

What is the reionization history of the IGM?

Constraints from Ouchi+10, McGreer+2014, Mesinger+15, Sobacchi+15

What is the reionization history of the IGM?

How will ELTs help?

Use galaxy spectral properties to constrain the IGM

Forward modelling framework to connect Lyα observations to IGM state

Is the rapid decline in Lya visibility at z>6 due to reionization?

data from Stark+11, Schenker+14, see also Treu+13, Faisst+14, Tilvi+14, Pentericci+14,+18, de Barros+17

How do we connect Lya observations to the neutral fraction, x_{HI} ?

A new forward-modeling framework combining realistic IGM topologies and ISM properties

$$\mathcal{T}(\overline{x}_{ ext{HI}}, M_h, \Delta v) = \int dv \, J_{lpha}(M_h, \Delta v, v) \, e^{- au_{ ext{IGM}}(\overline{x}_{ ext{HI}}, M_h, v)}$$

Transmission of Lya depends on galaxy luminosity via environment and velocity offset

Mostly neutral

 $Ly\alpha$ transmission fraction, T_{IGM}

Bayesian inference on Lya observations (via EW distribution) to infer the neutral fraction

Using the full distribution of Lya EW at z~7 places tight constraints on the neutral fraction

Mason+2018a

Using the full distribution of Lya EW at z~7 places tight constraints on the neutral fraction

inferred from sample of 68 LBGs in Pentericci+14

KMOS lens-amplified spectroscopic survey

PI: Adriano Fontana 120 hr Large Program, P96 - 99 Fields of 6 massive clusters

Search for Ly α to measure timeline of reionization

53 z > 7 candidate targets

- 3 confirmed with ALMA

Kinematics of low mass star-forming galaxies

 \sim 70 z=1-2 targets (Mason+17, Girard+ in prep)

7 - 15 hr exposures, PSF ~ 0.6", YJ: 1 - 1.35µm, R~3400 Following-up HST photometric + grism targets

Highest redshift KMOS line confirmation?

CIV at z=6.11

- Indicates hard ionizing radiation from hot, massive, low metallicity stars
- Previously detected by Mainali+17, Schmidt+ 17

Using full spectra in Bayesian inference, marginalize over redshift and linewidth

likelihood

probability of getting data: $f(\lambda)$ given IGM neutral fraction, redshift and observed galaxy properties

priors

redshift - photo-z FWHM - empirical x_{HI} - uniform [0,1]

z~8 neutral fraction inferred from non-detections + marginalizing over redshift and FWHM

Lya linewidth impacts inference: Broader lines will have lower S/N

Posterior pretty insensitive for 100 < FWHM < 400 km/s

High R, deep data will resolve Lya lines

The universe is getting very neutral at z>6... consistent with low ionizing photon escape fraction

Puzzling z>6 Ly α detections reveal shortcomings in reionization models

Matthee+18

Stark+17

Castellano+18

blue Ly α peaks at z>6

direct evidence of >2 Mpc ionized bubble?

Ly α from z>7.5 UV bright galaxies extreme Ly α emitters? larger ionized bubbles?

Lya from only bright galaxies in overdensity complex neutral hydrogen distribution?

Summary

Evolving transmission of Lya from galaxies contains information about the **history of reionization**

- IGM and ISM effects included via forward-modelling to make inferences from Ly α observation
- KLASS finds no S/N > 5 Lyα in
 53 z > 7 LBG candidates. EW < 58Å
- Using non-detections to constrain
 IGM neutral fraction at z~8: >76% neutral

ELTs will **increase accuracy** of global + sightline reionization timeline, and enable **investigation of ionized bubbles** to constrain ionizing sources

UV magnitude distribution peaks around -18 (delensed)

As the IGM becomes more neutral $Ly\alpha$ EWs decrease

100

Transmission of Lya depends on galaxy luminosity via environment and velocity offset

 $Ly\alpha$ transmission fraction, T_{IGM}

The shape of the Lya line emerging from the ISM affects the probability of transmission through the IGM

Lya photons must diffuse in frequency to escape dense ISM

The shape of the Lya line emerging from the ISM affects the probability of transmission through the IGM

More Doppler-shifted lines are less affected by reionization

Simulation halos are populated with realistic ISM properties

Lya linewidth impacts inference: Use FWHM priors based on z>7 observations

z>7 detections span FWHM <100 - 450 km/s

High R, deep data will resolve Lya lines deep into EoR

Oesch+15, Roberts-Borsani+16, Stark+17, Zitrin+15, Song+16, Finkelstein+13, Shibuya+12, Ono+12, Schenker+12, Vanzella+11, Laporte+17