CCDs	calibration	damic@Snolab	2014 reanalysis	2015 campaign	new results	damic100	Summary	BACK UP

WIMP search status

Javier Tiffenberg[†]

February 19, 2016

†Fermi National Laboratory

*DAMIC Collaboration: Fermilab, U Chicago, U Zurich, Snolab, U Michigan, UNAM, FIUNA, CAB, UFRJ,

U Paris VI & VII

CCDs	calibration	damic@Snolab	2014 reanalysis	2015 campaign	new results	damic100	Summary	BACK UP
00000								

Goal: lower the energy threshold in Si detectors

Detect coherent DM-nucleus interactions by measuring the ionization produced by the nuclear recoils

CCDs	calibration	damic@Snolab	2014 reanalysis	2015 campaign	new results	damic100	Summary	BACK UP
o●ooo	000	0	0	00	00000000	0	O	
Part	ticle ID)						

Data taken at Fermilab (sea level, no radiation shielding)

CCDs	calibration	damic@Snolab	2014 reanalysis	2015 campaign	new results	damic100	Summary	BACK UP
00000								

Detectors:

We use scientific CCDs developed by LBNL microdectors group

- $\,$ o CCDs cooled to 150 K to achieve readout noise RMS $\sim 2~e^-$
- Energy threshold of ${\sim}0.06$ keVee
- pixel size of 15 μ m
- 27x thicker than most CCDs, 675 $\mu {
 m m}$
 - 5.5 gr per CCD
 - diffusion \rightarrow 3D rec \rightarrow identification of surface events

The charge diffuses towards the CCD pixels gates. Depth can be reconstructed from diffusion.

CCDs 000●0

capacitance of the system is set by the SN: $\mbox{C=}0.05\mbox{pF}{\rightarrow}\ \mbox{3}\mu\mbox{V/e}$

- Every readout introduces a 2e⁻ noise
- The CCD allows you to add charge in the sensor (binning) and then readout many pixels as a single one
- This improves signal to noise, effectively increasing the efficiency at low energy

$$S/Noise = \frac{Q}{N_{reads}}\sigma$$

Reading the charge in less pixels is good!

CCDs calibration damic@Snolab 2014 reanalysis 2015 campaign new results damic100 Summary BACK UP o

Energy calibration using X-rays

Nuclear recoil calibration program

Am/Be source

- Photo-neutron source at U. of Chicago
- 0.7 2 keV NR

Neutron scattering (beam)

- Neutron beam at U. of Notre Dame
- 2 20 keV NR

CCDs calibration damic@Snolab 2014 reanalysis 2015 campaign new results damic100 Summary BACK UP of the second se

Nuclear recoil calibration

Discrepancy with Lindhard model below 5 keVee

DAMIC @Snolab (installed Dec12)

Installed at Snolab: 2km of norite overburden \rightarrow 6000m water equivalent

CCDs calibration damic@Snolab 2014 reanalysis 2015 campaign new results damic100 Summary BACK UP oo ooooooo o o o

2014 run (DAMIC-2014): limit reanalysis

 ${\sim}80\%$ of the time in low gain mode (high dynamic range) to identify backgrounds. Little time dedicated to science runs.

2015 campaign: tracking backgrounds

2014 reanalysis

damic@Snolab

calibration

DAMIC background spectrum

2015 campaign

00

new results

damic100

Summary

In production mode

Converged on package design and materials 10 detectors tested and ready for deployment **Will commission during April 2015** BACK UP

CCDs calibration damic@Snolab 2014 reanalysis 2015 campaign new results damic100 Summary BACK UP o

CCD: readout - typical operation for DM searches

We take long exposures to minimize the number of readouts. The exposure is eventually limited by the dark current.

The blank images provide an excelent measurement of the background produced by readout

 ΔLL distribution for E < 0.25 keV $_{\rm ee}$ and cdist < 1.75

CCDs calibration damic@Snolab 2014 reanalysis 2015 campaign new results damic100 Summary BACK UP of the comparison of th

CCDs calibration damic@Snolab 2014 reanalysis 2015 campaign new results damic100 Summary BACK UP of the second se

Data Analysis: events selection - quality cut

calibration new results 0000000

Data Analysis: events selection - quality cut

20 / 34

calibration new results 0000000 Data Analysis: events selection - quality cut

 Δ LL distribution for E < 0.25 keV_{ee} and cdist < 1.75

CCDs	calibration	damic@Snolab	2014 reanalysis	2015 campaign	new results	damic100	Summary	BACK UP
00000	000	0	O	00	00000000	0	O	
Effic	ciency							

0<u>`</u>

0.2

0.3

0.4

0.1

CCDs	calibration	damic@Snolab	2014 reanalysis	2015 campaign	new results	damic100	Summary	BACK UP
00000	000	0	0	00	0000€000	O	O	

23 / 34

1x100 hardware binning

24 / 34

CCDs calibration	damic@Snolab 0	2014 reanalysis O	2015 campaign 00	new results 000000●0	damic100 0	Summary 0	BACK UP		

Limits

90%CL

DAMIC100 reach

90%CL

CCDs 00000	calibration 000	damic@Snolab 0	2014 reanalysis 0	2015 campaign 00	new results	damic100 0	Summary ●	BACK UP

- CCDs are an excellent candidate for detecting low energy DM events. The lack of mass is compensated by the low threshold.
- Nuclear recoil energy calibrated down to threshold

• deviation from Lindhard at low energy

- DAMIC operations at Snolab very reliable and consistent (\sim 95% uptime)
- DAMIC100 in production mode. 10 sensors already packaged ad tested.
- DAMIC100 commissioning in April 2016

CCDs	calibration	damic@Snolab	2014 reanalysis	2015 campaign	new results	damic100	Summary	BACK UP

BACK UP SLIDES

There is a long lived radioactive silicon isotope that is cosmogenically produced in the interaction of cosmic rays with atmospheric argon and other elements

$$\begin{array}{c} 32 \text{Si} \\ 153 \text{ yr} \end{array} \xrightarrow{\beta} \begin{array}{c} 32 \text{P} \\ 227.2 \text{ keV} \end{array} \xrightarrow{32 \text{P}} \begin{array}{c} \beta \\ 14.2 \text{ day} \end{array} \xrightarrow{\beta} \begin{array}{c} 32 \text{S} \end{array}$$

Low energy electrons from β decays could be a significant background in silicon

CCDs calibration damic@Snolab 2014 reanalysis 2015 campaign new results damic100 Summary BACK UP Background from Silicon: candidate ³²Si event ______

The precise position reconstruction in the CCD allows the study of spatial coincidences to measure and veto $^{32}\rm{Si}$ events in the CCD

We observe 13 coincidences Expected from random chance: 6 32 Si decay rate: 110^{+150}_{-90} Kg $^{-1}$ d $^{-1}$ 90% CL

CCDs	calibration	damic@Snolab	2014 reanalysis	2015 campaign	new results	damic100	Summary	BACK UP
00000	000	0	0	00	00000000	0	0	
Wei	ghts							

DAMIC detector: shielding

Nuclear recoil calibration

