

Marco Calvi:: ID group :: Paul Scherrer Institut

Intra undulator module linear taper with tilted TGU modules

Physics \& Applications Of High Efficiency Free-Electron Lasers Workshop

April 11-13, 2018 at the UCLA California NanoSystem Institute

- Why linear tape undulators?
- Transverse gradient undulator (TGU)
-How to introduce a linear taper?
- In-vacuum planar undulator, U15 @ SwissFEL
-Off axis operation
- Mover system
- In-situ alignment
- Apple undulators, U38 @ SwissFEL
- Introduction of complex formalism to define K \& its gradient
-Example of Apple X operation
- Open issues
- Orbit distortion
- Magnetic errors ($\Delta \mathrm{K} / \mathrm{K}$)
- Conclusions

Why linear tape undulators?

- The strategy of approximating linear taper with stepwise taper with short undulator module is quickly ineffective especially when going smaller than a gain length:
- Filling factor (effective undulator length over full length)
-Alignment
-Phase matching
- There are applications where the required taper is strong:
- example of slicing of an energy modulated pulse that within one or two gain lengths the beam should be shifted out of resonance unless the slippage compensate it by a change in local mean energy of the slice over which the field (spike) slips.
- Application in high power FELs: a continuous taper will give higher power than a step-wise taper.

"

"ancle

If you have such an undulator, good for you and use it.... But if you do not have this feature, like many of us, then you can try with a TGU

- Why linear tape undulators?
- Transverse gradient undulator (TGU)
-How to introduce a linear taper?
- Example of In-vacuum planar undulator, U15 @ SwissFEL
-Off axis operation
- Mover system
- In-situ alignment
- Apple undulators:
- Introduction of complex formalism to define K \& its gradient
- Example of Apple X operation
- Open issues
- Orbit distortion
- Magnetic errors ($\triangle \mathrm{K} / \mathrm{K}$)
- Conclusions

The definition of taper (t) used all along this presentation:

Classical TGU

"nusatanic Classical TGU

Top view

paul scherrer institut
 ت-Tl Overview

- Why linear tape undulators?
- Transverse gradient undulator (TGU)
- How to introduce a linear taper?
- In-vacuum planar undulator, U15 @ SwissFEL
-Off axis operation
- Mover system
- In-situ alignment
- Apple undulators:
- Introduction of complex formalism to define K \& its gradient
- Example of Apple X operation
- Open issues
- Orbit distortion
- Magnetic errors ($\triangle \mathrm{K} / \mathrm{K}$)
- Conclusions

Fan In-vacuum undulator: operation example

$\sqrt{8-20}$ Camshaft Mover system

Mono: 2395 eV

Mono: 2395 eV

",

Mono: 2395 eV
$1^{\text {st }}$ harmonic

"

Mono: 2395 eV
$1^{\text {st }}$ harmonic

- Why linear tape undulators?
- Transverse gradient undulator (TGU)
- How to introduce a linear taper?
- Example of In-vacuum planar undulator, U15 @ SwissFEL
-Off axis operation
- Mover system
- |n-situ alignment
- Apple undulators:
- Introduction of complex formalism to define K \& its gradient - Example of Apple X operation
- Open issues
- Orbit distortion
- Magnetic errors ($\Delta K / K$)
- Conclusions

"Fans Apple Undulators

ans Apple Undulators: Operation modes

- Parallel mode (p): elliptical polarisation
- Anti parallel mode ($\overline{\mathrm{p}}$):
linear polarisation with arbitrary angle
- Energy mode (e): to change the photon energy @ fix gap

This last mode introduces gradients on axis for elliptical polarisation!!

$$
\begin{gathered}
\mathbf{B}(\mathbf{X}, z)=\sum_{n=1}^{4} \mathbf{B}_{n}\left(\mathbf{X}, z-z_{n}\right) \\
\mathbf{B}_{n}(\mathbf{X}, z)=\mathbf{R}_{n} \cdot \mathbf{B}_{1}\left(\mathbf{R}_{n}^{-1} \cdot \mathbf{X}, z\right) \\
\mathbf{R}_{1}=\left[\begin{array}{cc}
+1 & 0 \\
0 & +1
\end{array}\right] \mathbf{R}_{2}=\left[\begin{array}{cc}
-1 & 0 \\
0 & +1
\end{array}\right] \\
\mathbf{R}_{3}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \mathbf{R}_{4}=\left[\begin{array}{cc}
+1 & 0 \\
0 & -1
\end{array}\right] \\
\hat{\mathbf{B}}_{n}(\mathbf{X}, \omega)=\int_{-\infty}^{+\infty} \mathbf{B}_{n}(\mathbf{X}, z) \exp (-i \omega z) \mathrm{d} z \\
\hat{\mathbf{B}}(\mathbf{X})=\sum_{n=1}^{4} \exp \left(i \phi_{n}\right) \mathbf{R}_{n} \cdot \hat{\mathbf{B}}_{1}\left(\mathbf{R}_{n}^{-1} \cdot \mathbf{X}\right) \\
\hat{\mathbf{J}}(\mathbf{X})=\sum_{n=1}^{4} \exp \left(i \phi_{n}\right) \mathbf{R}_{n} \cdot \hat{\mathbf{J}}_{1}\left(\mathbf{R}_{n}^{-1} \cdot \mathbf{X}\right) \cdot \mathbf{R}_{n}^{-1}
\end{gathered}
$$

"nsall Apple Undulators

$$
\begin{array}{r}
\mathbf{B}(\mathbf{X}, z)=\sum_{n=1}^{4} \mathbf{B}_{n}\left(\mathbf{X}, z-z_{n}\right) \\
\mathbf{B}_{n}(\mathbf{X}, z)=\mathbf{R}_{n} \cdot \mathbf{B}_{1}\left(\mathbf{R}_{n}^{-1} \cdot \mathbf{X}, z\right) \\
\mathbf{R}_{1}=\left[\begin{array}{cc}
+1 & 0 \\
0 & +1
\end{array}\right] \mathbf{R}_{2}=\left[\begin{array}{cc}
-1 & 0 \\
0 & +1
\end{array}\right] \\
\mathbf{R}_{3}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \mathbf{R}_{4}=\left[\begin{array}{cc}
+1 & 0 \\
0 & -1
\end{array}\right]
\end{array}
$$

$$
\hat{\mathbf{B}}_{n}(\mathbf{X}, \omega)=\int_{-\infty}^{+\infty} \mathbf{B}_{n}(\mathbf{X}, z) \exp (-i \omega z) \mathrm{d} z
$$

$$
\hat{\mathbf{B}}=\left[\sum_{n=1}^{4} \exp \left(i \phi_{n}\right) \mathbf{R}_{n}\right] \cdot \hat{\mathbf{B}}_{1} \quad \begin{aligned}
& \text { Reducing our } \\
& \text { investigation to the }
\end{aligned}
$$

$$
\hat{\mathbf{J}}=\sum_{n=1}^{4} \exp \left(i \phi_{n}\right) \mathbf{R}_{n} \cdot \hat{\mathbf{J}}_{1} \cdot \mathbf{R}_{n}^{-1} \text { on axis fields }
$$

", "ntali Apple Undulators

$$
\begin{gathered}
\text { B-domain } \\
\hat{\mathbf{B}}=\left[\sum_{n=1}^{4} \exp \left(i \phi_{n}\right) \mathbf{R}_{n}\right] \cdot \hat{\mathbf{B}}_{1} \\
\hat{\mathbf{J}}=\sum_{n=1}^{4} \exp \left(i \phi_{n}\right) \mathbf{R}_{n} \cdot \hat{\mathbf{J}}_{1} \cdot \mathbf{R}_{n}^{-1}
\end{gathered}
$$

The K and its gradient for a generic Apple undulator in elliptical polarisation configuration:

$$
\begin{array}{ll}
K=2 \sqrt{2} \kappa \hat{B}_{1} \cos \frac{1}{2} \phi_{\mathrm{e}} & \hat{B}_{1}=\left[\hat{B}_{1 x}^{2}\left(1-\cos \phi_{\mathrm{p}}\right)+\hat{B}_{1 y}^{2}\left(1+\cos \phi_{\mathrm{p}}\right)\right]^{1 / 2} \\
\partial_{x} K=G_{0} \sin \frac{1}{2} \phi_{\mathrm{e}} \sin \phi_{\mathrm{p}} . & G_{0}=2 \sqrt{2} \kappa\left(\hat{B}_{1 x} \partial_{x} \hat{B}_{1 x}-\hat{B}_{1 y} \partial_{x} \hat{B}_{1 y}\right) / \hat{B}_{1}
\end{array}
$$

Apple X (or Delta II): all get simpler

$$
\begin{aligned}
& K=K_{0} \cos \frac{1}{2} \phi_{\mathrm{e}} \quad K_{0}=4 \kappa \hat{B}_{x 1} \\
& \partial_{x} K=G_{0}\left(1-\xi^{2}\right)^{1 / 2} \quad G_{0}=2 \kappa\left(\partial_{x} \hat{B}_{1 x}-\partial_{x} \hat{B}_{1 y}\right) \\
& \\
& \xi=K / K_{0}
\end{aligned}
$$

Example of U40 for Athos with $\mathrm{Br}=1.08 \mathrm{~T}$
"

Apple X (or Delta II): Operational example

Apple X (or Delta II): Operational example

Apple X (or Delta II): Operational example

paul scherrer institut
 Oll Overview

- Why linear tape undulators?
- Transverse gradient undulator (TGU)
- How to introduce a linear taper?
- Example of In-vacuum planar undulator, U15 @ SwissFEL
-Off axis operation
- Mover system
-In-situ alignment
- Apple undulators:
- Introduction of complex formalism to define K \& its gradient
- Example of Apple X operation
- Open issues
- Orbit distortion
- Magnetic errors ($\Delta \mathrm{K} / \mathrm{K}$)
- Conclusions

" $=$ "nlo Orbit distortion

Natural focusing

$$
\begin{aligned}
& \frac{d^{2} y}{d z^{2}}+\hat{k} y=0 \\
& \hat{k}=\left(\frac{e}{\gamma m c}\right)^{2} \frac{b^{2}}{2} \\
& \varphi=\sqrt{\hat{k}} L
\end{aligned}
$$

Gradient bending

$$
\frac{d^{2} x}{d z^{2}}=\frac{e}{\gamma m c}(b+g x) \sin \left(2 \pi z / \lambda_{u}\right)
$$

J. Synchrotron Rad. (2018). 25

- This approach can be used with any undulator type:
-A calibrated mover system is required to tune the gradient in a TGU
-A photon diagnostic system (mono + diode) would simplify the operation of a TGU very much
- In Apple undulators (in p mode) it is possible to introduce a gradient on axis and changing it continuously to get the optimum taper
- In Apple X (Delta) it is simpler than in regular Apple I,II,III
-In Apple X (Delta) it is possible to introduce gradient on axis also in linear polarisation if operated in asymmetric mode
- Long dipole corrector coil should be designed to compensate the bending introduced by natural focusing and gradients, if required
- The actual pole to pole scattering DK/K should be considered during simulation:
-0.1% is the status of the art
-0.01% could be achieved with additional efforts if required

[G] Acknowledgements

Acknoledgmens:

Th.Schmidt
S.Reiche
E.Prat
E.Ferrari
S.Bettoni
C. Arrell
U.Wagner
M.Brügger
S.Danner
C.Kittel
A.Cassar
C.Camenzuli
N.Sammut

