Status of the SABRE NaI(Tl) Dark Matter Experiment

Sodium-iodide with Active Background REjection

Burkhant Suerfu
Princeton University

on behalf of SABRE Collaboration

SABRE: motivated to test results of DAMA/LIBRA

DAMA/LIBRA annual modulation
- 250-kg NaI(Tl) array
- 14 solar cycles
- 9.3 σ stat. significant

Interpretation as WIMPs in tension with other experiments.

Need an independent experiment using the same target.
- lower background
- lower threshold energy

0.0112 cpd/kg/keV modulation on top of ~1 cpd/kg/keV

R. Bernabei et al. (DAMA coll.), EPJ C (2013) 73:2648.
SABRE: motivated to test results of DAMA/LIBRA

DAMA/LIBRA annual modulation
- 250-kg NaI(Tl) array
- 13 solar cycles
- 9.3 σ stat. significant

Interpretation as WIMPs in tension with other experiments.

Need an independent experiment using the same target.
- lower background
- lower threshold energy

0.0112 cpd/kg/keV modulation on top of ~1 cpd/kg/keV

R. Bernabei et al. (DAMA coll.), EPJC (2013) 73:2648.
The SABRE strategy

Lower background.

1. **Grow NaI(Tl) crystals** with higher purity than DAMA/LIBRA
 a. Improve radio-purity of NaI powder
 b. Develop high-purity crystal growth method
 c. Low-radioactivity enclosure, PMTs, etc.

2. Employ **liquid scintillator veto/shielding**

Lower energy threshold.

1. High-Q.E. Hamamatsu PMTs **directly coupled** to NaI(Tl) crystals

Twin detectors in northern and southern hemisphere
LNGS, Italy & SUPL, Australia
Reduces seasonal effects
The SABRE strategy

Lower background.

1. **Grow NaI(Tl) crystals** with higher purity than DAMA/LIBRA
 a. Improve radio-purity of NaI powder
 b. Develop high-purity crystal growth method
 c. Low-radioactivity enclosure, PMTs, etc.

2. Employ **liquid scintillator veto/shielding**

Lower energy threshold.

1. High-Q.E. Hamamatsu PMTs **directly coupled** to NaI(Tl) crystals

Twin detectors in **northern** and **southern** hemisphere

LNGS, Italy & SUPL, Australia
Reduces seasonal effects
The SABRE design

- Proof-of-principle: 5-kg ultra-low background NaI(Tl) crystals
- Upgrade: NaI(Tl) array, 30-50 kg total target mass, 2~3 years exposure
- Liquid scintillator veto (vessel: 1.4 m diameter, 1.5 m length)
Background suppression with veto

Veto reduces background from:

- **Crystal** radioactivity:
 - ^{40}K (factor of ~10 reduction), ^{22}Na, ^{238}U, etc.

- γ from **PMTs**, enclosure, vessel

- γ and neutron from **rock**, etc.

- **Cosmic-ray** induced γ and neutron

![Diagram of Crystal Module and PMTs with photons and electron paths]
Veto reduces background from:

- **Crystal** radioactivity:
 - 40K (factor of ~10 reduction), 22Na, 238U, etc.

- γ from **PMTs**, enclosure, vessel

- γ and neutron from **rock**, etc.

- **Cosmic-ray** induced γ and neutron
New high-purity NaI(Tl) crystal successfully grown!

“Astrograde” NaI powder
- SAFHC-Hitech, Sigma-Aldrich
- 2.0 kg, 88-mm diam
- close to the planned diameter

Crystal growth
(Radiation Monitoring Devices)

Chemical analysis (Seastar Chemicals)
- Mass spectroscopy, calibrated with γ-counting
- Preliminary confirmation by PNNL

<table>
<thead>
<tr>
<th></th>
<th>This crystal</th>
<th>DAMA crystal</th>
</tr>
</thead>
<tbody>
<tr>
<td>K [ppb]</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>Rb [ppb]</td>
<td>< 0.1</td>
<td>< 0.35</td>
</tr>
</tbody>
</table>
Expected background with veto

Total background in 2-6 keV is simulated to be **0.13 cpd/kg/keV**.
- Extensive data-based simulation was performed
- 3H & 210Pb still unknown
- neutron background found to be small (preliminary)
Expected background with veto

Total background in 2-6 keV is simulated to be 0.13 cpd/kg/keV.
- 40K no longer dominant (improved crystal purity, veto)
- 87Rb can be the dominant background (upper limit, beta-decay, cannot be vetoed)
- Other components still subdominant (veto)

87Rb: 0.07 cpd/kg/keV (upper limit from crystal)

40K: 0.03 cpd/kg/keV (data from crystal)

238U, 232Th, 3H, 210Pb, etc. in crystal: 0.02 cpd/kg/keV (U & Th: from measurement)

γ-background from PMTs, enclosure, vessel, rocks, etc. 0.002 cpd/kg/keV
Expected background with veto

DAMA observed

SABRE expected

DAMA modulation
Expected sensitivity

Assume 50-kg, 2-6 keV, stable operation for 3 years, no systematic or other seasonal effect.

- No modulation:
 0.13 cpd/kg/keV flat: 6σ to refute
 0.3 cpd/kg/keV flat: 3σ to refute

- Modulation of 0.01 cpd/kg/keV:
 0.3 cpd/kg/keV: 3σ to confirm.
Current status and goal

Proof-of-principle

- Operate 5-kg crystals for a few months counting
- Funding by NSF, INFN, and ARC.
- Approved by LNGS

Commissioning the scintillator vessel, PMTs, and DAQ.

Crystal measurement starts in 2016.

Upgrade after “proof-of-principle”
First underground lab in the southern hemisphere

Located in Stawell gold mine
- 1 km underground
- 3.1 km w.e.

Status:
- Funding secured
- Lab completed by 2017

Start SABRE construction in 2017
Conclusion

Successful growth of an ultra-high pure NaI(Tl) scintillating crystal.
- 2 kg, 88 mm diameter
- $[K] = 9$ ppb, $[Rb] < 0.1$ ppb
- Continuing efforts to further improve crystal purity

Background after veto is projected to be ~ 0.13 cpd/kg/keV.
SABRE Industrial Partners

Radio-purity of NaI powder
- SAHC Hitech (Sigma-Aldrich);
- MV Industries
- SEASTAR CHEMICALS Inc.

Mass spectroscopy measurements
- SEASTAR CHEMICALS Inc.

Crystal growing method
- Radiation Monitoring Devices, Inc.

PMT development
- Hamamatsu

The work reported would have been impossible without the collaboration with and support from these companies / organizations. Many details are confidential; the products will be made available for everyone.
List of SABRE Collaborators

Australian National University
 Gregory Lane, Cedric Sinemel, Andrew Stuchbery, Anton Wallner

INFN, LNGS and GSSI
 Maddalena Antonello, Giuseppe Di Carlo, Aldo Ianni, Donato Orlandi, Michela Paris, Chiara Vignoli

INFN Roma
 Ioan Dafinei, Marcella Diemoz, Pablo Mosteiro, Valerio Pettinacci, Giancarlo Piredda, Shahram Rahatlou, Claudia Tomei

Lawrence Livermore National Laboratory (LLNL)
 Jingke Xu

Pacific Northwest National Laboratory (PNNL)
 Eric Hoppe, J. Orrell, C. Overman

Princeton University
 Jay Benziger, Frank Calaprice, Francis Froborg, Graham Giovanetti, Burkhart Suerfu, Masa Wada

Swinburne University of Technology
 Jeremy Mould, Alan Duffy

University of Melbourne
 Elisabetta Barberio, John Koo, Chunhua Li, Francesco Nuti, Peter McNamara, Phillip Urquijo

University of Milano and INFN
 Davide D’Angelo
Thank you very much!