DEAP-3600 Dark Matter Search at SNOLAB

Mark Boulay
Carleton University
Queen's University

DEAP-3600 Dark Matter Search

Liquid Argon for DM (Single-phase)

Scattered nucleus detected via scintillation in LAr

Good Pulse-shape discrimination between β/γ and nuclear recoils with scintillation

Argon is easy to purify

Very large target masses possible, no absorption of UV scintillation photons in argon, no pileup until beyond tonne-scale

Position reconstruction allows surface background removal, based on photon detection (~5 cm resolution allows removal of radon daughter events from analysis)

DM Sensitivity

1 tonne fiducial mass (3.6 tonnes total) designed for < 0.2 background events/year with 60 keVr threshold

Pulse-shape discrimination (PSD) in argon

PSD in DEAP-1 prototype using AmBe neutron source

DEAP-1 started 2005

only purify argon while filling, stable for full run, order (year)

See J. Phys. (Conf. Ser.) 375 (2012) 012027

DEAP-3600 Detector

3600 kg argon in sealed ultraclean Acrylic Vessel (1.7 m ID)

Vessel is "resurfaced" in-situ to remove deposited Rn daughters after construction

255 Hamamatsu R5912 HQE PMTs 8-inch (32% QE)

50 cm light guides + PE shielding provide neutron moderation

Steel Shell immersed in 8 m water shield at SNOLAB

Máir Doulay

DEAP Collaboration: 65 researchers in Canada, UK, and Mexico

Fabrication and Assay of DEAP Acrylic

- Fabrication from pure MMA monomer at RPTAsia (Thailand), strict control of radon exposure for all steps, to < 10⁻²⁰ g/g ²¹⁰Pb (RPT was fabricator of the SNO Acrylic Vessel)
- Assay of production acrylic < 2.2x10⁻¹⁹ g/g ²¹⁰Pb
 (Corina Nantais M.Sc. Thesis 2014, <0.2 bkg events/3 years)

Monomer cast at RPT Asia, 2010 Mark Boulay

Thermoformed Panel at RPT Colorado

DEAP Acrylic Vessel, Panel Sections at Reynolds Polymer, Colorado

Mark Boulay

DEAP Acrylic Vessel with Light Guide "Stubs" July 2012, U Alberta

AV neck bonding underground (December 2012-January 2013)

Bonding light guides to the DEAP AV, underground at SNOLAB

DEAP Acrylic Vessel (2013)

Mark Boulay

Moving the AV into assembly room

Mark Boulay

DEAP-3600 Detector Assembly

Specular reflector + opaque wrap PMT with silicone oil coupling

Acrylic Light Guide

PE neutron shielding "blocks"

Copper sleeve over PMT

Completed Detector and Shield Tank

Completed Detector: Steel Shell, calibration tubes, muon veto in Shield Tank (fall 2015)

Shield Tank and emergency vent lines, tank was filled with water Oct 2015

Detector event rate during shield tank water fill

120 ·

80

60

40 · 20 · Electronics and trigger system operational for over a year (CAEN v1720s)

- Commissioning, electronics calibration
- Optical calibration with internal fibers (AARFs) and deployed diffusing laserball source

A high energy event (Commissioning running, Spring 2015)

Run: 9406 Subrun: 3 Event: 300460

High-E event rate: ~1 event/day

DEAP-3600 Cryogenic Systems

DEAP-3600 Cryocooler System Installed May 2012

Liquid Argon Target Transfer and Storage

Bulk LAr storage on surface

2x240L (transfer)

LN₂-cooled storage dewar underground

Transferring underground started March 3, 2015

From RGA scans (before purification in the DEAP system):

 $CH_4 < 10 \text{ ppb}, H_2O < 10 \text{ ppb}, N_2 < 4 \text{ ppb}, O_2 < 6 \text{ ppb}$

(<100 ppt after purification)

Argon Purification

Target stored as liquid, boiled and purified in gas phase, then (re-)liquefied into AV

(Gettering, radon and particulate filtration)

 $150 \text{ lpm} = \sim 380 \text{ kg/day}$

Currently running in closed loop on argon storage dewar, and for filling AV with argon during cooldown

AV cooldown started Feb 17th, 2016!

Summary

- DEAP-3600: 3.6 tonnes of liquid argon (1 tonne fiducial) >20X improvement in experimental sensitivity, excellent high WIMP mass sensitivity (similar sensitivity to XENON-1T for high WIMP mass)
- Collecting data in commissioning phase since early 2015
- Start of detector cooldown Feb 17th 2016!
 ~3 weeks cooldown + 3 weeks argon filling
- R&D towards larger detector:

~100 Tonnes of argon

requires low-radioactivity (underground source) argon

detector surface backgrounds (dominant concern in DEAP-3600) are **easier** to mitigate in larger detector

good option to explore down to neutrino floor, complements xenon searches (also no concern in argon for pp neutrino ES backgrounds, ½-event per tonne-year in xenon)

END