the
y-plane gives rise to the possibility of developing novel oper-
ating modes in synchrotron and FEL facilities. The imple-
mentation of fixed-gap devices has to be evaluated to fit the
facility requirements. While the reduced costs and simplified
logistics (due to the reduced weight) are attractive options, the
coupling between K and @x;yK might be a serious issue. Apple
X (Delta II) undulators improve the operation of the insertion
device due to the higher degree of symmetry for any K. These
undulators feature the unique property of controlled asym-
metries (as far as each array has to be independently displaced
in the radial direction) which can be used to introduce
gradients in any polarization, which, for standard Apple
devices, is limited to elliptical polarization. The details of this
operation and the calculation of the scaling laws nevertheless
require further studies and can be the subject of a new article.
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Figure 5
Horizontal component of the K gradient versus K for different gaps. The
analytical model (solid line) is presented together with the computer
simulation made with RADIA (red square markers).

Figure 6
Horizontal component of the K gradient relative to K versus K for
different gaps. The analytical model (solid line) is presented together with
the computer simulation made with RADIA (red square markers).

Figure 7
The horizontal component of the K gradient versus K is presented for a
gap of 3.0 mm for both the analytical model (solid black line) and the
RADIA simulations. Two numerical results are presented, one (solid red
line) calculates the derivative using !x = 0.1 mm, the other (dashed blue
line) using !x = 2.0 mm.

Table 2
Fitting parameters for the analytical gradient estimation.

A b c

K0 5.1295 5.6845 0.7821
G0 285.42 m"1 7.8497 1.9248

to equation (10) and to equation (11), respectively, QB̂B and
QĴJQ!1. This approach also allows the use of the previously
calculated magnetic field and Jacobian in the original refer-
ence frame and their properties: B̂Bx1 = B̂By1 and @xB̂B1x = @yB̂B1y.
Therefore, the main results of this calculation are expressed as
follows,

B̂Bx

B̂yBy

" #

¼ 1ffiffiffi
2
p Zx !Zy

Zx Zy

" #
# 1

1

" #
B̂B1x; ð56Þ

@xB̂Bx

@yB̂By

" #

¼ Zxx !Zxy

Zxx Zxy

" #
# @xB̂B1x

@yB̂B1x

" #

; ð57Þ

@yB̂Bx ¼ @xB̂By ¼ 0: ð58Þ

The K-value for the parallel mode is identical to the one
evaluated for the Apple X case and is repeated for comple-
teness’ sake in equation (59) below,

K ¼ 4!B̂Bx1 cos 1
2"e: ð59Þ

The K gradient, on the contrary, is present simultaneously in
both planes as calculated in equation (60) below,

@xK ¼ & 1ffiffi
2
p G0 sin 1

2"e sin"p;

@yK ¼ þ 1ffiffi
2
p G0 sin 1

2"e sin"p;
ð60Þ

where the positive sign (+) represents the top–bottom energy
shift and the negative sign (!) stands for the left–right energy
shift. This is the major difference between this device and all
other devices that are analysed in this paper. Its imple-
mentation in a facility has to be carefully evaluated by also
taking into account the result of equation (60).

For the antiparallel mode, the results follow the general
rule: no K gradient is present. The expression of K is very
similar to that observed for Apple X [equation (53)], except
for a change in sign. No change in signs is seen for the top–
bottom and the left–right shifts, as shown in equation (61)
below,

K ¼ 2!B̂B1x 2þ cos"e þ cos "e þ 2" !pp

$ %& '1=2
: ð61Þ

5. Model versus simulation for the Apple X

The transversal gradient of an Apple X undulator has been
evaluated with the help of the computer code RADIA to
verify the quality of the analytical approach presented in this
article and to highlight its limitations. The formulas derived for
K have already been proven by other authors and are widely
supported by experimental results. Thus, only the results
concerning the transverse gradient are reported in this section.
The geometry and the material properties of the magnetic
structure are presented in Fig. 3 and in Table 1, respectively.

To evaluate equation (51), the first step is to numerically
calculate K0 and G0 as formulated in equations (50) and (49),
respectively (see Fig. 4). The results of both calculations are

fitted with the following function (used for the K versus gap of
a hybrid magnetic structure),

A exp !b
g

#U

þ c
g2

#2
U

( )
; ð62Þ

where the independent variable g is the gap. In Table 2 the
coefficients are listed for both K0ðgÞ and G0ðgÞ. In Fig. 5,
equation (51) is estimated both analytically (solid line) and
numerically (markers). For completeness’ sake, equation (52)
is presented in Fig. 6. There is a very good agreement between
the analytical model and the numerical calculation, and the
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Figure 3
Magnetic model of the Apple X undulator used for the example. The
actual model consists of eight periods while in this picture only four have
been drawn.

Table 1
Simulation parameters for the Apple X example.

Parameter Unit

#U 40.0 mm
Magnet material Sm2Co17 –
Remanence 1.08 T
Number of periods 8 –
Magnet edge 30.0 mm
Magnet chamfer 5.0 mm

Figure 4
The values of K0 and G0 have been calculated as a function of the
undulator (Apple X) gap. The numerical calculation (red markers) are
presented together with the fitting functions (solid black line) introduced
in equation (62).

Since an Apple undulator with four independent arrays no
longer requires a gap drive system to set a different K-value
(Carr, 1991), the implementation of novel devices was trig-
gered. The first of these undulators was developed at the Swiss
Light Source (Schmidt et al., 2007): the device had an Apple II
cross section, no gap drive system (fixed gap) and four inde-
pendent arrays. Recently a new type of device, called Delta
LEPP-CHESS due to the specific shape of its magnets
(Temnykh, 2008), was proposed. Its cross section not only
satisfies the usual axis (x and y) symmetry but also the 90!

rotational symmetry which simplifies the operation. This
device is based on the same operational principles as the
previous fixed-gap undulator type but with a cross section
rotated by 45!, as seen in Fig. 2. This device has now been
adopted as an afterburner at the Linac Coherent Light Source
(LCLS) facility but with the cross section rotated back to the
original symmetry. It is now referred to as Delta (Nuhn et al.,
2015). In 2016 the Apple X was proposed at the Paul Scherrer
Institute for the soft X-ray line of the SwissFEL. It consists of
a Delta cross section where the four arrays can be indepen-
dently displaced both longitudinally and radially. If the four
arrays are displaced radially by the same amount, the 90!

symmetry is preserved for all gaps. At the same time, it is also
possible to displace them to break the symmetry, thus even-
tually introducing a gradient on-axis. The same development is
ongoing at the LCLS and the device is referred as a Delta II
(H.-D. Nuhn, private comunication).

1.1. Advantages and disadvantages of fix-gap operation

The new operational mode, now called energy mode, is
based on the parallel movement of two neighbouring arrays:
the two top arrays (1 and 2) against the two bottom arrays
(3 and 4) or the two left arrays (2 and 3) against the two right
arrays (1 and 4), as illustrated in Fig. 1. The lack of a gap drive
system to change the K-value increases cost effectiveness,
while decreasing design complexity and the weight of the
device. However, this comes with some drawbacks. The
experimental evidence of these limitations was measured at
the Swiss Light Source (Schmidt et al., 2013) and was
explained by the presence of a transversal K gradient. The
resonance condition, expressed in equation (1) below,

! ¼ !U

2"2
1þ K 2

2

! "
; ð1Þ

where !U is the undulator period length and " is the Lorenz
factor, gives the relation between K and the radiation wave-
length !. In standard operation it is not desired that the
radiation wavelength depends on the transverse position of
the beam because it reduces the intensity of the interference
peaks of the undulator spectrum. However, Schmidt’s work
highlighted for the first time the possibility to operate an
Apple undulator as a variable transverse gradient undulator
(TGU).

Recently, many authors have demonstrated that TGUs may
be useful for certain applications. They can be used to produce
FEL radiation with large energy spread beams generated in
laser-plasma accelerators (Huang et al., 2012). If the electron
energy is correlated to a transverse offset via dispersion and
a TGU is set such that the resonance condition expressed in
equation (1) is preserved for all the electrons, the performance
of the FEL radiation will significantly improve.

A TGU can also be employed to generate ultra-large
bandwidth radiation above the 10% level, which is needed for
selected applications such as crystallography and spectroscopy
(Prat et al., 2016). This will occur when the beam is presented
with a transverse tilt (correlation between the transverse and
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Figure 1
The four magnetic arrays of an Apple undulator are schematically
represented to highlight the basic topology involved in this undulator
concept: array pairs 1–2, 2–3, 3–4 and 4–1 are called neighbouring arrays,
while pairs 1–3 and 2–4 are called opposite arrays.

Figure 2
The different cross sections of Apple-type undulators in chronological
order. In the first row one can find the standard Apple cross sections,
starting with Apple I and II, which are designed for synchrotrons
operated with elliptical vacuum chambers, followed by Apple III for
linac-driven FELs. All three types are regularly equipped with a gap drive
system which is changing the distance between the upper and lower
arrays. In the second row there are the new cross sections called Delta
LEPP-CHESS and Delta, which are designed for linac-driven FELs
without a gap drive system. The last type is called Apple X (at the
SwissFEL project) or Delta II (at the LCLS project), where a new gap
drive system is moving an Apple III cross section in a way that both axis
symmetries and 90! symmetry are guaranteed.

counterpart, looking in the direction of the electron. For the
linear inclined mode, the phase is defined by

’1 ¼ þ!e þ ! !pp; ’2 ¼ þ!e;

’3 ¼ #! !pp; ’4 ¼ 0:
ð39Þ

Using equation (24), the K-value is given by

K ¼ 4" B̂B2
1xS2 þ B̂B2

1yC2
! "1=2

;

S ¼ sin 1
2! !pp

! "
sin 1

2 ð! !pp þ !eÞ
# $

;

C ¼ cos 1
2! !pp

! "
cos 1

2 ð! !pp þ !eÞ
# $

;

ð40Þ

and the angle of the magnetic field, defined as tan # =
jKyj=jKxj, is calculated in equation (41) below,

tan # ¼ r cot 1
2! !pp & cot 1

2 ! !pp þ !e

! "
: ð41Þ

When !e = 0, equation (40) simplifies to the more familiar
result

K ¼ 4" B̂B2
1x sin4 1

2! !pp þ B̂B2
1y cos4 1

2! !pp

! "1=2
; ð42Þ

tan# ¼ r cot2 1
2! !pp: ð43Þ

As a corollary of this general description, it is possible to
recover the results (Schmidt & Zimoch, 2007) referred to as
symmetry phase. In equation (44) below, the condition of K is
independent of ! !pp,

@K

@! !pp

¼ 0; ð44Þ

leading to the following interesting result,

! !pp ¼ '!c; ð45Þ

K ¼ 4"B1x sin 1
2!c; ð46Þ

# !eð Þ ¼ 1
2 $' !c # !eð Þ; ð47Þ

where the angle of polarization can be linearly varied with the
former energy shift as a function of !e while keeping K
constant. This special mode naturally requires a gap drive
system to change the photon energy (K).

4.2. Apple X (Delta II) and Delta

In an Apple X undulator, B̂Bx1 = B̂By1 and @xB̂Bx1 = @yB̂By1 for all
gaps. This is due to the radial displacement of the magnetic
array, as seen in Fig. 2. This undulator cross section not only
respects the symmetries to the main axis as all standard Apple
undulators do, but also the symmetry with respect to a 90(

rotation. This geometry simplifies all the results obtained in x3.
It can be proven that the phase of the circular polarization !c

is gap independent and equal to $=2, thus there is no need to
correct the parallel shift position to recover the condition:
jKxj = jKyj. This simplifies the operation of the device, both in
terms of modelling and manipulation, which should also help
to reduce the ageing of the mechanical parts. The K-value
now depends only on the gap and energy shifts and can be
expressed as shown in equation (48) below,

K ¼ 4"B̂Bx1 cos 1
2!e; ð48Þ

where B̂B1 simplifies to
ffiffiffi
2
p

B̂Bx1 which depends only on the gap.
Equation (48) does not depend on the parallel shift !p any
longer. Therefore, the K-value for a given gap is the same for
all elliptical configurations (including the special case of
circular polarization) and thus substantially simplifies the
operation of the device. The K gradient maintains the same
formal expression as in equations (35), (36) and (37) while G0

and K0 simplify as shown in the equations below,

G0 ¼ 2" @xB̂B1x # @xB̂B1y

! "
; ð49Þ

K0 ¼ 4"B̂Bx1: ð50Þ

These parameters are no longer dependent on !p, but are now
only dependent on the gap. It is therefore possible to further
simplify the previous expressions of the K gradient for circular
polarization (specifically for !p = $/2) and to explicitly write
them as a function of K,

@xK ¼ G0 1# %2
! "1=2 ð51Þ

and

@xK

K
¼ G0

K0

1# %2ð Þ1=2

%
; ð52Þ

where % = K=K0. When K = 0 the gradient is maximized to the
value G0.

For the inclined mode, equation (40) simplifies to the
following expression,

K ¼ 2"B̂B1x 2þ cos!e þ cos !e ' 2! !pp

! "# $1=2
; ð53Þ

where the positive sign (+) corresponds to the top–bottom
energy shift and the negative sign (#) corresponds to the left–
right energy shift. As found in the general case, there are no K
gradients for linear polarization of Apple X. All the results
presented in this section also hold for the Delta undulator
type, with the unique distinction that in this design no system
is available to set the gap.

4.3. Delta LEPP-CHESS

To analyse the Delta LEPP-CHESS type undulator, the
symmetry seen in equation (4) is no longer valid. On the
contrary, this cross section follows a symmetry with respect to
the 45( axes. To study this cross section, it is possible to use a
rotational symmetry in steps of 90( in place of equation (4),

Rn ¼
0 #1
1 0

& 'n#1

: ð54Þ

Following the analysis defined in x2 and x3, it is then possible
to estimate the field and the gradient. Instead of applying this
methodology, the previously calculated Z% functions can be
used directly after applying a simple axis rotation of 45(,

Q ¼ 1ffiffiffi
2
p 1 #1

1 1

& '
; ð55Þ
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counterpart, looking in the direction of the electron. For the
linear inclined mode, the phase is defined by

’1 ¼ þ!e þ ! !pp; ’2 ¼ þ!e;

’3 ¼ #! !pp; ’4 ¼ 0:
ð39Þ

Using equation (24), the K-value is given by

K ¼ 4" B̂B2
1xS2 þ B̂B2

1yC2
! "1=2

;

S ¼ sin 1
2! !pp

! "
sin 1

2 ð! !pp þ !eÞ
# $

;

C ¼ cos 1
2! !pp

! "
cos 1

2 ð! !pp þ !eÞ
# $

;

ð40Þ

and the angle of the magnetic field, defined as tan # =
jKyj=jKxj, is calculated in equation (41) below,

tan # ¼ r cot 1
2! !pp & cot 1

2 ! !pp þ !e

! "
: ð41Þ

When !e = 0, equation (40) simplifies to the more familiar
result

K ¼ 4" B̂B2
1x sin4 1

2! !pp þ B̂B2
1y cos4 1

2! !pp

! "1=2
; ð42Þ

tan# ¼ r cot2 1
2! !pp: ð43Þ

As a corollary of this general description, it is possible to
recover the results (Schmidt & Zimoch, 2007) referred to as
symmetry phase. In equation (44) below, the condition of K is
independent of ! !pp,

@K

@! !pp

¼ 0; ð44Þ

leading to the following interesting result,

! !pp ¼ '!c; ð45Þ

K ¼ 4"B1x sin 1
2!c; ð46Þ

# !eð Þ ¼ 1
2 $' !c # !eð Þ; ð47Þ

where the angle of polarization can be linearly varied with the
former energy shift as a function of !e while keeping K
constant. This special mode naturally requires a gap drive
system to change the photon energy (K).

4.2. Apple X (Delta II) and Delta

In an Apple X undulator, B̂Bx1 = B̂By1 and @xB̂Bx1 = @yB̂By1 for all
gaps. This is due to the radial displacement of the magnetic
array, as seen in Fig. 2. This undulator cross section not only
respects the symmetries to the main axis as all standard Apple
undulators do, but also the symmetry with respect to a 90(

rotation. This geometry simplifies all the results obtained in x3.
It can be proven that the phase of the circular polarization !c

is gap independent and equal to $=2, thus there is no need to
correct the parallel shift position to recover the condition:
jKxj = jKyj. This simplifies the operation of the device, both in
terms of modelling and manipulation, which should also help
to reduce the ageing of the mechanical parts. The K-value
now depends only on the gap and energy shifts and can be
expressed as shown in equation (48) below,

K ¼ 4"B̂Bx1 cos 1
2!e; ð48Þ

where B̂B1 simplifies to
ffiffiffi
2
p

B̂Bx1 which depends only on the gap.
Equation (48) does not depend on the parallel shift !p any
longer. Therefore, the K-value for a given gap is the same for
all elliptical configurations (including the special case of
circular polarization) and thus substantially simplifies the
operation of the device. The K gradient maintains the same
formal expression as in equations (35), (36) and (37) while G0

and K0 simplify as shown in the equations below,

G0 ¼ 2" @xB̂B1x # @xB̂B1y

! "
; ð49Þ

K0 ¼ 4"B̂Bx1: ð50Þ

These parameters are no longer dependent on !p, but are now
only dependent on the gap. It is therefore possible to further
simplify the previous expressions of the K gradient for circular
polarization (specifically for !p = $/2) and to explicitly write
them as a function of K,

@xK ¼ G0 1# %2
! "1=2 ð51Þ

and

@xK

K
¼ G0

K0

1# %2ð Þ1=2

%
; ð52Þ

where % = K=K0. When K = 0 the gradient is maximized to the
value G0.

For the inclined mode, equation (40) simplifies to the
following expression,

K ¼ 2"B̂B1x 2þ cos!e þ cos !e ' 2! !pp

! "# $1=2
; ð53Þ

where the positive sign (+) corresponds to the top–bottom
energy shift and the negative sign (#) corresponds to the left–
right energy shift. As found in the general case, there are no K
gradients for linear polarization of Apple X. All the results
presented in this section also hold for the Delta undulator
type, with the unique distinction that in this design no system
is available to set the gap.

4.3. Delta LEPP-CHESS

To analyse the Delta LEPP-CHESS type undulator, the
symmetry seen in equation (4) is no longer valid. On the
contrary, this cross section follows a symmetry with respect to
the 45( axes. To study this cross section, it is possible to use a
rotational symmetry in steps of 90( in place of equation (4),

Rn ¼
0 #1
1 0

& 'n#1

: ð54Þ

Following the analysis defined in x2 and x3, it is then possible
to estimate the field and the gradient. Instead of applying this
methodology, the previously calculated Z% functions can be
used directly after applying a simple axis rotation of 45(,

Q ¼ 1ffiffiffi
2
p 1 #1

1 1

& '
; ð55Þ
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counterpart, looking in the direction of the electron. For the
linear inclined mode, the phase is defined by

’1 ¼ þ!e þ ! !pp; ’2 ¼ þ!e;

’3 ¼ #! !pp; ’4 ¼ 0:
ð39Þ

Using equation (24), the K-value is given by

K ¼ 4" B̂B2
1xS2 þ B̂B2

1yC2
! "1=2

;

S ¼ sin 1
2! !pp

! "
sin 1

2 ð! !pp þ !eÞ
# $

;

C ¼ cos 1
2! !pp

! "
cos 1

2 ð! !pp þ !eÞ
# $

;

ð40Þ

and the angle of the magnetic field, defined as tan # =
jKyj=jKxj, is calculated in equation (41) below,

tan # ¼ r cot 1
2! !pp & cot 1

2 ! !pp þ !e

! "
: ð41Þ

When !e = 0, equation (40) simplifies to the more familiar
result

K ¼ 4" B̂B2
1x sin4 1

2! !pp þ B̂B2
1y cos4 1

2! !pp

! "1=2
; ð42Þ

tan# ¼ r cot2 1
2! !pp: ð43Þ

As a corollary of this general description, it is possible to
recover the results (Schmidt & Zimoch, 2007) referred to as
symmetry phase. In equation (44) below, the condition of K is
independent of ! !pp,

@K

@! !pp

¼ 0; ð44Þ

leading to the following interesting result,

! !pp ¼ '!c; ð45Þ

K ¼ 4"B1x sin 1
2!c; ð46Þ

# !eð Þ ¼ 1
2 $' !c # !eð Þ; ð47Þ

where the angle of polarization can be linearly varied with the
former energy shift as a function of !e while keeping K
constant. This special mode naturally requires a gap drive
system to change the photon energy (K).

4.2. Apple X (Delta II) and Delta

In an Apple X undulator, B̂Bx1 = B̂By1 and @xB̂Bx1 = @yB̂By1 for all
gaps. This is due to the radial displacement of the magnetic
array, as seen in Fig. 2. This undulator cross section not only
respects the symmetries to the main axis as all standard Apple
undulators do, but also the symmetry with respect to a 90(

rotation. This geometry simplifies all the results obtained in x3.
It can be proven that the phase of the circular polarization !c

is gap independent and equal to $=2, thus there is no need to
correct the parallel shift position to recover the condition:
jKxj = jKyj. This simplifies the operation of the device, both in
terms of modelling and manipulation, which should also help
to reduce the ageing of the mechanical parts. The K-value
now depends only on the gap and energy shifts and can be
expressed as shown in equation (48) below,

K ¼ 4"B̂Bx1 cos 1
2!e; ð48Þ

where B̂B1 simplifies to
ffiffiffi
2
p

B̂Bx1 which depends only on the gap.
Equation (48) does not depend on the parallel shift !p any
longer. Therefore, the K-value for a given gap is the same for
all elliptical configurations (including the special case of
circular polarization) and thus substantially simplifies the
operation of the device. The K gradient maintains the same
formal expression as in equations (35), (36) and (37) while G0

and K0 simplify as shown in the equations below,

G0 ¼ 2" @xB̂B1x # @xB̂B1y

! "
; ð49Þ

K0 ¼ 4"B̂Bx1: ð50Þ

These parameters are no longer dependent on !p, but are now
only dependent on the gap. It is therefore possible to further
simplify the previous expressions of the K gradient for circular
polarization (specifically for !p = $/2) and to explicitly write
them as a function of K,

@xK ¼ G0 1# %2
! "1=2 ð51Þ

and

@xK

K
¼ G0

K0

1# %2ð Þ1=2

%
; ð52Þ

where % = K=K0. When K = 0 the gradient is maximized to the
value G0.

For the inclined mode, equation (40) simplifies to the
following expression,

K ¼ 2"B̂B1x 2þ cos!e þ cos !e ' 2! !pp

! "# $1=2
; ð53Þ

where the positive sign (+) corresponds to the top–bottom
energy shift and the negative sign (#) corresponds to the left–
right energy shift. As found in the general case, there are no K
gradients for linear polarization of Apple X. All the results
presented in this section also hold for the Delta undulator
type, with the unique distinction that in this design no system
is available to set the gap.

4.3. Delta LEPP-CHESS

To analyse the Delta LEPP-CHESS type undulator, the
symmetry seen in equation (4) is no longer valid. On the
contrary, this cross section follows a symmetry with respect to
the 45( axes. To study this cross section, it is possible to use a
rotational symmetry in steps of 90( in place of equation (4),

Rn ¼
0 #1
1 0

& 'n#1

: ð54Þ

Following the analysis defined in x2 and x3, it is then possible
to estimate the field and the gradient. Instead of applying this
methodology, the previously calculated Z% functions can be
used directly after applying a simple axis rotation of 45(,

Q ¼ 1ffiffiffi
2
p 1 #1

1 1

& '
; ð55Þ
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counterpart, looking in the direction of the electron. For the
linear inclined mode, the phase is defined by

’1 ¼ þ!e þ ! !pp; ’2 ¼ þ!e;

’3 ¼ #! !pp; ’4 ¼ 0:
ð39Þ

Using equation (24), the K-value is given by

K ¼ 4" B̂B2
1xS2 þ B̂B2

1yC2
! "1=2

;

S ¼ sin 1
2! !pp

! "
sin 1

2 ð! !pp þ !eÞ
# $

;

C ¼ cos 1
2! !pp

! "
cos 1

2 ð! !pp þ !eÞ
# $

;

ð40Þ

and the angle of the magnetic field, defined as tan # =
jKyj=jKxj, is calculated in equation (41) below,

tan # ¼ r cot 1
2! !pp & cot 1

2 ! !pp þ !e

! "
: ð41Þ

When !e = 0, equation (40) simplifies to the more familiar
result

K ¼ 4" B̂B2
1x sin4 1

2! !pp þ B̂B2
1y cos4 1

2! !pp

! "1=2
; ð42Þ

tan# ¼ r cot2 1
2! !pp: ð43Þ

As a corollary of this general description, it is possible to
recover the results (Schmidt & Zimoch, 2007) referred to as
symmetry phase. In equation (44) below, the condition of K is
independent of ! !pp,

@K

@! !pp

¼ 0; ð44Þ

leading to the following interesting result,

! !pp ¼ '!c; ð45Þ

K ¼ 4"B1x sin 1
2!c; ð46Þ

# !eð Þ ¼ 1
2 $' !c # !eð Þ; ð47Þ

where the angle of polarization can be linearly varied with the
former energy shift as a function of !e while keeping K
constant. This special mode naturally requires a gap drive
system to change the photon energy (K).

4.2. Apple X (Delta II) and Delta

In an Apple X undulator, B̂Bx1 = B̂By1 and @xB̂Bx1 = @yB̂By1 for all
gaps. This is due to the radial displacement of the magnetic
array, as seen in Fig. 2. This undulator cross section not only
respects the symmetries to the main axis as all standard Apple
undulators do, but also the symmetry with respect to a 90(

rotation. This geometry simplifies all the results obtained in x3.
It can be proven that the phase of the circular polarization !c

is gap independent and equal to $=2, thus there is no need to
correct the parallel shift position to recover the condition:
jKxj = jKyj. This simplifies the operation of the device, both in
terms of modelling and manipulation, which should also help
to reduce the ageing of the mechanical parts. The K-value
now depends only on the gap and energy shifts and can be
expressed as shown in equation (48) below,

K ¼ 4"B̂Bx1 cos 1
2!e; ð48Þ

where B̂B1 simplifies to
ffiffiffi
2
p

B̂Bx1 which depends only on the gap.
Equation (48) does not depend on the parallel shift !p any
longer. Therefore, the K-value for a given gap is the same for
all elliptical configurations (including the special case of
circular polarization) and thus substantially simplifies the
operation of the device. The K gradient maintains the same
formal expression as in equations (35), (36) and (37) while G0

and K0 simplify as shown in the equations below,

G0 ¼ 2" @xB̂B1x # @xB̂B1y

! "
; ð49Þ

K0 ¼ 4"B̂Bx1: ð50Þ

These parameters are no longer dependent on !p, but are now
only dependent on the gap. It is therefore possible to further
simplify the previous expressions of the K gradient for circular
polarization (specifically for !p = $/2) and to explicitly write
them as a function of K,

@xK ¼ G0 1# %2
! "1=2 ð51Þ

and

@xK

K
¼ G0

K0

1# %2ð Þ1=2

%
; ð52Þ

where % = K=K0. When K = 0 the gradient is maximized to the
value G0.

For the inclined mode, equation (40) simplifies to the
following expression,

K ¼ 2"B̂B1x 2þ cos!e þ cos !e ' 2! !pp

! "# $1=2
; ð53Þ

where the positive sign (+) corresponds to the top–bottom
energy shift and the negative sign (#) corresponds to the left–
right energy shift. As found in the general case, there are no K
gradients for linear polarization of Apple X. All the results
presented in this section also hold for the Delta undulator
type, with the unique distinction that in this design no system
is available to set the gap.

4.3. Delta LEPP-CHESS

To analyse the Delta LEPP-CHESS type undulator, the
symmetry seen in equation (4) is no longer valid. On the
contrary, this cross section follows a symmetry with respect to
the 45( axes. To study this cross section, it is possible to use a
rotational symmetry in steps of 90( in place of equation (4),

Rn ¼
0 #1
1 0

& 'n#1

: ð54Þ

Following the analysis defined in x2 and x3, it is then possible
to estimate the field and the gradient. Instead of applying this
methodology, the previously calculated Z% functions can be
used directly after applying a simple axis rotation of 45(,

Q ¼ 1ffiffiffi
2
p 1 #1

1 1

& '
; ð55Þ
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counterpart, looking in the direction of the electron. For the
linear inclined mode, the phase is defined by

’1 ¼ þ!e þ ! !pp; ’2 ¼ þ!e;

’3 ¼ #! !pp; ’4 ¼ 0:
ð39Þ

Using equation (24), the K-value is given by

K ¼ 4" B̂B2
1xS2 þ B̂B2

1yC2
! "1=2

;

S ¼ sin 1
2! !pp

! "
sin 1

2 ð! !pp þ !eÞ
# $

;

C ¼ cos 1
2! !pp

! "
cos 1

2 ð! !pp þ !eÞ
# $

;

ð40Þ

and the angle of the magnetic field, defined as tan # =
jKyj=jKxj, is calculated in equation (41) below,

tan # ¼ r cot 1
2! !pp & cot 1

2 ! !pp þ !e

! "
: ð41Þ

When !e = 0, equation (40) simplifies to the more familiar
result

K ¼ 4" B̂B2
1x sin4 1

2! !pp þ B̂B2
1y cos4 1

2! !pp

! "1=2
; ð42Þ

tan# ¼ r cot2 1
2! !pp: ð43Þ

As a corollary of this general description, it is possible to
recover the results (Schmidt & Zimoch, 2007) referred to as
symmetry phase. In equation (44) below, the condition of K is
independent of ! !pp,

@K

@! !pp

¼ 0; ð44Þ

leading to the following interesting result,

! !pp ¼ '!c; ð45Þ

K ¼ 4"B1x sin 1
2!c; ð46Þ

# !eð Þ ¼ 1
2 $' !c # !eð Þ; ð47Þ

where the angle of polarization can be linearly varied with the
former energy shift as a function of !e while keeping K
constant. This special mode naturally requires a gap drive
system to change the photon energy (K).

4.2. Apple X (Delta II) and Delta

In an Apple X undulator, B̂Bx1 = B̂By1 and @xB̂Bx1 = @yB̂By1 for all
gaps. This is due to the radial displacement of the magnetic
array, as seen in Fig. 2. This undulator cross section not only
respects the symmetries to the main axis as all standard Apple
undulators do, but also the symmetry with respect to a 90(

rotation. This geometry simplifies all the results obtained in x3.
It can be proven that the phase of the circular polarization !c

is gap independent and equal to $=2, thus there is no need to
correct the parallel shift position to recover the condition:
jKxj = jKyj. This simplifies the operation of the device, both in
terms of modelling and manipulation, which should also help
to reduce the ageing of the mechanical parts. The K-value
now depends only on the gap and energy shifts and can be
expressed as shown in equation (48) below,

K ¼ 4"B̂Bx1 cos 1
2!e; ð48Þ

where B̂B1 simplifies to
ffiffiffi
2
p

B̂Bx1 which depends only on the gap.
Equation (48) does not depend on the parallel shift !p any
longer. Therefore, the K-value for a given gap is the same for
all elliptical configurations (including the special case of
circular polarization) and thus substantially simplifies the
operation of the device. The K gradient maintains the same
formal expression as in equations (35), (36) and (37) while G0

and K0 simplify as shown in the equations below,

G0 ¼ 2" @xB̂B1x # @xB̂B1y

! "
; ð49Þ

K0 ¼ 4"B̂Bx1: ð50Þ

These parameters are no longer dependent on !p, but are now
only dependent on the gap. It is therefore possible to further
simplify the previous expressions of the K gradient for circular
polarization (specifically for !p = $/2) and to explicitly write
them as a function of K,

@xK ¼ G0 1# %2
! "1=2 ð51Þ

and

@xK

K
¼ G0

K0

1# %2ð Þ1=2

%
; ð52Þ

where % = K=K0. When K = 0 the gradient is maximized to the
value G0.

For the inclined mode, equation (40) simplifies to the
following expression,

K ¼ 2"B̂B1x 2þ cos!e þ cos !e ' 2! !pp

! "# $1=2
; ð53Þ

where the positive sign (+) corresponds to the top–bottom
energy shift and the negative sign (#) corresponds to the left–
right energy shift. As found in the general case, there are no K
gradients for linear polarization of Apple X. All the results
presented in this section also hold for the Delta undulator
type, with the unique distinction that in this design no system
is available to set the gap.

4.3. Delta LEPP-CHESS

To analyse the Delta LEPP-CHESS type undulator, the
symmetry seen in equation (4) is no longer valid. On the
contrary, this cross section follows a symmetry with respect to
the 45( axes. To study this cross section, it is possible to use a
rotational symmetry in steps of 90( in place of equation (4),

Rn ¼
0 #1
1 0

& 'n#1

: ð54Þ

Following the analysis defined in x2 and x3, it is then possible
to estimate the field and the gradient. Instead of applying this
methodology, the previously calculated Z% functions can be
used directly after applying a simple axis rotation of 45(,

Q ¼ 1ffiffiffi
2
p 1 #1

1 1

& '
; ð55Þ
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counterpart, looking in the direction of the electron. For the
linear inclined mode, the phase is defined by

’1 ¼ þ!e þ ! !pp; ’2 ¼ þ!e;

’3 ¼ #! !pp; ’4 ¼ 0:
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and the angle of the magnetic field, defined as tan # =
jKyj=jKxj, is calculated in equation (41) below,

tan # ¼ r cot 1
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When !e = 0, equation (40) simplifies to the more familiar
result
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As a corollary of this general description, it is possible to
recover the results (Schmidt & Zimoch, 2007) referred to as
symmetry phase. In equation (44) below, the condition of K is
independent of ! !pp,
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¼ 0; ð44Þ

leading to the following interesting result,
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# !eð Þ ¼ 1
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where the angle of polarization can be linearly varied with the
former energy shift as a function of !e while keeping K
constant. This special mode naturally requires a gap drive
system to change the photon energy (K).

4.2. Apple X (Delta II) and Delta

In an Apple X undulator, B̂Bx1 = B̂By1 and @xB̂Bx1 = @yB̂By1 for all
gaps. This is due to the radial displacement of the magnetic
array, as seen in Fig. 2. This undulator cross section not only
respects the symmetries to the main axis as all standard Apple
undulators do, but also the symmetry with respect to a 90(

rotation. This geometry simplifies all the results obtained in x3.
It can be proven that the phase of the circular polarization !c

is gap independent and equal to $=2, thus there is no need to
correct the parallel shift position to recover the condition:
jKxj = jKyj. This simplifies the operation of the device, both in
terms of modelling and manipulation, which should also help
to reduce the ageing of the mechanical parts. The K-value
now depends only on the gap and energy shifts and can be
expressed as shown in equation (48) below,

K ¼ 4"B̂Bx1 cos 1
2!e; ð48Þ

where B̂B1 simplifies to
ffiffiffi
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B̂Bx1 which depends only on the gap.
Equation (48) does not depend on the parallel shift !p any
longer. Therefore, the K-value for a given gap is the same for
all elliptical configurations (including the special case of
circular polarization) and thus substantially simplifies the
operation of the device. The K gradient maintains the same
formal expression as in equations (35), (36) and (37) while G0

and K0 simplify as shown in the equations below,

G0 ¼ 2" @xB̂B1x # @xB̂B1y
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; ð49Þ

K0 ¼ 4"B̂Bx1: ð50Þ

These parameters are no longer dependent on !p, but are now
only dependent on the gap. It is therefore possible to further
simplify the previous expressions of the K gradient for circular
polarization (specifically for !p = $/2) and to explicitly write
them as a function of K,

@xK ¼ G0 1# %2
! "1=2 ð51Þ

and
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where % = K=K0. When K = 0 the gradient is maximized to the
value G0.

For the inclined mode, equation (40) simplifies to the
following expression,

K ¼ 2"B̂B1x 2þ cos!e þ cos !e ' 2! !pp

! "# $1=2
; ð53Þ

where the positive sign (+) corresponds to the top–bottom
energy shift and the negative sign (#) corresponds to the left–
right energy shift. As found in the general case, there are no K
gradients for linear polarization of Apple X. All the results
presented in this section also hold for the Delta undulator
type, with the unique distinction that in this design no system
is available to set the gap.

4.3. Delta LEPP-CHESS

To analyse the Delta LEPP-CHESS type undulator, the
symmetry seen in equation (4) is no longer valid. On the
contrary, this cross section follows a symmetry with respect to
the 45( axes. To study this cross section, it is possible to use a
rotational symmetry in steps of 90( in place of equation (4),

Rn ¼
0 #1
1 0
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Following the analysis defined in x2 and x3, it is then possible
to estimate the field and the gradient. Instead of applying this
methodology, the previously calculated Z% functions can be
used directly after applying a simple axis rotation of 45(,
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counterpart, looking in the direction of the electron. For the
linear inclined mode, the phase is defined by

’1 ¼ þ!e þ ! !pp; ’2 ¼ þ!e;

’3 ¼ #! !pp; ’4 ¼ 0:
ð39Þ

Using equation (24), the K-value is given by
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and the angle of the magnetic field, defined as tan # =
jKyj=jKxj, is calculated in equation (41) below,

tan # ¼ r cot 1
2! !pp & cot 1

2 ! !pp þ !e
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: ð41Þ

When !e = 0, equation (40) simplifies to the more familiar
result

K ¼ 4" B̂B2
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; ð42Þ

tan# ¼ r cot2 1
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As a corollary of this general description, it is possible to
recover the results (Schmidt & Zimoch, 2007) referred to as
symmetry phase. In equation (44) below, the condition of K is
independent of ! !pp,

@K

@! !pp

¼ 0; ð44Þ

leading to the following interesting result,

! !pp ¼ '!c; ð45Þ

K ¼ 4"B1x sin 1
2!c; ð46Þ

# !eð Þ ¼ 1
2 $' !c # !eð Þ; ð47Þ

where the angle of polarization can be linearly varied with the
former energy shift as a function of !e while keeping K
constant. This special mode naturally requires a gap drive
system to change the photon energy (K).

4.2. Apple X (Delta II) and Delta

In an Apple X undulator, B̂Bx1 = B̂By1 and @xB̂Bx1 = @yB̂By1 for all
gaps. This is due to the radial displacement of the magnetic
array, as seen in Fig. 2. This undulator cross section not only
respects the symmetries to the main axis as all standard Apple
undulators do, but also the symmetry with respect to a 90(

rotation. This geometry simplifies all the results obtained in x3.
It can be proven that the phase of the circular polarization !c

is gap independent and equal to $=2, thus there is no need to
correct the parallel shift position to recover the condition:
jKxj = jKyj. This simplifies the operation of the device, both in
terms of modelling and manipulation, which should also help
to reduce the ageing of the mechanical parts. The K-value
now depends only on the gap and energy shifts and can be
expressed as shown in equation (48) below,

K ¼ 4"B̂Bx1 cos 1
2!e; ð48Þ

where B̂B1 simplifies to
ffiffiffi
2
p

B̂Bx1 which depends only on the gap.
Equation (48) does not depend on the parallel shift !p any
longer. Therefore, the K-value for a given gap is the same for
all elliptical configurations (including the special case of
circular polarization) and thus substantially simplifies the
operation of the device. The K gradient maintains the same
formal expression as in equations (35), (36) and (37) while G0

and K0 simplify as shown in the equations below,

G0 ¼ 2" @xB̂B1x # @xB̂B1y

! "
; ð49Þ

K0 ¼ 4"B̂Bx1: ð50Þ

These parameters are no longer dependent on !p, but are now
only dependent on the gap. It is therefore possible to further
simplify the previous expressions of the K gradient for circular
polarization (specifically for !p = $/2) and to explicitly write
them as a function of K,

@xK ¼ G0 1# %2
! "1=2 ð51Þ

and

@xK

K
¼ G0

K0

1# %2ð Þ1=2

%
; ð52Þ

where % = K=K0. When K = 0 the gradient is maximized to the
value G0.

For the inclined mode, equation (40) simplifies to the
following expression,

K ¼ 2"B̂B1x 2þ cos!e þ cos !e ' 2! !pp

! "# $1=2
; ð53Þ

where the positive sign (+) corresponds to the top–bottom
energy shift and the negative sign (#) corresponds to the left–
right energy shift. As found in the general case, there are no K
gradients for linear polarization of Apple X. All the results
presented in this section also hold for the Delta undulator
type, with the unique distinction that in this design no system
is available to set the gap.

4.3. Delta LEPP-CHESS

To analyse the Delta LEPP-CHESS type undulator, the
symmetry seen in equation (4) is no longer valid. On the
contrary, this cross section follows a symmetry with respect to
the 45( axes. To study this cross section, it is possible to use a
rotational symmetry in steps of 90( in place of equation (4),

Rn ¼
0 #1
1 0

& 'n#1

: ð54Þ

Following the analysis defined in x2 and x3, it is then possible
to estimate the field and the gradient. Instead of applying this
methodology, the previously calculated Z% functions can be
used directly after applying a simple axis rotation of 45(,

Q ¼ 1ffiffiffi
2
p 1 #1

1 1

& '
; ð55Þ

research papers

J. Synchrotron Rad. (2017). 24, 600–608 M. Calvi et al. ) Apple-type undulators 605

to equation (10) and to equation (11), respectively, QB̂B and
QĴJQ!1. This approach also allows the use of the previously
calculated magnetic field and Jacobian in the original refer-
ence frame and their properties: B̂Bx1 = B̂By1 and @xB̂B1x = @yB̂B1y.
Therefore, the main results of this calculation are expressed as
follows,

B̂Bx

B̂yBy

" #

¼ 1ffiffiffi
2
p Zx !Zy

Zx Zy

" #
# 1

1

" #
B̂B1x; ð56Þ

@xB̂Bx

@yB̂By

" #

¼ Zxx !Zxy

Zxx Zxy

" #
# @xB̂B1x

@yB̂B1x

" #

; ð57Þ

@yB̂Bx ¼ @xB̂By ¼ 0: ð58Þ

The K-value for the parallel mode is identical to the one
evaluated for the Apple X case and is repeated for comple-
teness’ sake in equation (59) below,

K ¼ 4!B̂Bx1 cos 1
2"e: ð59Þ

The K gradient, on the contrary, is present simultaneously in
both planes as calculated in equation (60) below,

@xK ¼ & 1ffiffi
2
p G0 sin 1

2"e sin"p;

@yK ¼ þ 1ffiffi
2
p G0 sin 1

2"e sin"p;
ð60Þ

where the positive sign (+) represents the top–bottom energy
shift and the negative sign (!) stands for the left–right energy
shift. This is the major difference between this device and all
other devices that are analysed in this paper. Its imple-
mentation in a facility has to be carefully evaluated by also
taking into account the result of equation (60).

For the antiparallel mode, the results follow the general
rule: no K gradient is present. The expression of K is very
similar to that observed for Apple X [equation (53)], except
for a change in sign. No change in signs is seen for the top–
bottom and the left–right shifts, as shown in equation (61)
below,

K ¼ 2!B̂B1x 2þ cos"e þ cos "e þ 2" !pp

$ %& '1=2
: ð61Þ

5. Model versus simulation for the Apple X

The transversal gradient of an Apple X undulator has been
evaluated with the help of the computer code RADIA to
verify the quality of the analytical approach presented in this
article and to highlight its limitations. The formulas derived for
K have already been proven by other authors and are widely
supported by experimental results. Thus, only the results
concerning the transverse gradient are reported in this section.
The geometry and the material properties of the magnetic
structure are presented in Fig. 3 and in Table 1, respectively.

To evaluate equation (51), the first step is to numerically
calculate K0 and G0 as formulated in equations (50) and (49),
respectively (see Fig. 4). The results of both calculations are

fitted with the following function (used for the K versus gap of
a hybrid magnetic structure),

A exp !b
g

#U

þ c
g2

#2
U

( )
; ð62Þ

where the independent variable g is the gap. In Table 2 the
coefficients are listed for both K0ðgÞ and G0ðgÞ. In Fig. 5,
equation (51) is estimated both analytically (solid line) and
numerically (markers). For completeness’ sake, equation (52)
is presented in Fig. 6. There is a very good agreement between
the analytical model and the numerical calculation, and the
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Figure 3
Magnetic model of the Apple X undulator used for the example. The
actual model consists of eight periods while in this picture only four have
been drawn.

Table 1
Simulation parameters for the Apple X example.

Parameter Unit

#U 40.0 mm
Magnet material Sm2Co17 –
Remanence 1.08 T
Number of periods 8 –
Magnet edge 30.0 mm
Magnet chamfer 5.0 mm

Figure 4
The values of K0 and G0 have been calculated as a function of the
undulator (Apple X) gap. The numerical calculation (red markers) are
presented together with the fitting functions (solid black line) introduced
in equation (62).
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The K-value for the parallel mode is identical to the one
evaluated for the Apple X case and is repeated for comple-
teness’ sake in equation (59) below,

K ¼ 4!B̂Bx1 cos 1
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where the positive sign (+) represents the top–bottom energy
shift and the negative sign (!) stands for the left–right energy
shift. This is the major difference between this device and all
other devices that are analysed in this paper. Its imple-
mentation in a facility has to be carefully evaluated by also
taking into account the result of equation (60).

For the antiparallel mode, the results follow the general
rule: no K gradient is present. The expression of K is very
similar to that observed for Apple X [equation (53)], except
for a change in sign. No change in signs is seen for the top–
bottom and the left–right shifts, as shown in equation (61)
below,
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5. Model versus simulation for the Apple X

The transversal gradient of an Apple X undulator has been
evaluated with the help of the computer code RADIA to
verify the quality of the analytical approach presented in this
article and to highlight its limitations. The formulas derived for
K have already been proven by other authors and are widely
supported by experimental results. Thus, only the results
concerning the transverse gradient are reported in this section.
The geometry and the material properties of the magnetic
structure are presented in Fig. 3 and in Table 1, respectively.

To evaluate equation (51), the first step is to numerically
calculate K0 and G0 as formulated in equations (50) and (49),
respectively (see Fig. 4). The results of both calculations are

fitted with the following function (used for the K versus gap of
a hybrid magnetic structure),
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where the independent variable g is the gap. In Table 2 the
coefficients are listed for both K0ðgÞ and G0ðgÞ. In Fig. 5,
equation (51) is estimated both analytically (solid line) and
numerically (markers). For completeness’ sake, equation (52)
is presented in Fig. 6. There is a very good agreement between
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The K-value for the parallel mode is identical to the one
evaluated for the Apple X case and is repeated for comple-
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where the positive sign (+) represents the top–bottom energy
shift and the negative sign (!) stands for the left–right energy
shift. This is the major difference between this device and all
other devices that are analysed in this paper. Its imple-
mentation in a facility has to be carefully evaluated by also
taking into account the result of equation (60).

For the antiparallel mode, the results follow the general
rule: no K gradient is present. The expression of K is very
similar to that observed for Apple X [equation (53)], except
for a change in sign. No change in signs is seen for the top–
bottom and the left–right shifts, as shown in equation (61)
below,
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5. Model versus simulation for the Apple X

The transversal gradient of an Apple X undulator has been
evaluated with the help of the computer code RADIA to
verify the quality of the analytical approach presented in this
article and to highlight its limitations. The formulas derived for
K have already been proven by other authors and are widely
supported by experimental results. Thus, only the results
concerning the transverse gradient are reported in this section.
The geometry and the material properties of the magnetic
structure are presented in Fig. 3 and in Table 1, respectively.

To evaluate equation (51), the first step is to numerically
calculate K0 and G0 as formulated in equations (50) and (49),
respectively (see Fig. 4). The results of both calculations are

fitted with the following function (used for the K versus gap of
a hybrid magnetic structure),

A exp !b
g

#U

þ c
g2

#2
U

( )
; ð62Þ

where the independent variable g is the gap. In Table 2 the
coefficients are listed for both K0ðgÞ and G0ðgÞ. In Fig. 5,
equation (51) is estimated both analytically (solid line) and
numerically (markers). For completeness’ sake, equation (52)
is presented in Fig. 6. There is a very good agreement between
the analytical model and the numerical calculation, and the
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Figure 3
Magnetic model of the Apple X undulator used for the example. The
actual model consists of eight periods while in this picture only four have
been drawn.

Table 1
Simulation parameters for the Apple X example.

Parameter Unit

#U 40.0 mm
Magnet material Sm2Co17 –
Remanence 1.08 T
Number of periods 8 –
Magnet edge 30.0 mm
Magnet chamfer 5.0 mm

Figure 4
The values of K0 and G0 have been calculated as a function of the
undulator (Apple X) gap. The numerical calculation (red markers) are
presented together with the fitting functions (solid black line) introduced
in equation (62).



to equation (10) and to equation (11), respectively, QB̂B and
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# 1
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; ð57Þ

@yB̂Bx ¼ @xB̂By ¼ 0: ð58Þ

The K-value for the parallel mode is identical to the one
evaluated for the Apple X case and is repeated for comple-
teness’ sake in equation (59) below,

K ¼ 4!B̂Bx1 cos 1
2"e: ð59Þ

The K gradient, on the contrary, is present simultaneously in
both planes as calculated in equation (60) below,

@xK ¼ & 1ffiffi
2
p G0 sin 1

2"e sin"p;

@yK ¼ þ 1ffiffi
2
p G0 sin 1

2"e sin"p;
ð60Þ

where the positive sign (+) represents the top–bottom energy
shift and the negative sign (!) stands for the left–right energy
shift. This is the major difference between this device and all
other devices that are analysed in this paper. Its imple-
mentation in a facility has to be carefully evaluated by also
taking into account the result of equation (60).

For the antiparallel mode, the results follow the general
rule: no K gradient is present. The expression of K is very
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$ %& '1=2
: ð61Þ
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verify the quality of the analytical approach presented in this
article and to highlight its limitations. The formulas derived for
K have already been proven by other authors and are widely
supported by experimental results. Thus, only the results
concerning the transverse gradient are reported in this section.
The geometry and the material properties of the magnetic
structure are presented in Fig. 3 and in Table 1, respectively.

To evaluate equation (51), the first step is to numerically
calculate K0 and G0 as formulated in equations (50) and (49),
respectively (see Fig. 4). The results of both calculations are
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research papers

606 M. Calvi et al. ( Apple-type undulators J. Synchrotron Rad. (2017). 24, 600–608

Figure 3
Magnetic model of the Apple X undulator used for the example. The
actual model consists of eight periods while in this picture only four have
been drawn.

Table 1
Simulation parameters for the Apple X example.

Parameter Unit

#U 40.0 mm
Magnet material Sm2Co17 –
Remanence 1.08 T
Number of periods 8 –
Magnet edge 30.0 mm
Magnet chamfer 5.0 mm
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The values of K0 and G0 have been calculated as a function of the
undulator (Apple X) gap. The numerical calculation (red markers) are
presented together with the fitting functions (solid black line) introduced
in equation (62).
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Within the SwissFEL project at the Paul Scherrer Institute (PSI), the hard X-ray
line (Aramis) has been equipped with short-period in-vacuum undulators,
known as the U15 series. The undulator design has been developed within the
institute itself, while the prototyping and the series production have been
implemented through a close collaboration with a Swiss industrial partner, Max
Daetwyler AG, and several subcontractors. The magnetic measurement system
has been built at PSI, together with all the data analysis tools. The Hall probe
has been designed for PSI by the Swiss company SENIS. In this paper the
general concepts of both the mechanical and the magnetic properties of the U15
series of undulators are presented. A description of the magnetic measurement
equipment is given and the results of the magnetic measurement campaign
are reported. Lastly, the data reduction methods and the associated models are
presented and their actual implementation in the control system is detailed.

1. Introduction

As part of the general strategy of the Paul Scherrer Institute
(PSI) regarding the development of light sources for research,
a compact free-electron laser (FEL) called SwissFEL has been
designed and constructed (Milne et al., 2017).

SwissFEL consists of a low-emittance injector (Schietinger
et al., 2016), a linac based on C-band accelerating technology
and two beamlines: a soft X-ray beamline, Athos, which is
under construction, covering the photon wavelength range
between 0.6 and 4.9 nm, and a hard X-ray beamline, Aramis,
which is under commissioning, covering the wavelength range
between 1 and 7 Å (see Fig. 1). Short-period in-vacuum
undulators have been designed and installed within Aramis to
achieve short emission wavelengths down to the interatomic
scale with relatively low electron energies (see Table 1). Their
magnetic structure has been designed only for on-axis
operation, enough for a linac-driven FEL, thus reducing the
magnetic forces while enhancing the field on the magnetic axis
(see x2 for more details). To compromise between the total
length of the beamline and the logistics of a single module, a
length of 4.0 m has been selected. A distance of about 0.75 m
between each pair of modules has been allocated for the
installation of focusing elements, phase shifters, alignment
devices and beam diagnostics (see Fig. 2 for more details).

The modelling of the undulator beamline will be addressed
in detail following a description of the U15 design and a
summary of the magnetic measurement results. The phase
shifters will then be discussed since they are essential to be
able to operate the different modules together as a single long
undulator as well as the active feed-forward orbit correction
scheme based on the results of the magnetic measurements.
This complex multi-system model is referred to as SUBLIME

ISSN 1600-5775
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Within the SwissFEL project at the Paul Scherrer Institute (PSI), the hard X-ray
line (Aramis) has been equipped with short-period in-vacuum undulators,
known as the U15 series. The undulator design has been developed within the
institute itself, while the prototyping and the series production have been
implemented through a close collaboration with a Swiss industrial partner, Max
Daetwyler AG, and several subcontractors. The magnetic measurement system
has been built at PSI, together with all the data analysis tools. The Hall probe
has been designed for PSI by the Swiss company SENIS. In this paper the
general concepts of both the mechanical and the magnetic properties of the U15
series of undulators are presented. A description of the magnetic measurement
equipment is given and the results of the magnetic measurement campaign
are reported. Lastly, the data reduction methods and the associated models are
presented and their actual implementation in the control system is detailed.

1. Introduction

As part of the general strategy of the Paul Scherrer Institute
(PSI) regarding the development of light sources for research,
a compact free-electron laser (FEL) called SwissFEL has been
designed and constructed (Milne et al., 2017).

SwissFEL consists of a low-emittance injector (Schietinger
et al., 2016), a linac based on C-band accelerating technology
and two beamlines: a soft X-ray beamline, Athos, which is
under construction, covering the photon wavelength range
between 0.6 and 4.9 nm, and a hard X-ray beamline, Aramis,
which is under commissioning, covering the wavelength range
between 1 and 7 Å (see Fig. 1). Short-period in-vacuum
undulators have been designed and installed within Aramis to
achieve short emission wavelengths down to the interatomic
scale with relatively low electron energies (see Table 1). Their
magnetic structure has been designed only for on-axis
operation, enough for a linac-driven FEL, thus reducing the
magnetic forces while enhancing the field on the magnetic axis
(see x2 for more details). To compromise between the total
length of the beamline and the logistics of a single module, a
length of 4.0 m has been selected. A distance of about 0.75 m
between each pair of modules has been allocated for the
installation of focusing elements, phase shifters, alignment
devices and beam diagnostics (see Fig. 2 for more details).

The modelling of the undulator beamline will be addressed
in detail following a description of the U15 design and a
summary of the magnetic measurement results. The phase
shifters will then be discussed since they are essential to be
able to operate the different modules together as a single long
undulator as well as the active feed-forward orbit correction
scheme based on the results of the magnetic measurements.
This complex multi-system model is referred to as SUBLIME
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Within the SwissFEL project at the Paul Scherrer Institute (PSI), the hard X-ray
line (Aramis) has been equipped with short-period in-vacuum undulators,
known as the U15 series. The undulator design has been developed within the
institute itself, while the prototyping and the series production have been
implemented through a close collaboration with a Swiss industrial partner, Max
Daetwyler AG, and several subcontractors. The magnetic measurement system
has been built at PSI, together with all the data analysis tools. The Hall probe
has been designed for PSI by the Swiss company SENIS. In this paper the
general concepts of both the mechanical and the magnetic properties of the U15
series of undulators are presented. A description of the magnetic measurement
equipment is given and the results of the magnetic measurement campaign
are reported. Lastly, the data reduction methods and the associated models are
presented and their actual implementation in the control system is detailed.

1. Introduction

As part of the general strategy of the Paul Scherrer Institute
(PSI) regarding the development of light sources for research,
a compact free-electron laser (FEL) called SwissFEL has been
designed and constructed (Milne et al., 2017).

SwissFEL consists of a low-emittance injector (Schietinger
et al., 2016), a linac based on C-band accelerating technology
and two beamlines: a soft X-ray beamline, Athos, which is
under construction, covering the photon wavelength range
between 0.6 and 4.9 nm, and a hard X-ray beamline, Aramis,
which is under commissioning, covering the wavelength range
between 1 and 7 Å (see Fig. 1). Short-period in-vacuum
undulators have been designed and installed within Aramis to
achieve short emission wavelengths down to the interatomic
scale with relatively low electron energies (see Table 1). Their
magnetic structure has been designed only for on-axis
operation, enough for a linac-driven FEL, thus reducing the
magnetic forces while enhancing the field on the magnetic axis
(see x2 for more details). To compromise between the total
length of the beamline and the logistics of a single module, a
length of 4.0 m has been selected. A distance of about 0.75 m
between each pair of modules has been allocated for the
installation of focusing elements, phase shifters, alignment
devices and beam diagnostics (see Fig. 2 for more details).

The modelling of the undulator beamline will be addressed
in detail following a description of the U15 design and a
summary of the magnetic measurement results. The phase
shifters will then be discussed since they are essential to be
able to operate the different modules together as a single long
undulator as well as the active feed-forward orbit correction
scheme based on the results of the magnetic measurements.
This complex multi-system model is referred to as SUBLIME
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Within the SwissFEL project at the Paul Scherrer Institute (PSI), the hard X-ray
line (Aramis) has been equipped with short-period in-vacuum undulators,
known as the U15 series. The undulator design has been developed within the
institute itself, while the prototyping and the series production have been
implemented through a close collaboration with a Swiss industrial partner, Max
Daetwyler AG, and several subcontractors. The magnetic measurement system
has been built at PSI, together with all the data analysis tools. The Hall probe
has been designed for PSI by the Swiss company SENIS. In this paper the
general concepts of both the mechanical and the magnetic properties of the U15
series of undulators are presented. A description of the magnetic measurement
equipment is given and the results of the magnetic measurement campaign
are reported. Lastly, the data reduction methods and the associated models are
presented and their actual implementation in the control system is detailed.

1. Introduction

As part of the general strategy of the Paul Scherrer Institute
(PSI) regarding the development of light sources for research,
a compact free-electron laser (FEL) called SwissFEL has been
designed and constructed (Milne et al., 2017).

SwissFEL consists of a low-emittance injector (Schietinger
et al., 2016), a linac based on C-band accelerating technology
and two beamlines: a soft X-ray beamline, Athos, which is
under construction, covering the photon wavelength range
between 0.6 and 4.9 nm, and a hard X-ray beamline, Aramis,
which is under commissioning, covering the wavelength range
between 1 and 7 Å (see Fig. 1). Short-period in-vacuum
undulators have been designed and installed within Aramis to
achieve short emission wavelengths down to the interatomic
scale with relatively low electron energies (see Table 1). Their
magnetic structure has been designed only for on-axis
operation, enough for a linac-driven FEL, thus reducing the
magnetic forces while enhancing the field on the magnetic axis
(see x2 for more details). To compromise between the total
length of the beamline and the logistics of a single module, a
length of 4.0 m has been selected. A distance of about 0.75 m
between each pair of modules has been allocated for the
installation of focusing elements, phase shifters, alignment
devices and beam diagnostics (see Fig. 2 for more details).

The modelling of the undulator beamline will be addressed
in detail following a description of the U15 design and a
summary of the magnetic measurement results. The phase
shifters will then be discussed since they are essential to be
able to operate the different modules together as a single long
undulator as well as the active feed-forward orbit correction
scheme based on the results of the magnetic measurements.
This complex multi-system model is referred to as SUBLIME
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Within the SwissFEL project at the Paul Scherrer Institute (PSI), the hard X-ray
line (Aramis) has been equipped with short-period in-vacuum undulators,
known as the U15 series. The undulator design has been developed within the
institute itself, while the prototyping and the series production have been
implemented through a close collaboration with a Swiss industrial partner, Max
Daetwyler AG, and several subcontractors. The magnetic measurement system
has been built at PSI, together with all the data analysis tools. The Hall probe
has been designed for PSI by the Swiss company SENIS. In this paper the
general concepts of both the mechanical and the magnetic properties of the U15
series of undulators are presented. A description of the magnetic measurement
equipment is given and the results of the magnetic measurement campaign
are reported. Lastly, the data reduction methods and the associated models are
presented and their actual implementation in the control system is detailed.

1. Introduction

As part of the general strategy of the Paul Scherrer Institute
(PSI) regarding the development of light sources for research,
a compact free-electron laser (FEL) called SwissFEL has been
designed and constructed (Milne et al., 2017).

SwissFEL consists of a low-emittance injector (Schietinger
et al., 2016), a linac based on C-band accelerating technology
and two beamlines: a soft X-ray beamline, Athos, which is
under construction, covering the photon wavelength range
between 0.6 and 4.9 nm, and a hard X-ray beamline, Aramis,
which is under commissioning, covering the wavelength range
between 1 and 7 Å (see Fig. 1). Short-period in-vacuum
undulators have been designed and installed within Aramis to
achieve short emission wavelengths down to the interatomic
scale with relatively low electron energies (see Table 1). Their
magnetic structure has been designed only for on-axis
operation, enough for a linac-driven FEL, thus reducing the
magnetic forces while enhancing the field on the magnetic axis
(see x2 for more details). To compromise between the total
length of the beamline and the logistics of a single module, a
length of 4.0 m has been selected. A distance of about 0.75 m
between each pair of modules has been allocated for the
installation of focusing elements, phase shifters, alignment
devices and beam diagnostics (see Fig. 2 for more details).

The modelling of the undulator beamline will be addressed
in detail following a description of the U15 design and a
summary of the magnetic measurement results. The phase
shifters will then be discussed since they are essential to be
able to operate the different modules together as a single long
undulator as well as the active feed-forward orbit correction
scheme based on the results of the magnetic measurements.
This complex multi-system model is referred to as SUBLIME
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•  This	  approach	  can	  be	  used	  with	  any	  undulator	  type:	  
- A	  calibrated	  mover	  system	  is	  required	  to	  tune	  the	  gradient	  in	  a	  TGU	  
- A	  photon	  diagnosJc	  system	  (mono	  +	  diode)	  would	  simplify	  the	  
operaJon	  of	  a	  TGU	  very	  much	  

•  In	  Apple	  undulators	  (in	  p	  mode)	  it	  is	  possible	  to	  introduce	  a	  gradient	  on	  
axis	  and	  changing	  it	  conJnuously	  to	  get	  the	  opJmum	  taper	  
- In	  Apple	  X	  (Delta)	  it	  is	  simpler	  than	  in	  regular	  Apple	  I,II,III	  
- In	  Apple	  X	  (Delta)	  it	  is	  possible	  to	  introduce	  gradient	  on	  axis	  also	  in	  
linear	  polarisaJon	  if	  operated	  in	  asymmetric	  mode	  

•  Long	  dipole	  corrector	  coil	  should	  be	  designed	  to	  compensate	  the	  
bending	  introduced	  by	  natural	  focusing	  and	  gradients,	  if	  required	  

•  The	  actual	  pole	  to	  pole	  scamering	  DK/K	  should	  be	  considered	  during	  
simulaJon:	  
- 0.1%	  is	  the	  status	  of	  the	  art	  
- 0.01%	  could	  be	  achieved	  with	  addiJonal	  efforts	  if	  required	  

Conclusions 
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