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INTRACLUSTER MEDIUM (ICM)

Image: NASA

X-Ray Optical



LET’S LOOK AT A FEW PARAMETERS
e.g., Rosin et. al 2010, Hydra A  
         Kunz et. al 2010

n ⇠ 6⇥ 10�2cm�3
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Pm ⇠ 2⇥ 1026Re ⇠ 60 Turbulent? 
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Plasma motions
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T ⇠ 3⇥ 107K ⇠ 3keV



PERTURB MAGNETIC FIELD?

e.g., sound (ion-acoustic) wave

see also Verscharen et al. (2016)



PERTURB MAGNETIC FIELD?
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PERTURB MAGNETIC FIELD?

�B ⇠ �p ⇠ �p

Momentum stress due to ∆p  ~  100*magnetic pressure
MHD completely wrong?
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PRESSURE ANISOTROPY INSTABILITIES

OR

Firehose InstabilityMirror Instability

Kunz et al. 2014



ICM WAVE

�n

n
> 0.01 ??

➤ Firehose/mirror excited very easily.  
➤ Act to limit ∆p 
➤ Saturation controls large-scale dynamics

they act instantaneously, enormous scale separation

⌦i/|ru| ⇠ (k⇢i)
�1 ⇠ 1011



Fluctuation amplitude
|�B|

Bale et al. 2009

ICM  
example 

COLLISIONLESS HIGH-    PLASMAS ARE ALWAYS UNSTABLE�
Melville et al. 2016



A COMPLETELY DIFFERENT  
TYPE OF FLUID DYNAMICS

where the nonlinear behavior of mirror/firehose instability 
control the plasma’s viscosity/conductivity/resistivity…?

➤ Dynamics can differ (a lot) from MHD. Simplest to 
study: waves (but we really care about turbulence). 

➤ Explore some parameters required to see such effects in 
the laboratory.

THIS TALK Firehose+mirror fundamental to plasma physics



MHD WAVES THE SHEAR-ALFVÉN WAVE

➤ Fundamental to turbulence (Goldreich & Sridhar 1996) 

➤ Ubiquitous in the solar wind and experiments 

➤ Magnetic tension  
acts as spring

B = B0ẑ + �B?(z)x̂

u = �u?(z)x̂

e.g., linearly polarized  
standing wave



COLLISIONLESS WAVES INTERRUPTION

dB

dt
< 0 �p < 0

THE WAVE HAS REMOVED ITS OWN RESTORING FORCE

IF
Firehose limit
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Magnetic tension
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COLLISIONLESS WAVES INTERRUPTION

Firehose excited just as the wave loses restoring force
Squire+2016,2017



COLLISIONLESS WAVES INTERRUPTION
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�B?
B0

�u?
vA

Measure (�)
Bale + in prep (2016)

� �1/2

MEASUREMENT SUPPORTS THEORY

WE CAN SEE THIS EFFECT IN THE SOLAR WIND



2D-3V HYBRID SIMULATIONS
➤ Illustrate how firehose saturation controls MHD scales 

➤ Transfer of energy directly from large to small — no turbulence

x x

x

Details of firehose mode’s saturation  
and decay controls the MHD wave
(e.g., Quest+1996, Matteini+2006, Hellinger+2008,  
Kunz+2014, Seough+2015, Melville+ 2016,…)



OTHER MHD WAVES

➤ Slow and fast waves: pressure restoring force  

➤ Can likely still propagate if they excite mirror/firehose 

➤ Damping may decrease 
when this occurs? 

➤ Verscharen et al. (2016):  
large-scale slow waves  
help isotropize the solar  
wind? 
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IN THE LAB?

➤ β ≳ 1  

➤ Magnetized — Ωi > νi 

➤ and ρi < L 

➤ Ability to create large-amplitude waves/turbulence 

➤ Shear-Alfvén waves —  

➤ Sound waves — 

➤ and λwave > ρi
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➤ Compared to B2, instability 
thresholds reduced at 
moderate β  
(e.g., Hellinger+2008, Klein+2015) 

➤ Need MHD firehose to 
“interrupt” wave, but would 
still see interesting 
fluctuations at kinetic 
thresholds

IN THE LAB?

Some things to help
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➤ E.g., near firehose threshold, launch shear-Alfvén wave 

➤ Reduced wave speed (∆p<0) 

➤ “Interrupt”+excite firehose at much lower amplitude 

➤ E.g., long wavelength density wave near mirror threshold 

➤ Wave excites mirrors (or IC) as it passes, study their 
decay.

IN THE LAB?

Some things to help
Combine waves/perturbations with other methods? 



TO CONCLUDE

➤ Lots of astrophysical plasmas follow a different fluid 
dynamics, which we don’t yet understand 
 
 

➤ Firehose/mirror fundamental — control the dynamics on the 
largest scales 

➤ Fundamental aspect of plasma physics not yet studied in the 
lab

e.g.,


