

## Scaled Experiments in NRL SPSC for Satellite Measurements

Erik Tejero erik.tejero@nrl.navy.mil Plasma Physics Division, Naval Research Laboratory





Bringing Space Down to Earth Workshop

#### **Dimensionless Parameter Covered in SPSC**



## Space Plasma - Space Chamber Parameter Comparison

| parameter                          | ionosphere                                        | RB (L = 2)                                  | NRL SPSC                                              |
|------------------------------------|---------------------------------------------------|---------------------------------------------|-------------------------------------------------------|
| plasma density (cm <sup>-3</sup> ) | <b>10</b> <sup>3</sup> – <b>10</b> <sup>6</sup>   | ~ <b>10</b> <sup>3</sup>                    | $10^4 - 10^{12}$                                      |
| electron temp. (eV)                | ~0.3                                              | ~1                                          | 0.1 – 4                                               |
| ion temp. (eV)                     | ~0.3                                              | 0.3                                         | 0.05                                                  |
| magnetic field strength (G)        | ~0.3                                              | ~0.04                                       | up to 750 G (SC)<br>& 250 G (MC)                      |
| plasma freq. (Hz)                  | <b>10<sup>5</sup> - 10</b> <sup>7</sup>           | $5 \times \mathbf{10^5}$                    | $10^6 - 10^{10}$                                      |
| ion gyrofrequency (Hz)             | ~30 (0+)                                          | $3.8 	imes \mathbf{10^4}$ (H <sup>+</sup> ) | ~10 <sup>3</sup> - 10 <sup>5</sup> (Ar <sup>+</sup> ) |
| electron gyrofrequency (Hz)        | ~ <b>10</b> <sup>6</sup>                          | <b>10</b> <sup>5</sup>                      | $10^6 - 10^9$                                         |
| ω <sub>pe</sub> /Ω <sub>e</sub>    | 0.1 – 10                                          | 5                                           | 0.01 - 50                                             |
| ω/ν <sub>en</sub>                  | > 1                                               | >> 1                                        | ~5 - 600                                              |
| β                                  | <b>10</b> <sup>-7</sup> - <b>10</b> <sup>-4</sup> | <b>10</b> <sup>-5</sup>                     | <b>10</b> <sup>-7</sup> - <b>10</b> <sup>-3</sup>     |

















Tejero et al., Phys. Plasmas, 22, 091503 (2015)





Bringing Space Down to Earth Workshop









- Malaspina et al., JGR 2015 Up to 95% of boundaries showed broadband waves
- Divin *et al.*, JGR 2015 Detailed analysis of LH waves at a dipolarization front



### Divin *et al.* Identified Lower Hybrid Drift Instability as Source of Observed Lower Hybrid Waves







- $(k_{\hat{x}}\rho_e, k_{\hat{y}}\rho_e) \sim (-0.6, 0.3)$
- LHDI modes should be damped

NRL PPD

#### Local Approximation Predicts Instability Threshold

$$\overline{\omega}^{3} + \left(2\frac{\delta^{2}}{1+\delta^{2}}\frac{\overline{V}_{0}}{\overline{k}_{y}} - \overline{k}_{y}\overline{V}_{0}\right)\overline{\omega}^{2} - \overline{\omega} + \overline{k}_{y}\overline{V}_{0} = 0$$

$$\overline{\omega} = \frac{\omega}{\omega_{LH}}, \delta = \frac{\omega_{pe}}{\Omega_{e}}, \overline{V}_{0} = \frac{v_{E}}{\omega_{LH}L_{E}}, \overline{k}_{y} = k_{y}L_{E}$$

$$ax^{3} + bx^{2} + cx + d = 0$$
Sh

Diamagnetic Drift Frequency:  $\omega_{De,i} = kv_{De,i}$ Shear Frequency:  $\omega_s = \frac{dv_E}{dx}$ 

$$\Delta = 18abcd - 4b^3d + b^2c^2 - 4ac^3 - 27a^2d^2$$

If  $\Delta < 0$ , then 1 real solution and two complex conjugate solutions

Effects of Nonuniform B on EIH

- Increased growth rate
- No effect on wavelength



**NRL PPD** 

# Reanalysis Shows that Sheared Flows Can Drive Observed Lower Hybrid Waves



#### **Relevant Parameters**

| Density                                 | $n = 3.8 \times 10^5 \text{ m}^{-3}$    |  |
|-----------------------------------------|-----------------------------------------|--|
| Magnetic Field                          | $B_z = 26 \text{ nT}$                   |  |
| Ion Diamagnetic Drift                   | $V_{Di} = 1.9 \times 10^5 \text{ m/s}$  |  |
| Electric Field                          | $E_x = -20 \text{ mV/m}$                |  |
| E×B Drift                               | $v_E = 1.7 \times 10^6 \text{ m/s}$     |  |
| Electric Field Gradient<br>Scale Length | $L_E = 54 \text{ km}$                   |  |
| Wave Vector in E×B<br>Direction         | $k_y = 3 \times 10^{-5} \text{ m}^{-1}$ |  |

#### **Analysis Results**

$$\omega_s = 8.5 \text{ vs } \omega_{Di} = 8.7$$

- LHDI:  $k_y \rho_e \sim 1$
- EIH:  $k_y L_E \sim 1$

$$k_y \rho_e = 0.3 \text{ vs } k_y L_E = 1.6$$

 $\Delta = -9.3$ 

• Propagates in E×B direction

# Conditions above threshold to drive EIH and wavelength scaling more consistent with EIH.