

### Radiation Belt Wave Observations on the Van Allen Probes and Opportunities for Lab Experiments

#### C. A. Kletzing The University of Iowa







### **Radiation Belt Waves**

#### Key waves important for wave-particle interactions





THE UNIVERSITY OF IOWA

Bringing Space Down To Earth - April, 2017



2



### EMFISIS Data Example (5-15-2013)





### **EMIC Waves**

#### Three bands split by cyclotron frequncies





He+

#### O{

#### From A. Saiken, UNH



### **EMIC Wave Properties**

#### Hydrogen band seen in both E and B





THE UNIVERSITY OF IOWA

#### From M. Argall, UNH





### **EMIC Waves**

- Driven by ring current ions when drift exceeds Alfven speed.
- Interact with relativistic electrons via electron cyclotron resonance; primarily left-hand polarization.
- This interaction results in pitch angle scattering and loss to the atmosphere.
- Scattering rates depend on ion composition.
- For the lab:
  - Can pitch angle scattering be measured?
  - Can effects of ion composition be measured?
  - What conditions make electrostatic harmonics?







### **Magnetosonic Waves**



### Magnetosonic Wave Vector



THE UNIVERSITY OF IOWA

8

### **Rising Tone Magnetosonic Waves**

#### From March 3, 2014.



From S.Boardsen, GSFC and G. Hospodaarsky, UI



THE UNIVERSITY OF IOWA

## Magnetosonic'Equatorial Noise'

- Intense, very linearly polarized, planar, and propagating almost exactly perpendicular to B.
- Generated by proton ring distributions.
- Found almost exclusively at the magnetic equator
- Acceleration of electrons to relativistic energies via electron Landau resonance rather than the Doppler shifted electron cyclotron resonance.
- For the lab?
  - Can these be generated by proton ring distributions?
  - Can energization of electrons be seen in the lab?
  - Can the rising tone phenomenon be reproduced?









### **Hiss Growth**

RBSP-A shows growth at very low frequencies





### **Plasmaspheric Hiss**

- Several theories for generation mechanism.
- Broadband whistler mode waves between lower hybrid frequency and ~0.1-0.2 f\_ce
- Interact with relativistic electrons via electron cyclotron resonance:

$$\omega - k_{\parallel} v_{\parallel} = \pm rac{|\Omega_e|}{\gamma}$$

- As for EMIC waves interaction results in pitch angle scattering and loss to the atmosphere.
- For the lab:
  - Can the scattering process be measured?
  - Can we identify growth conditions?









### **Chorus Waveforms**

#### Power level triggered waveform burst captures are working well!





3



### Chorus and the "Gap"

#### At or very near the generation region







15

### The "Gap" Appears!

Above the generation region





### **Chorus Energy Transfer**

#### Lower energy electrons drive chorus which energizes electrons.





16

THE UNIVERSITY OF IOWA





### **Wave Normal Direction**



## Wave normal can be quite obliqueE UNIVERSITY OF IOWABringing Space Down To Earth - April, 2017



17



### **Wave-particle interaction**

#### Parallel propagation, non-relativistic

# Whistler mode Dispersion relation:

$$\frac{k^2 c^2}{\omega^2} = 1 + \frac{\omega_{pe}^2}{\omega(\omega_{ce}\cos\theta - \omega)}$$

Resonance Condition:

$$\omega - k_{||}v_{||} = \omega_{ce}$$

Resonant

Energy:

$$\frac{2E}{mc^2} = \frac{(\omega_{ce} - \omega)^2 (\omega_{ce} \cos\theta - \omega)}{\omega \cos^2 \theta (\omega \omega_{pe} \cos^2 \theta - \omega^2 + \omega_{pe}^2)}$$



THE UNIVERSITY OF IOWA





### **Electron Resonant Energy**



THE UNIVERSITY OF IOWA



19



### **Twisted Chours**

#### A fun example to keep the theorists busy!









### **Twisted Chorus: WNA**

#### A mix of oblique and parallel wave normal directions

B

### Wave Normal θ



Poynting Flux θ

WA



### Whistler Mode Chorus

- Generation mechanism is only generally understood.
- Two frequency ranges. Lower band is 0.1 f<sub>ce</sub>-0.5 f<sub>ce</sub>, upper band is 0.5 f<sub>ce</sub>-0.8 f<sub>ce</sub>
- Interact with electrons via electron cyclotron resonance to both scatter and accelerate electrons.
- Scattering of lower energy electrons few to 100 keV.
- Acceleration of seed in electrons with 100's of keV energy up to MeV energies is possible.
- For the lab:
  - Recent LAPD & NRL experiments yield chorus-like waves
  - What conditions make simpler rising or falling tones?
  - Can we see electron energization?







### Conclusions

- Van Allen Probes continue to return outstanding wave data that allow some of the best wave property measurements ever made.
- There are many phenomena that may be amenable to lab experiments:
  - Generations of EMIC and scattering properties.
  - Generation of magnetosonic waves and acceleration of electrons.
  - Scattering of energetic electrons by hiss
  - Better understanding of the parameters for generating chorus and measuring acceleration of electrons.



#### emfisis.physics.uiowa.edu

VERSITY OF IOWA Bringing Space Down To Earth - April, 2017





### That's all folks!



