

TIME-DELAY DISTANCES IN THE ERA OF JWST

Akın Yıldırım, Sherry Suyu & H0LiCOW Collaboration

Time-delay measurements - An intermediary

 4% precision measurement of H0 based on 3 gravitational lens systems.

 Time-Delay Strong Lensing (TDSL) in agreement with local distance ladder results for flat LCDM.

Time-delay measurements - An intermediary

 4% precision measurement of H0 based on 3 gravitational lens systems.

 TDSL as a powerful probe to constrain cosmological world models, when combined with the CMB.

RXJ II3I - The poster child

 RXJ 1131 is a well studied system with plenty ancillary data for a variety of science cases.

	Suyu et al. 2014	Future
Time-delay	1.3%	
Lens mass profile	6.0%	
Line-of-sight	3.5%	
$D_{\Delta t}$	>6.6%	

RXJ II3I - The poster child

 RXJ 1131 is a well studied system with plenty ancillary data for a variety of science cases.

	Suyu et al. 2014	Future
Time-delay	1.3%	1.3%
Lens mass profile	6.0%	
Line-of-sight	3.5%	
$D_{\Delta t}$	>6.6%	

McCully et al. 2017

	Suyu et al. 2014	Future
Time-delay	1.3%	1.3%
Lens mass profile	6.0%	
Line-of-sight	3.5%	1.8%
D_{\Deltat}	>6.6%	

McCully et al. 2017

	Suyu et al. 2014	Future
Time-delay	1.3%	1.3%
Lens mass profile	6.0%	
Line-of-sight	3.5%	1.8%
D_{\Deltat}	>6.6%	

McCully et al. 2017

	Suyu et al. 2014	Future
Time-delay	1.3%	1.3%
Lens mass profile	6.0%	~ 3.0%
Line-of-sight	3.5%	1.8%
D_{\Lambdaf}	>6.6%	< 4.0%

	Suyu et al. 2014	Future
Time-delay	1.3%	1.3%
Lens mass profile	6.0%	~ 3.0%
Line-of-sight	3.5%	1.8%
$D_{\Delta t}$	>6.6%	< 4.0%

RXJ1131 - Preparation is key

RXJ1131 - Predicted JWST NIRSPEC kinematics

 Exploiting JWST's mosaicking capabilities for ancillary science. Mocking JWST IFU stellar kinematics within the lens effective radius.

Chirivì, G. Yıldırım & Suyu, in prep.

Simulating and modelling realistic JWST NIRSPEC kinematics

Lensing & Dynamics - Closing the gap

 Source resolution differences are the main source of uncertainty for a given lens mass profile. Source resolution uncertainties can be reduced by including high-spatially resolved stellar kinematics.

Lensing & Dynamics - Closing the gap

 Main source of uncertainty due to lens mass parameterisation. • IFU Stellar kinematics reconcile time-delay distances.

Lensing & Dynamics - Closing the gap

 Feasible observations with next generation of telescopes reduce the time-delay error dget of a single

A secondary cosmological distance estimate

 Lens distance (i.e. another independent cosmological distance) will be constrained in parallel.

- Lens distance not constrained very well for profiles that deviate from the input.
- Possibly use informative priors to narrow down the large parameter space (external convergence, intrinsic shapes).

Summary/Ancillary Science

- Unprecedented, spatially-resolved kinematics of high-z lenses.
- Lensing & stellar dynamics reduce the uncertainties due to the mass profile by ~2.
- Combination of 3 lenses are expected to yield tight H0 constraints, comparable to and challenging the local distance ladder.

- · Kinematic characterisation of high-z sources.
- Dark matter (substructure) studies of high-z lenses.
- Spatially resolved stellar populations of high-z lenses.
- · SMBH host studies at high-z.

TIME-DELAY DISTANCES IN THE ERA OF JWST

Akın Yıldırım, Sherry Suyu & H0LiCOW Collaboration

Source resolution uncertainties

Source resolution uncertainties

Source resolution uncertainties

