# The LZ Experiment Tom Shutt SLAC

SURF South Dakota



# (10 tons LXe total)

Center for Underground Physics (Korea)

LIP Coimbra (Portugal) MEPhI (Russia) Edinburgh University (UK)

University of Liverpool (UK)

T. Shutt - LZ, ULCA DM, Feb 20, 2016

Imperial College London (UK)

University College London (UK) University of Oxford (UK) STFC Rutherford Appleton, and Daresbury, Laboratories (UK) University of Sheffield (UK)

# LUX - ZEPLIN

#### 31 Institutions, ~200 people

University of Alabama University at Albany SUNY Berkeley Lab (LBNL), UC Berkeley **Brookhaven National Laboratory Brown University** University of California, Davis Fermi National Accelerator Laboratory Lawrence Livermore National Laboratory University of Maryland Northwestern University University of Rochester University of California, Berkeley University of California, Santa Barbara University of South Dakota South Dakota School of Mines & Technology South Dakota Science and Technology Authority SLAC National Accelerator Laboratory Texas A&M Washington University

University of Wisconsin Yale University



# **Principle of Operation**

- 3D imaging rejects external backgrounds
- Electron-recoil backgrounds distinguished by ratio of charge / light ratio
- High purity LXe target
- Single photon and electron sensitivity





### The LZ Detector



Low background Ti vessels

#### HV UMBILICAL AND CONNECTION TO CATHODE







# Performance drivers

- Backgrounds
- Purity for charge drift
- Light Collection
- Drift field, low electron + photon emission
  - -Discrimination
  - -Threshold
  - -Grids: surface fields vs light collection
- Extensive test program: small chambers, HV in LAr, and System Test - T. Biesiadzinksi's talk

|                               | Requirement /<br>Baseline | Goal   |
|-------------------------------|---------------------------|--------|
| Cathode HV                    | 50 kV                     | 100 kV |
| Light collection              | 7.5%                      | 12%    |
| e <sup>-</sup> lifetime (µs)  | 850                       | 2800   |
| N-fold trigger<br>coincidence | 3                         | 2      |
| <sup>222</sup> Rn             | 20 mBq                    | 1 mBq  |

Prototype TPC Section









# Discrimination



- LUX new standard for discrimination calibration
- Discrimination strongest
   at lowest energy
- LZ requirement: ≥99.5%



### Signal production in liquid Xe



Electron Recoils Low field, low energy

### Signal production in liquid Xe



Figure: Gibson/Shutt

Electron Recoils High field, high energy

#### Signal production in liquid Xe



#### **Nuclear Recoils**

# Absolute calibration: the "Doke" plot



#### Comprehensive framework captured in NEST MC package



# Calibrations

- Expand upon successful LUX program
- Spatial response, temporal variation

   -<sup>83m</sup>Kr, <sup>131m</sup>Xe
- Outer LXe and Gd-scintillator

-<sup>220</sup>Rn, movable gamma ray sources

- Electron and
  - Nuclear recoils
    - -Tritium
    - Variety of high and low energy neutron sources





# **Outer Detector System**

- LXe skin scintillation: 4-8 cm (walls), ~20 cm (dome)
- Gd-loaded liquid scintillator (LAB): 60 cm, 21.5 tons.
- ~97% efficient for neutrons
- Hermetic measurement of all penetrating backgrounds





## Backgrounds



- Significant screening effort: K. Oliver-Mallory talk
- Assessment of backgrounds: M.E. Monzani's talk
- Internal backgrounds dominate: Kr, Rn. Goal: *Neutrinos dominate!* (and are interesting signal).

T. Shutt - LZ, ULCA DM, Feb 20, 2016







- Rn (and Kr) dominant internal radioactive background
- Emanates from most materials
- 20 mBq requirement, 1 mBq goal
- Four separate measurements systems, ~0.1 mB sensitivity
  - -Experience from SNO, KamLAND, EXO, NEMO, Borexino
- "Scrubber" processes purge
   Xe from warm breakout regions





# Xe Purification and Cryogenics

- Kr removal via chromatography
- Gas phase purification through getter 10 tons / 2.5 days
- Trap-enhanced mass spec: ~ppt
- High efficiency two-phase heat exchange
- LN thermosyphon-based cryogenics multiple cooling locations. Stirling LN refrigerator.
- Most aspects tested in System Test
- 10 tons Xe in hand or under contract for 2018 delivery





#### Kr removal



# DAQ, Electronics, Control, Offline



#### Slow control in use at System Test

![](_page_15_Figure_4.jpeg)

![](_page_15_Figure_5.jpeg)

![](_page_16_Picture_0.jpeg)

### Schedule

• CD1: March 2015

-Conceptual Design Report arXiv:1509.02910

- CD2: April 2016
- LUX removed Feb 2017
- Underground installation beings May 2018
- Operations begin May 2019

![](_page_17_Picture_0.jpeg)

# **Projected Sensitivity**

![](_page_17_Figure_2.jpeg)

# Summary

- LXe is pre-eminent target for high mass WIMPs
- LZ leverages LUX innovations in calibrations, cryogenics, purification
- Robust test program optimizing detector performance
- Very high fiducial volume fraction due to outer detector and low background cryostat
- Goal: neutrino-limited sensitivity of ~1x10<sup>-48</sup> cm<sup>2</sup>
- Goal: significant neutrino physics, including strong solar <sup>8</sup>B v-nuclear coherent scattering signal

![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_1.jpeg)

![](_page_20_Picture_0.jpeg)

![](_page_20_Figure_2.jpeg)

![](_page_21_Figure_0.jpeg)

# Spin Dependent Sensitivity

![](_page_21_Figure_2.jpeg)

![](_page_22_Picture_0.jpeg)

## Nuclear Recoil Spectrum

![](_page_22_Figure_2.jpeg)

![](_page_23_Picture_0.jpeg)

## **Double Beta decay Sensitivity**

![](_page_23_Figure_2.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_25_Picture_0.jpeg)

#### **Solar Axions**

![](_page_25_Figure_2.jpeg)

![](_page_26_Picture_0.jpeg)