Searching for BSM Phenomena at CMS in Run 1 and Run 2

Maxwell Chertok UC Davis

UCLA Dark Matter Symposium February 18, 2016

Outline

LHC and CMS Detector BSM Searches & Results

- Higgs status
- Searches for DM
- Searches for additional Higgs bosons
- Searches for resonances
- Searches for SUSY
- Searches for $X \rightarrow$ top quarks

Coming attractions

Conclusions

Presenting both Run 1 and Run 2 results

At the foot of the Jura

*

Year	Energy	CMS Recorded
2010	7	45/pb
2011	7	6.1/fb
2012	8	23.3/fb
2015	13	3.8/fb

27

CMS Detector

SILICON TRACKER Pixels (100 x 150 μm²) ~1m² 66M channels Microstrips (50-100μm) ~210m² 9.6M channels

> CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) 76k scintillating PbWO₄ crystals

PRESHOWER Silicon strips ~16m² 137k channels

~13000 tonnes

STEEL RETURN YOKE

Pixels

ECAL

HCAL

Solenoid

Muons

Steel Yoke

Tracker

SUPERCONDUCTING SOLENOID Niobium-titanium coil carrying ~18000 A

Total weight: 140Overall diameter: 15.Overall length: 28.Magnetic field: 3.8

: 14000 tonnes : 15.0 m : 28.7 m : 3.8 T HADRON CALORIMETER (HCAL) Brass + plastic scintillator *FORWARD CALORIMETER* Steel + quartz fibres

MUON CHAMBERS Barrel: 250 Drift Tube & 500 Resistive Plate Chambers Endcaps: 450 Cathode Strip & 400 Resistive Plate Chambers

The Compact Muon Solenoid

LHC and CMS in 2015

CMS Integrated Luminosity, pp, 2015, $\sqrt{s}=$ 13 TeV

Standard Model Still Going Strong @ 13 TeV

M. Chertok - CMS Searches - UCLA DM 2016

Higgs coupling measurements from Run I

Remaining wiggle room in Higgs Decay BRs

Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors

- Bernon, et al, PRD 90, 071301(R) (2014)
- Use published signal strengths μ
 = σ(best-fit)/σ(SM) and
 uncertainties, fit for values of
 Higgs couplings to different SM
 particles under different
 assumptions of new physics

At 95% CL, up to 34% allowed branching ratio to as-yet-unseen decays

Direct searches for Higgs decays to exotics still well motivated!

Heavy New Particles: Run II (so far) vs Run I

M. Chertok - CMS Searches - UCLA DM 2016

Searches for Dark Matter

CMS-PAS-EXO-13-004

Mono-W (lepton + MET)

CMS-PAS-EXO-12-047

Monophoton (photon + MET)

13

▶ CMS-PAS-B2G-14-004

DM with top quarks

- Assume DM is Dirac fermion
- Coupling depends on mass of DM particle and interaction scale (M*)
 Couplings to 3rd generation quarks poorly
 - constrained

CMS-PAS-EXO-15-003

DM with Jets and MET

Search for generic DM
 Monojets → Multijets expected from DM pairs

arising from vector mediator X→ XX
 p⊤(j)>100 GeV, MET > 200 GeV

M. Chertok - CMS Searches - UCLA DM 2016

CMS-PAS-EXO-15-003

DM with Jets and MET

CMS-PAS-HIG-15-012

Invisible Higgs Decays in Run 1

Searches for additional Higgs bosons

▷CMS-PAS-HIG-14-022, 15-011

Search for light pseudoscalar Higgs bosons

- H(125) *→aa →*4τ
- 5 < m_a < 15 GeV
- Thus, boosted *a*, overlapping τ
- ► → modify standard hadronic τ id
- H(125) *→aa →*2τ2μ
- 20 < m_a < 62.5 GeV
- no appreciable boost

Search for light pseudoscalar Higgs bosons

CMS-PAS-HIG-14-039

Doubly-charged Higgs

Minimal see-saw model to explain v masses
 includes scalar triplet: Φ⁺⁺, Φ⁺, Φ⁰
 search: 3 or 4 leptons with p_T > 20 GeV

Doubly-charged Higgs

Searches for resonances

CMS-PAS-EXO-15-004

Diphoton Resonances

10³

2×10³

 $m_{\gamma \gamma}$ (GeV)

M. Chertok - CMS Searches - UCLA DM 2016

4×10² 5×10²

3×10²

CMS-PAS-EXO-15-004

Diphoton Resonances: 8+13 TeV combination

M. Chertok - CMS Searches - UCLA DM 2016

Searches for Supersymmetry

SUSY searches at 13 TeV

▶ Focus (so far) on gluino pair production with 2015 data

M. Chertok - CMS Searches - UCLA DM 2016

CMS-PAS-SUS-15-011

 Classic SUSY signature
 N₂ → slepton + lepton
 slepton → lepton + LSP
 Mass of Edge function of: ΔM(N₂,slepton),ΔM(slepton,LSP)

SUSY Single Lepton, LS Dileptons

<u>Single Lepton</u>: require large scalar sum of masses for jets (from top), large MET
 <u>LS dilepton</u>: gluino Majorana! Reduces ttbar, D-Y substantially

▷CMS-PAS-SUS-15-008

CMS-PAS-SUS-15-007

Searches for $X \rightarrow$ Top Quarks

▶CMS-PAS-B2G-15-006

M. Chertok - CMS Searches - UCLA DM 2016

▷CMS-PAS-B2G-15-004

W' → tb

- Predicted in various BSM models
- Tend to couple more strongly to 3rd generation fermions
- Search in leptons + jets + MET

Run II searches not covered here

Black Holes

- CMS-PAS-EXO-15-007
- **Heavy Stable Charged Particles**
- CMS-PAS- EXO-15-010

Dijet resonances

- CMS-PAS-EXO-15-001, 009
- **Dilepton resonances**
- CMS-PAS-EXO-15-005

http://cms.web.cern.ch/news/cms-physics-results

Dijet resonance

Highest mass dijet pair observed: 6.14 TeV

Dimuon resonance

Highest mass dimuon pair observed: 2.4 TeV

Coming Attractions

Higgs in Run II

13 TeV vs. 8 TeV

- ggH, VBF cross sections up 2.6x
- Discovery channels visible with ~ 5/fb
- ttH cross section up ~ 4x
- Heavy Higgs partner production would be much higher

Busy with preparations now

All CMS Higgs analyses blinded at present!

Conclusions

Higgs discovery opens new chapter for BSM physics CMS continues the hunt

- Wrapping up Run 1 searches
- Polishing up preparations for high-statistics Run 2 searches
 - Expecting ~ 30/fb in 2016

In Backup: Detector and Accelerator upgrades will keep us busy searching (and hopefully measuring!) for two decades

- Phase 1 upgrades will all be in place by early next year. Instrumental in BSM search reach with 300/fb @ 13 TeV
- HL-LHC: 10x data @ 14 TeV

Push LHC searches for heavy particles, precision Higgs measurements Substantial radiation and pileup: detector R&D critical

Backup Slides

Phase 1 Upgrades

Over next few years, expect to collect ~ 300/fb @ 13 TeV. This will enable unprecedented reach in BSM searches

Detector upgrades necessary to maintain performance in increasingly difficult environment:

- New pixel tracker
- Upgraded Level-1 trigger
- Upgraded electronics for Hadron Calorimeter

High-Luminosity LHC: The Future

Exploit LHC ultimate potential

- ▶ 3000/fb @ 14 TeV
- Methodical continued search for new particles with access to small cross sections
- Precision Higgs couplings
- P5: Highest priority!

HL-LHC: The Future looks bright

High-Luminosity LHC Detector

• Large components of the current CMS detector must be replaced for HL-LHC

New TrackerNew Endcap calorimeter

• Upgrade barrel calorimeter

Upgrade muon system

•New Trigger/DAQ

Technical Proposal: CERN-LHCC-2015-010, http://cds.cern.ch/record/2020886

Kinematic variables in gluino searches

- H_T: scalar sum of jet transverse momenta (p_T)
- H_{T,miss}: |vector sum of jet p_T|

M_{T2}: generalization of M_T. Good for QCD multijet rejection

$$M_{ ext{T2}}(m_{\widetilde{\chi}}) = \min_{ec{p}_{ ext{T}}^{\widetilde{\chi}(1)}+ec{p}_{ ext{T}}^{\widetilde{\chi}(2)}=ec{p}_{ ext{T}}^{ ext{miss}}} \left[\max\left(M_{ ext{T}}^{(1)},M_{ ext{T}}^{(2)}
ight)
ight]$$

Razor variables: M_R, R² characterize energy mass, energy flow for pair-produced particles:

$$M_R \equiv \sqrt{(P_{j_1} + P_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2} \qquad M_T^R \equiv \sqrt{\frac{E_T^{miss}(p_T^{j_1} + p_T^{j_2}) - \vec{p}_T^{miss} \cdot (\vec{p}_T^{j_1} + \vec{p}_T^{j_2})}{2}} \qquad R^2 \equiv \left(\frac{M_T^R}{M_R}\right)^2$$

α_T: p_T(j2)/M_T

Δφ*_{min}: minimum angle between a jet and H_{T,miss} vector formed by others